Пример #1
0
def test_hyper_param_populate(driver):
    driver.get('/')
    with create_test_project() as p, create_test_featureset(
            p) as fs, create_test_model(fs) as m:
        driver.refresh()
        proj_select = Select(
            driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-6').click()

        driver.find_element_by_partial_link_text('Create New Model').click()
        driver.find_element_by_partial_link_text(
            'Choose Model Parameters').click()
        model_select = Select(
            driver.find_element_by_css_selector('[name=modelType]'))
        model_select.select_by_visible_text("RandomForestClassifier")
        driver.implicitly_wait(0.1)
        driver.find_element_by_xpath(
            "//label[contains(text(),'n_estimators')]")
        driver.find_element_by_xpath(
            "//label[contains(text(),'max_features')]")

        model_select.select_by_visible_text("RidgeClassifierCV")
        driver.implicitly_wait(0.1)
        driver.find_element_by_xpath("//label[contains(text(),'alphas')]")
        driver.find_element_by_xpath("//label[contains(text(),'scoring')]")

        model_select.select_by_visible_text("BayesianRidgeRegressor")
        driver.implicitly_wait(0.1)
        driver.find_element_by_xpath("//label[contains(text(),'n_iter')]")
        driver.find_element_by_xpath("//label[contains(text(),'alpha_1')]")
Пример #2
0
def test_delete_model(driver):
    driver.get('/')
    with create_test_project() as p, create_test_featureset(p) as fs,\
         create_test_model(fs) as m:
        driver.refresh()
        proj_select = Select(driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-6').click()
        driver.find_element_by_partial_link_text('Delete').click()
        driver.implicitly_wait(1)
        status_td = driver.find_element_by_xpath(
            "//div[contains(text(),'Model deleted')]")
Пример #3
0
def test_predict_raw_data():
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs, create_test_model(fs) as m:
        ts_data = [[1, 2, 3, 4], [32.2, 53.3, 32.3, 32.52], [0.2, 0.3, 0.6, 0.3]]
        impute_kwargs = {'strategy': 'constant', 'value': None}
        query_string = ('{}/predict_raw_data?ts_data={}'
                        '&modelID={}&impute_kwargs={}').format(
                            cfg['server']['url'], json.dumps(ts_data),
                            json.dumps(m.id), json.dumps(impute_kwargs))
        response = requests.post(query_string).json()
        assert response['status'] == 'success'
        assert response['data']['0']['features']['total_time'] == 3.0
        assert 'Mira' in response['data']['0']['prediction']
Пример #4
0
def test_prediction_to_csv_class():
    """Test util.prediction_to_csv"""
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs,\
         create_test_model(fs, model_type='LinearSGDClassifier') as m,\
         create_test_prediction(ds, m) as pred:
        pred = featureset.from_netcdf(pred.file.uri)
        assert util.prediction_to_csv(pred) ==\
            [['ts_name', 'true_target', 'prediction'],
             ['0', 'Mira', 'Mira'],
             ['1', 'Classical_Cepheid', 'Classical_Cepheid'],
             ['2', 'Mira', 'Mira'],
             ['3', 'Classical_Cepheid', 'Classical_Cepheid'],
             ['4', 'Mira', 'Mira']]
Пример #5
0
def test_model_info_display(driver):
    with create_test_project() as p, create_test_featureset(p) as fs,\
         create_test_model(fs) as m:
        driver.refresh()
        proj_select = Select(driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))
        driver.find_element_by_id('react-tabs-6').click()

        driver.find_element_by_xpath("//td[contains(text(),'{}')]".format(m.name)).click()
        assert driver.find_element_by_xpath("//th[contains(text(),'Model Type')]")\
                     .is_displayed()
        assert driver.find_element_by_xpath("//th[contains(text(),'Hyper "
                                            "Parameters')]").is_displayed()
        assert driver.find_element_by_xpath("//th[contains(text(),'Training "
                                            "Data Score')]").is_displayed()
Пример #6
0
def test_prediction_to_csv_regr():
    """Test util.prediction_to_csv"""
    with create_test_project() as p, create_test_dataset(p, label_type='regr') as ds,\
         create_test_featureset(p, label_type='regr') as fs,\
         create_test_model(fs, model_type='LinearRegressor') as m,\
         create_test_prediction(ds, m) as pred:

        pred = xr.open_dataset(pred.file.uri)
        results = util.prediction_to_csv(pred)

        assert results[0] == ['ts_name', 'true_target', 'prediction']

        npt.assert_array_almost_equal(
            [[float(e) for e in row] for row in results[1:]],
            [[0, 2.2, 2.2], [1, 3.4, 3.4], [2, 4.4, 4.4], [3, 2.2, 2.2],
             [4, 3.1, 3.1]])
Пример #7
0
def test_plot_features(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs:
        driver.refresh()
        proj_select = Select(driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-4').click()

        driver.implicitly_wait(1)
        driver.find_element_by_xpath("//td[contains(text(),'{}')]".format(fs.name)).click()
        driver.implicitly_wait(1)
        driver.find_element_by_xpath("//b[contains(text(),'Please wait while we load your plotting data...')]")

        driver.implicitly_wait(3)
        driver.find_element_by_css_selector("[class=svg-container]")
Пример #8
0
def test_pred_results_table_lsgdc(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs,\
         create_test_model(fs, model_type='LinearSGDClassifier') as m,\
         create_test_prediction(ds, m):
        _click_prediction_row(p.id, driver)
        try:
            rows = _grab_pred_results_table_rows(driver, 'Mira')
            rows = [row.text for row in rows]
            npt.assert_array_equal([
                '0 Mira Mira', '1 Classical_Cepheid Classical_Cepheid',
                '2 Mira Mira', '3 Classical_Cepheid Classical_Cepheid',
                '4 Mira Mira'
            ], rows)
        except:
            driver.save_screenshot("/tmp/pred_click_tr_fail.png")
            raise
Пример #9
0
def test_delete_prediction(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs, create_test_model(fs) as m,\
         create_test_prediction(ds, m):
        driver.refresh()
        proj_select = Select(
            driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))
        driver.find_element_by_id('react-tabs-8').click()
        driver.implicitly_wait(1)
        driver.find_element_by_xpath(
            "//td[contains(text(),'Completed')]").click()
        time.sleep(0.2)
        driver.find_element_by_partial_link_text('Delete').click()
        driver.implicitly_wait(1)
        status_td = driver.find_element_by_xpath(
            "//div[contains(text(),'Prediction deleted')]")
Пример #10
0
def test_pred_results_table_regr(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p, label_type='regr') as fs,\
         create_test_model(fs, model_type='LinearRegressor') as m,\
         create_test_prediction(ds, m):
        _click_prediction_row(p.id, driver)
        try:
            rows = _grab_pred_results_table_rows(driver, '3.4')
            rows = [[float(el) for el in row.text.split(' ')] for row in rows]
            npt.assert_array_almost_equal(
                [[0.0, 2.2, 2.2000000000000006
                  ], [1.0, 3.4, 3.4000000000000004],
                 [2.0, 4.4, 4.400000000000001], [3.0, 2.2, 2.1999999999999993],
                 [4.0, 3.1, 3.099999999999999]], rows)
        except:
            driver.save_screenshot("/tmp/pred_click_tr_fail.png")
            raise
Пример #11
0
def test_download_prediction_csv_class(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs,\
         create_test_model(fs, model_type='LinearSGDClassifier') as m,\
         create_test_prediction(ds, m):
        _click_download(p.id, driver)
        assert os.path.exists('/tmp/cesium_prediction_results.csv')
        try:
            npt.assert_equal(
                np.genfromtxt('/tmp/cesium_prediction_results.csv',
                              dtype='str'),
                [
                    'ts_name,true_target,prediction', '0,Mira,Mira',
                    '1,Classical_Cepheid,Classical_Cepheid', '2,Mira,Mira',
                    '3,Classical_Cepheid,Classical_Cepheid', '4,Mira,Mira'
                ])
        finally:
            os.remove('/tmp/cesium_prediction_results.csv')
Пример #12
0
def test_cannot_build_model_unlabeled_data(driver):
    driver.get('/')
    with create_test_project() as p,\
         create_test_featureset(p, label_type='none') as fs:
        driver.refresh()
        proj_select = Select(driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-6').click()
        driver.find_element_by_partial_link_text('Create New Model').click()

        model_name = driver.find_element_by_css_selector('[name=modelName]')
        model_name.send_keys(str(uuid.uuid4()))

        driver.find_element_by_class_name('btn-primary').click()

        driver.implicitly_wait(2)
        driver.find_element_by_xpath(
            "//div[contains(.,'Cannot build model for unlabeled feature set.')]")
Пример #13
0
def test_pred_results_table_rfc(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs, create_test_model(fs) as m,\
         create_test_prediction(ds, m):
        _click_prediction_row(p.id, driver)
        try:
            rows = _grab_pred_results_table_rows(driver, 'Mira')
            for row in rows:
                probs = [
                    float(v.text)
                    for v in row.find_elements_by_tag_name('td')[3::2]
                ]
                assert sorted(probs, reverse=True) == probs
            driver.find_element_by_xpath(
                "//th[contains(text(),'Time Series')]")
        except:
            driver.save_screenshot("/tmp/pred_click_tr_fail.png")
            raise
Пример #14
0
def test_prediction_to_csv_regr():
    """Test util.prediction_to_csv"""
    with create_test_project() as p, create_test_dataset(p, label_type='regr') as ds,\
         create_test_featureset(p, label_type='regr') as fs,\
         create_test_model(fs, model_type='LinearRegressor') as m,\
         create_test_prediction(ds, m) as pred:

        pred = featureset.from_netcdf(pred.file.uri)
        results = util.prediction_to_csv(pred)

        assert results[0] == ['ts_name', 'true_target', 'prediction']

        npt.assert_array_almost_equal(
            [[float(e) for e in row] for row in results[1:]],
            [[0, 2.2, 2.2],
             [1, 3.4, 3.4],
             [2, 4.4, 4.4],
             [3, 2.2, 2.2],
             [4, 3.1, 3.1]])
Пример #15
0
def test_delete_featureset(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs:
        driver.refresh()
        proj_select = Select(driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-4').click()
        driver.find_element_by_partial_link_text('Delete').click()
        driver.implicitly_wait(1)
        status_td = driver.find_element_by_xpath(
            "//div[contains(text(),'Feature set deleted')]")
        try:
            el = driver.find_element_by_xpath(
                "//td[contains(text(),'{}')]".format(test_featureset_name))
        except NoSuchElementException:
            pass
        else:
            raise Exception("Featureset still present in table after delete.")
Пример #16
0
def test_download_prediction_csv_regr(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p, label_type='regr') as ds,\
         create_test_featureset(p, label_type='regr') as fs,\
         create_test_model(fs, model_type='LinearRegressor') as m,\
         create_test_prediction(ds, m):
        _click_download(p.id, driver)
        assert os.path.exists('/tmp/cesium_prediction_results.csv')
        try:
            results = np.genfromtxt('/tmp/cesium_prediction_results.csv',
                                    dtype='str',
                                    delimiter=',')
            npt.assert_equal(results[0],
                             ['ts_name', 'true_target', 'prediction'])
            npt.assert_array_almost_equal(
                [[float(e) for e in row] for row in results[1:]],
                [[0, 2.2, 2.2], [1, 3.4, 3.4], [2, 4.4, 4.4], [3, 2.2, 2.2],
                 [4, 3.1, 3.1]])
        finally:
            os.remove('/tmp/cesium_prediction_results.csv')
Пример #17
0
def test_delete_featureset(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs:
        driver.refresh()
        proj_select = Select(
            driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-4').click()
        driver.find_element_by_partial_link_text('Delete').click()
        driver.implicitly_wait(1)
        status_td = driver.find_element_by_xpath(
            "//div[contains(text(),'Feature set deleted')]")
        try:
            el = driver.find_element_by_xpath(
                "//td[contains(text(),'{}')]".format(test_featureset_name))
        except NoSuchElementException:
            pass
        else:
            raise Exception("Featureset still present in table after delete.")
Пример #18
0
def test_plot_features(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs:
        driver.refresh()
        proj_select = Select(
            driver.find_element_by_css_selector('[name=project]'))
        proj_select.select_by_value(str(p.id))

        driver.find_element_by_id('react-tabs-4').click()

        driver.implicitly_wait(1)
        driver.find_element_by_xpath("//td[contains(text(),'{}')]".format(
            fs.name)).click()
        driver.implicitly_wait(1)
        driver.find_element_by_xpath(
            "//b[contains(text(),'Please wait while we load your plotting data...')]"
        )

        driver.implicitly_wait(3)
        driver.find_element_by_css_selector("[class=svg-container]")
Пример #19
0
def test_add_prediction_rfr(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p, label_type='regr') as ds,\
         create_test_featureset(p, label_type='regr') as fs,\
         create_test_model(fs, model_type='RandomForestRegressor') as m:
        _add_prediction(p.id, driver)
Пример #20
0
def test_build_model_lr(driver):
    driver.get('/')
    with create_test_project() as p,\
         create_test_featureset(p, label_type='regr') as fs:
        _build_model(p.id, 'LinearRegressor', driver)
Пример #21
0
def test_build_model_lsgdc(driver):
    driver.get('/')
    with create_test_project() as p, create_test_featureset(p) as fs:
        _build_model(p.id, 'LinearSGDClassifier', driver)
Пример #22
0
def test_build_model_rfc(driver):
    driver.get('/')
    with create_test_project() as p, create_test_featureset(p) as fs:
        _build_model(p.id, 'RandomForestClassifier', driver)
Пример #23
0
def test_add_prediction_rfc(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs, create_test_model(fs) as m:
        _add_prediction(p.id, driver)
Пример #24
0
def test_add_prediction_lsgdc(driver):
    driver.get('/')
    with create_test_project() as p, create_test_dataset(p) as ds,\
         create_test_featureset(p) as fs,\
         create_test_model(fs, model_type='LinearSGDClassifier') as m:
        _add_prediction(p.id, driver)