Пример #1
0
    def test_FieldAncillary_transpose(self):
        f = self.f.copy()
        a = f.auxiliary_coordinates('longitude').value()
        x = cfdm.FieldAncillary(source=a)

        self.assertEqual(x.shape, (9, 10))

        y = x.transpose()
        self.assertEqual(y.shape, (10, 9))

        x.transpose([1, 0], inplace=True)
        self.assertEqual(x.shape, (10, 9))
Пример #2
0
    def test_FieldAncillary_properties(self):
        """Test the property access methods of FieldAncillary."""
        f = self.f.copy()
        x = f.domain_ancillaries("ncvar%a").value()
        x = cfdm.FieldAncillary(source=x)

        x.set_property("long_name", "qwerty")

        self.assertEqual(x.get_property("long_name"), "qwerty")
        self.assertEqual(x.del_property("long_name"), "qwerty")
        self.assertIsNone(x.get_property("long_name", None))
        self.assertIsNone(x.del_property("long_name", None))
Пример #3
0
    def test_FieldAncillary_insert_dimension(self):
        f = self.f.copy()
        d = f.dimension_coordinates('grid_longitude').value()
        x = cfdm.FieldAncillary(source=d)

        self.assertEqual(x.shape, (9, ))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
Пример #4
0
    def test_FieldAncillary_squeeze(self):
        f = self.f.copy()
        a = f.auxiliary_coordinates('longitude').value()
        x = cfdm.FieldAncillary(source=a)

        x.insert_dimension(1, inplace=True)
        x.insert_dimension(0, inplace=True)

        self.assertEqual(x.shape, (1, 9, 1, 10))

        y = x.squeeze()
        self.assertEqual(y.shape, (9, 10))

        x.squeeze(2, inplace=True)
        self.assertEqual(x.shape, (1, 9, 10))
Пример #5
0
                               method='mean',
                               qualifiers={
                                   'where': 'land',
                                   'interval':
                                   [cfdm.Data(0.1, units='degrees')]
                               })

cell_method2 = cfdm.CellMethod(axes=axis_T, method='maximum')

tas.set_construct(cell_method1)
tas.set_construct(cell_method2)

# Create and set the field ancillary constructs
field_ancillary = cfdm.FieldAncillary(properties={
    'standard_name': 'air_temperature standard_error',
    'units': 'K'
},
                                      data=cfdm.Data(
                                          numpy.arange(90.).reshape(10, 9)))

tas.set_construct(field_ancillary, axes=[axis_Y, axis_X])

# Create and set the dimension coordinate constructs
dimension_coordinate_T = cfdm.DimensionCoordinate(
    properties={
        'standard_name': 'time',
        'units': 'days since 2018-12-01'
    },
    data=cfdm.Data([15.5]),
    bounds=cfdm.Bounds(data=cfdm.Data([[0., 31]])))

dimension_coordinate_Z = cfdm.DimensionCoordinate(
Пример #6
0
    def test_FieldAncillary_source(self):
        f = self.f.copy()

        a = f.auxiliary_coordinates('latitude').value()
        x = cfdm.FieldAncillary(source=a)
Пример #7
0
print("\n**Field creation**\n")

print("\n**Stage 1:** The field construct is created without metadata\n")

print("\n**Stage 2:** Metadata constructs are created independently.\n")

print("\n**Stage 3:** The metadata constructs are inserted into the field\n")

p = cfdm.Field(properties={"standard_name": "precipitation_flux"})
p
dc = cfdm.DimensionCoordinate(properties={"long_name": "Longitude"},
                              data=cfdm.Data([0, 1, 2.0]))
dc
fa = cfdm.FieldAncillary(
    properties={"standard_name": "precipitation_flux status_flag"},
    data=cfdm.Data(numpy.array([0, 0, 2], dtype="int8")),
)
fa
p = cfdm.Field()
p
p.set_property("standard_name", "precipitation_flux")
p
dc = cfdm.DimensionCoordinate()
dc
dc.set_property("long_name", "Longitude")
dc.set_data(cfdm.Data([1, 2, 3.0]))
dc
fa = cfdm.FieldAncillary(data=cfdm.Data(numpy.array([0, 0, 2], dtype="int8")))
fa
fa.set_property("standard_name", "precipitation_flux status_flag")
fa
Пример #8
0
    def test_create_field_2(self):

        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.)))
        dim1.set_property('standard_name', 'projection_y_coordinate')
        dim1.set_property('units', 'm')

        data = numpy.arange(9.) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property('standard_name', 'projection_x_coordinate')
        dim0.set_property('units', 'm')

        array = dim0.data.array

        array = numpy.array([array-0.5, array+0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.]]))
        )
        dim2.set_property(
            'standard_name', 'atmosphere_hybrid_height_coordinate')

        # Auxiliary coordinates
        aux2 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(
                numpy.arange(-45, 45, dtype='int32').reshape(10, 9)))
        aux2.set_property('units', 'degree_N')
        aux2.set_property('standard_name', 'latitude')

        aux3 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(
                60, 150, dtype='int32').reshape(9, 10))
        )
        aux3.set_property('standard_name', 'longitude')
        aux3.set_property('units', 'degreeE')

        array = numpy.ma.array(
            ['alpha', 'beta', 'gamma', 'delta', 'epsilon',
             'zeta', 'eta', 'theta', 'iota', 'kappa'],
            dtype='S'
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property('standard_name', 'greek_letters')

        # Domain ancillaries
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.]))
        ak.set_property('units', 'm')
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.]])))

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1+numpy.arange(90.).reshape(9, 10)*1234))
        msr0.set_measure('area')
        msr0.set_property('units', 'km2')

        # Data
        data = cfdm.Data(numpy.arange(90.).reshape(10, 9))

        properties = {'units': 'm s-1'}

        f = cfdm.Field(properties=properties)
        f.set_property('standard_name', 'eastward_wind')

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        greek = f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={'grid_mapping_name':  "transverse_mercator",
                        'latitude_of_projection_origin': 49.0,
                        'longitude_of_central_meridian': -2.0,
                        'scale_factor_at_central_meridian':  0.9996012717,
                        'false_easting': 400000.0,
                        'false_northing': -100000.0,
                        'unit': "metre"})

        datum0 = cfdm.Datum(parameters={'inverse_flattening': 299.3249646,
                                        'longitude_of_prime_meridian':  0.0,
                                        'semi_major_axis': 6377563.396})

        ref0 = cfdm.CoordinateReference(
            coordinates=[x, y],
            datum=datum0,
            coordinate_conversion=coordinate_conversion
        )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={'grid_mapping_name': "latitude_longitude"})

        datum2 = cfdm.Datum(parameters={'longitude_of_prime_meridian': 0.0,
                                        'semi_major_axis': 6378137.0,
                                        'inverse_flattening': 298.257223563})

        ref2 = cfdm.CoordinateReference(
            coordinates=[lat, lon],
            datum=datum2,
            coordinate_conversion=coordinate_conversion)

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)
        f.set_construct(ref2)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property('standard_name', 'surface_altitude')
        orog.set_property('units', 'm')
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                'standard_name': 'atmosphere_hybrid_height_coordinate'
            },
            domain_ancillaries={
                'orog': orog,
                'a': ak,
                'b': bk
            }
        )

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum0,
            coordinate_conversion=coordinate_conversion
        )

        f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryA'
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryB'
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryC'
        f.set_construct(anc, axes=[axisY])

        f.set_property('flag_values', numpy.array([1, 2, 4], 'int32'))
        f.set_property('flag_meanings', 'a bb ccc')
        f.set_property('flag_masks', [2, 1, 0])

        cm0 = cfdm.CellMethod(axes=[axisX],
                              method='mean',
                              qualifiers={'interval': [cfdm.Data(1, 'day')],
                                          'comment': 'ok'})

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method='maximum',
                              qualifiers={'where': 'sea'})

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(f.equals(f.copy(), verbose=verbose),
                        "Field f not equal to a copy of itself")

        for fmt in ('NETCDF3_CLASSIC',
                    'NETCDF3_64BIT',
                    'NETCDF4',
                    'NETCDF4_CLASSIC'):
            cfdm.write(f, self.filename, fmt=fmt, verbose=verbose)

            g = cfdm.read(self.filename, verbose=verbose)

            self.assertEqual(len(g), 1, '{} != 1'.format(len(g)))

            g = g[0].squeeze()

            self.assertEqual(sorted(f.constructs), sorted(g.constructs),
                             '\n\nf\n{}\n\n{}\n\ng\n{}\n\n{}'.format(
                                 sorted(f.constructs),
                                 sorted(f.constructs.items()),
                                 sorted(g.constructs),
                                 sorted(g.constructs.items())))

            self.assertTrue(g.equals(g.copy(), verbose=verbose),
                            "Field g not equal to a copy of itself")

            self.assertTrue(g.equals(f, verbose=verbose),
                            "Field not equal to itself read back in")
        # --- End: for

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(self.filename, verbose=verbose,
                      extra=['domain_ancillary'], warnings=warnings)
Пример #9
0
    def test_FieldAncillary_source(self):
        """Test the source keyword argument to FieldAncillary."""
        f = self.f.copy()

        a = f.auxiliary_coordinates("latitude").value()
        cfdm.FieldAncillary(source=a)
Пример #10
0
    def test_create_field(self):
        """TODO DOCS."""
        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.0)))
        dim1.set_property("standard_name", "grid_latitude")
        dim1.set_property("units", "degrees")

        data = numpy.arange(9.0) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property("standard_name", "grid_longitude")
        dim0.set_property("units", "degrees")
        dim0.nc_set_variable("x")

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.0]])),
        )
        dim2.set_property("standard_name",
                          "atmosphere_hybrid_height_coordinate")
        dim2.set_property("computed_standard_name", "altitude")

        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.0]))
        ak.set_property("units", "m")
        ak.id = "atmosphere_hybrid_height_coordinate_ak"
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.0]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.0]))
        bk.id = "atmosphere_hybrid_height_coordinate_bk"
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.0]])))

        aux2 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(-45, 45, dtype="int32").reshape(10, 9)))
        aux2.set_property("units", "degree_N")
        aux2.set_property("standard_name", "latitude")

        aux3 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(60, 150, dtype="int32").reshape(9, 10)))
        aux3.set_property("standard_name", "longitude")
        aux3.set_property("units", "degreeE")

        array = numpy.ma.array(
            [
                "alpha",
                "beta",
                "gamma",
                "delta",
                "epsilon",
                "zeta",
                "eta",
                "theta",
                "iota",
                "kappa",
            ],
            dtype="S",
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property("long_name", "greek_letters")

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234))
        msr0.set_measure("area")
        msr0.set_property("units", "km2")
        msr0.nc_set_variable("areacella")

        # Data
        data = cfdm.Data(numpy.arange(90.0).reshape(10, 9))

        properties = {"units": "m s-1"}

        f = cfdm.Field(properties=properties)
        f.set_property("standard_name", "eastward_wind")

        da = cfdm.DomainAxis(9)
        da.nc_set_dimension("grid_longitude")
        axisX = f.set_construct(da)
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=axisX)
        y = f.set_construct(dim1, axes=axisY)
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=axisZ)
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "grid_mapping_name": "rotated_latitude_longitude",
                "grid_north_pole_latitude": 38.0,
                "grid_north_pole_longitude": 190.0,
            })

        datum = cfdm.Datum(parameters={"earth_radius": 6371007})

        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon],
        )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property("standard_name", "surface_altitude")
        orog.set_property("units", "m")
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate",
                "computed_standard_name": "altitude",
            },
            domain_ancillaries={
                "orog": orog,
                "a": ak,
                "b": bk
            },
        )

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum,
            coordinate_conversion=coordinate_conversion,
        )

        ref1 = f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property("standard_name", "ancillaryA")
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property("long_name", "ancillaryB")
        f.set_construct(anc, axes=axisX)

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property("foo", "bar")
        f.set_construct(anc, axes=[axisY])

        f.set_property("flag_values", numpy.array([1, 2, 4], "int32"))
        f.set_property("flag_meanings", "a bb ccc")
        f.set_property("flag_masks", [2, 1, 0])

        cm0 = cfdm.CellMethod(
            axes=axisX,
            method="mean",
            qualifiers={
                "interval": [cfdm.Data(1, "day")],
                "comment": "ok"
            },
        )

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method="maximum",
                              qualifiers={"where": "sea"})

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(f.equals(f, verbose=verbose),
                        "Field f not equal to itself")

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself",
        )

        cfdm.write(f, self.filename, fmt="NETCDF3_CLASSIC", verbose=verbose)

        g = cfdm.read(self.filename, verbose=1)

        array = (g[0].constructs.filter_by_identity(
            "long_name=greek_letters").value().data.array)
        self.assertEqual(array[1], b"beta")

        self.assertEqual(len(g), 1)

        g = g[0].squeeze()

        self.assertEqual(
            sorted(f.constructs),
            sorted(g.constructs),
            "\n\nf (created in memory)\n{}\n\n{}\n\ng "
            "(read from disk)\n{}\n\n{}".format(
                sorted(f.constructs),
                sorted(f.constructs.items()),
                sorted(g.constructs),
                sorted(g.constructs.items()),
            ),
        )

        self.assertTrue(
            f.equals(f, verbose=verbose),
            "Field f not equal to itself after having been written to disk",
        )

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself after having been "
            "written to disk",
        )

        self.assertTrue(
            g.equals(g.copy(), verbose=verbose),
            "Field g not equal to a copy of itself",
        )

        self.assertTrue(
            g.equals(f, verbose=verbose),
            "Field (f) not equal to itself read back in (g)",
        )

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(
            self.filename,
            verbose=verbose,
            extra="domain_ancillary",
            warnings=warnings,
        )
Пример #11
0
    def test_create_field_3(self):
        """Test ab initio creation of a third variation of field."""
        # Dimension coordinates
        data = numpy.arange(9.0) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property("standard_name", "grid_longitude")
        dim0.set_property("units", "degrees")

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.0)))
        dim1.set_property("standard_name", "grid_latitude")
        dim1.set_property("units", "degrees")

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.0]])),
        )
        dim2.set_property("standard_name",
                          "atmosphere_hybrid_height_coordinate")
        dim2.set_property("computed_standard_name", "altitude")

        dim3 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.array([15.0])))
        dim3.set_property("standard_name", "time")
        dim3.set_property("units", "days since 2004-06-01")

        dim3.set_bounds(cfdm.Bounds(data=cfdm.Data([[0, 30.0]])))

        #        dim3.set_geometry('climatology')

        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.0]))
        ak.set_property("units", "m")
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.0]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.0]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.0]])))

        aux2 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(-45, 45, dtype="int32").reshape(10, 9)))
        aux2.set_property("units", "degree_N")
        aux2.set_property("standard_name", "latitude")

        aux3 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(60, 150, dtype="int32").reshape(9, 10)))
        aux3.set_property("standard_name", "longitude")
        aux3.set_property("units", "degreeE")

        array = numpy.ma.array(
            [
                "alpha",
                "beta",
                "gamma",
                "delta",
                "epsilon",
                "zeta",
                "eta",
                "theta",
                "iota",
                "kappa",
            ],
            dtype="S",
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property("standard_name", "greek_letters")

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234))
        msr0.set_measure("area")
        msr0.set_property("units", "km2")

        # Data
        data = cfdm.Data(numpy.arange(90.0).reshape(10, 9))

        properties = {"units": "m s-1"}

        f = cfdm.Field(properties=properties)
        f.set_property("standard_name", "eastward_wind")

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))
        axisT = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])
        f.set_construct(dim3, axes=[axisT])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        #       ref0 = cfdm.CoordinateReference(
        #           parameters={'grid_mapping_name': 'rotated_latitude_longitude',
        #                       'grid_north_pole_latitude': 38.0,
        #                       'grid_north_pole_longitude': 190.0,
        #                       'earth_radius': 6371007,},
        #           coordinates=[x, y, lat, lon]
        #       )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "grid_mapping_name": "rotated_latitude_longitude",
                "grid_north_pole_latitude": 38.0,
                "grid_north_pole_longitude": 190.0,
            })

        datum = cfdm.Datum(parameters={"earth_radius": 6371007})

        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon],
        )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property("standard_name", "surface_altitude")
        orog.set_property("units", "m")
        orog = f.set_construct(orog, axes=[axisY, axisX])

        datum1 = cfdm.Datum({"earth_radius": 6371007})

        coordinate_conversion1 = cfdm.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate",
                "computed_standard_name": "altitude",
            },
            domain_ancillaries={
                "orog": orog,
                "a": ak,
                "b": bk
            },
        )

        ref1 = cfdm.CoordinateReference(
            datum=datum1,
            coordinate_conversion=coordinate_conversion1,
            coordinates=[z],
        )

        ref1 = f.set_construct(ref1)

        # Field ancillary variables
        #        g = f.transpose([1, 0])
        g = f.copy()
        #        g.standard_name = 'ancillary0'
        #        g *= 0.01
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryA"
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        #        g.standard_name = 'ancillary2'
        #        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryB"
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
        #        g.standard_name = 'ancillary3'
        #        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryC"
        f.set_construct(anc, axes=[axisY])

        f.set_property("flag_values", numpy.array([1, 2, 4], "int32"))
        f.set_property("flag_meanings", "a bb ccc")
        f.set_property("flag_masks", [2, 1, 0])

        cm0 = cfdm.CellMethod(
            axes=[axisX],
            method="mean",
            qualifiers={
                "interval": [cfdm.Data(1, "day")],
                "comment": "ok"
            },
        )

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method="maximum",
                              qualifiers={"where": "sea"})

        cm2 = cfdm.CellMethod(axes=[axisT],
                              method="maximum",
                              qualifiers={"within": "years"})

        cm3 = cfdm.CellMethod(axes=[axisT],
                              method="minimum",
                              qualifiers={"over": "years"})

        f.set_construct(cm0)
        f.set_construct(cm1)
        f.set_construct(cm2)
        f.set_construct(cm3)

        cfdm.write(f, self.filename, fmt="NETCDF3_CLASSIC", verbose=verbose)

        g = cfdm.read(self.filename, verbose=verbose)

        self.assertEqual(len(g), 1,
                         f"Read produced too many fields: {len(g)} != 1")

        g = g[0].squeeze()

        self.assertEqual(
            sorted(f.constructs),
            sorted(g.constructs),
            f"\n\nf (created in memory)"
            f"\n{f.constructs}"
            f"\n\n{f.constructs.items()}"
            f"\n\ng (read from disk)"
            f"\n{g.constructs}"
            f"\n\n{g.constructs.items()}",
        )

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself",
        )

        self.assertTrue(
            g.equals(g.copy(), verbose=verbose),
            "Field g not equal to a copy of itself",
        )

        self.assertTrue(
            g.equals(f, verbose=verbose),
            "Field not equal to itself read back in",
        )

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(
            self.filename,
            verbose=verbose,
            extra=["domain_ancillary"],
            warnings=warnings,
        )
Пример #12
0
    def test_create_field(self):

        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.)))
        dim1.set_property('standard_name', 'grid_latitude')
        dim1.set_property('units', 'degrees')

        data = numpy.arange(9.) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property('standard_name', 'grid_longitude')
        dim0.set_property('units', 'degrees')
        dim0.nc_set_variable('x')

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.]])))
        dim2.set_property('standard_name',
                          'atmosphere_hybrid_height_coordinate')
        dim2.set_property('computed_standard_name', 'altitude')

        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.]))
        ak.set_property('units', 'm')
        ak.id = 'atmosphere_hybrid_height_coordinate_ak'
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.]))
        bk.id = 'atmosphere_hybrid_height_coordinate_bk'
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.]])))

        aux2 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(-45, 45, dtype='int32').reshape(10, 9)))
        aux2.set_property('units', 'degree_N')
        aux2.set_property('standard_name', 'latitude')

        aux3 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(60, 150, dtype='int32').reshape(9, 10)))
        aux3.set_property('standard_name', 'longitude')
        aux3.set_property('units', 'degreeE')

        array = numpy.ma.array([
            'alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta',
            'theta', 'iota', 'kappa'
        ],
                               dtype='S')
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property('long_name', 'greek_letters')

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.).reshape(9, 10) * 1234))
        msr0.set_measure('area')
        msr0.set_property('units', 'km2')
        msr0.nc_set_variable('areacella')

        # Data
        data = cfdm.Data(numpy.arange(90.).reshape(10, 9))

        properties = {'units': 'm s-1'}

        f = cfdm.Field(properties=properties)
        f.set_property('standard_name', 'eastward_wind')

        da = cfdm.DomainAxis(9)
        da.nc_set_dimension('grid_longitude')
        axisX = f.set_construct(da)
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=axisX)
        y = f.set_construct(dim1, axes=axisY)
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        greek = f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=axisZ)
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                'grid_mapping_name': 'rotated_latitude_longitude',
                'grid_north_pole_latitude': 38.0,
                'grid_north_pole_longitude': 190.0
            })

        datum = cfdm.Datum(parameters={'earth_radius': 6371007})

        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon])

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property('standard_name', 'surface_altitude')
        orog.set_property('units', 'm')
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(parameters={
            'standard_name':
            'atmosphere_hybrid_height_coordinate',
            'computed_standard_name':
            'altitude'
        },
                                                          domain_ancillaries={
                                                              'orog': orog,
                                                              'a': ak,
                                                              'b': bk
                                                          })

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum,
            coordinate_conversion=coordinate_conversion)

        ref1 = f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property('standard_name', 'ancillaryA')
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property('long_name', 'ancillaryB')
        f.set_construct(anc, axes=axisX)

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property('foo', 'bar')
        f.set_construct(anc, axes=[axisY])

        f.set_property('flag_values', numpy.array([1, 2, 4], 'int32'))
        f.set_property('flag_meanings', 'a bb ccc')
        f.set_property('flag_masks', [2, 1, 0])

        cm0 = cfdm.CellMethod(axes=axisX,
                              method='mean',
                              qualifiers={
                                  'interval': [cfdm.Data(1, 'day')],
                                  'comment': 'ok'
                              })

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method='maximum',
                              qualifiers={'where': 'sea'})

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(f.equals(f, verbose=verbose),
                        "Field f not equal to itself")

        self.assertTrue(f.equals(f.copy(), verbose=verbose),
                        "Field f not equal to a copy of itself")

        cfdm.write(f, self.filename, fmt='NETCDF3_CLASSIC', verbose=verbose)

        g = cfdm.read(self.filename, verbose=1)

        array = g[0].constructs.filter_by_identity(
            'long_name=greek_letters').value().data.array
        self.assertEqual(array[1], b'beta',
                         'greek_letters = {!r}'.format(array))

        self.assertEqual(
            len(g), 1,
            'Read produced the wrong number of fields: {} != 1'.format(len(g)))

        g = g[0].squeeze()

        self.assertEqual(
            sorted(f.constructs), sorted(g.constructs),
            '\n\nf (created in memory)\n{}\n\n{}\n\ng '
            '(read from disk)\n{}\n\n{}'.format(sorted(f.constructs),
                                                sorted(f.constructs.items()),
                                                sorted(g.constructs),
                                                sorted(g.constructs.items())))

        self.assertTrue(
            f.equals(f, verbose=verbose),
            "Field f not equal to itself after having been written to disk")

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself after having been "
            "written to disk")

        self.assertTrue(g.equals(g.copy(), verbose=verbose),
                        "Field g not equal to a copy of itself")

        self.assertTrue(g.equals(f, verbose=verbose),
                        "Field (f) not equal to itself read back in (g)")

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(self.filename,
                      verbose=verbose,
                      extra='domain_ancillary',
                      warnings=warnings)
Пример #13
0
    def test_create_field_3(self):

        # Dimension coordinates
        data = numpy.arange(9.) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property('standard_name', 'grid_longitude')
        dim0.set_property('units', 'degrees')

        array = dim0.data.array

        array = numpy.array([array-0.5, array+0.5]).transpose((1,0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.)))
        dim1.set_property('standard_name', 'grid_latitude')
        dim1.set_property('units', 'degrees')

        dim2 = cfdm.DimensionCoordinate(data=cfdm.Data([1.5]),
                                        bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.]])))
        dim2.set_property('standard_name'         , 'atmosphere_hybrid_height_coordinate')
        dim2.set_property('computed_standard_name', 'altitude')
                      
        dim3 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.array([15.0])))
        dim3.set_property('standard_name', 'time')
        dim3.set_property('units', 'days since 2004-06-01')

        dim3.set_bounds(cfdm.Bounds(data=cfdm.Data([[0, 30.]])))

#        dim3.set_geometry('climatology')
        
        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.]))
        ak.set_property('units', 'm')
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.]])))
        
        bk = cfdm.DomainAncillary(data=cfdm.Data([20.]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.]])))
        
        aux2 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(-45, 45, dtype='int32').reshape(10, 9)))
        aux2.set_property('units', 'degree_N')
        aux2.set_property('standard_name', 'latitude')
        
        aux3 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(60, 150, dtype='int32').reshape(9, 10)))
        aux3.set_property('standard_name', 'longitude')
        aux3.set_property('units', 'degreeE')

        array = numpy.ma.array(['alpha','beta','gamma','delta','epsilon',
                                'zeta','eta','theta','iota','kappa'], dtype='S')
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property('standard_name', 'greek_letters')

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1+numpy.arange(90.).reshape(9, 10)*1234))
        msr0.set_measure('area')
        msr0.set_property('units', 'km2')
        
        # Data          
        data = cfdm.Data(numpy.arange(90.).reshape(10, 9))

        properties = {'units': 'm s-1'}
        
        f = cfdm.Field(properties=properties)
        f.set_property('standard_name', 'eastward_wind')

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))
        axisT = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])
        
        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])
        t = f.set_construct(dim3, axes=[axisT])

        lat   = f.set_construct(aux2, axes=[axisY, axisX])
        lon   = f.set_construct(aux3, axes=[axisX, axisY])
        greek = f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

       # Coordinate references
#       ref0 = cfdm.CoordinateReference(
#           parameters={'grid_mapping_name': 'rotated_latitude_longitude',
#                       'grid_north_pole_latitude': 38.0,
#                       'grid_north_pole_longitude': 190.0,
#                       'earth_radius': 6371007,},
#           coordinates=[x, y, lat, lon]
#       )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={'grid_mapping_name': 'rotated_latitude_longitude',
                        'grid_north_pole_latitude': 38.0,
                        'grid_north_pole_longitude': 190.0})

        datum = cfdm.Datum(parameters={'earth_radius': 6371007})
        
        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon]
            )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property('standard_name', 'surface_altitude')
        orog.set_property('units', 'm')
        orog = f.set_construct(orog, axes=[axisY, axisX])

        datum1 = cfdm.Datum({'earth_radius' : 6371007})
        
        coordinate_conversion1 = cfdm.CoordinateConversion(
            parameters={'standard_name': 'atmosphere_hybrid_height_coordinate',
                        'computed_standard_name': 'altitude'},
            domain_ancillaries={'orog': orog,
                                'a'   : ak,
                                'b'   : bk})
        
        ref1 = cfdm.CoordinateReference(
            datum=datum1,
            coordinate_conversion=coordinate_conversion1,
            coordinates=[z]
        )
        
        ref1 = f.set_construct(ref1)

        # Field ancillary variables
#        g = f.transpose([1, 0])
        g = f.copy()
#        g.standard_name = 'ancillary0'
#        g *= 0.01
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryA'
        f.set_construct(anc, axes=[axisY, axisX])
        
        g = f[0]
        g = g.squeeze()
#        g.standard_name = 'ancillary2'
#        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryB'
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
#        g.standard_name = 'ancillary3'
#        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryC'
        f.set_construct(anc, axes=[axisY])

        
        f.set_property('flag_values', numpy.array([1, 2, 4], 'int32'))
        f.set_property('flag_meanings', 'a bb ccc')
        f.set_property('flag_masks', [2, 1, 0])

        cm0 =  cfdm.CellMethod(axes=[axisX],
                               method='mean',
                               qualifiers={'interval': [cfdm.Data(1, 'day')],
                                           'comment' : 'ok'})
    
        cm1 =  cfdm.CellMethod(axes=[axisY],
                               method='maximum',
                               qualifiers={'where' : 'sea'})
        
        cm2 =  cfdm.CellMethod(axes=[axisT],
                               method='maximum',
                               qualifiers={'within' : 'years'})
        
        cm3 =  cfdm.CellMethod(axes=[axisT],
                               method='minimum',
                               qualifiers={'over' : 'years'})
        
        f.set_construct(cm0)
        f.set_construct(cm1)
        f.set_construct(cm2)
        f.set_construct(cm3)

        if verbose:
            print(repr(f))
            print(f)
            print(f.constructs)
            print(f.construct_data_axes())
        
            f.dump()
            
#        sys.exit(0)

        cfdm.write(f, self.filename, fmt='NETCDF3_CLASSIC', verbose=verbose)

        g = cfdm.read(self.filename, verbose=verbose) #, squeeze=True)

        if verbose:
#           g[0].dump()
#           sys.exit(0)
            for x in g:
                x.print_read_report()
                
        self.assertTrue(len(g) == 1, 'Read produced too many fields: {} != 1'.format(len(g)))

        g = g[0].squeeze()
        

#        print g
        self.assertTrue(sorted(f.constructs) == sorted(g.constructs),
                        '\n\nf (created in memory)\n{}\n\n{}\n\ng (read from disk)\n{}\n\n{}'.format(
                            sorted(f.constructs),
                            sorted(f.constructs.items()),
                            sorted(g.constructs),
                            sorted(g.constructs.items())))

        self.assertTrue(f.equals(f.copy(), verbose=True),
                        "Field f not equal to a copy of itself")

        self.assertTrue(g.equals(g.copy(), verbose=True),
                        "Field g not equal to a copy of itself")
#        print f.dump()
    
#        print'f'
#        print f
#        print 'g'
#        print g
#        f.dump()
#        g.dump()

        if verbose:
            f.dump()
            g.dump()
#        sys.exit(0)
        
        self.assertTrue(g.equals(f, verbose=True),
                        "Field not equal to itself read back in")
  
#        sys.exit(0)

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(self.filename, verbose=verbose,
                      extra=['domain_ancillary'], warnings=warnings)

        if verbose:
            for x in g:
                x.print_read_report()

            print(g)
            g[0].dump()
Пример #14
0
                      2393.4478,  2393.4478,  2393.4478,  2393.4478],
                    [ 2393.0949,  2393.0949,  2393.0949,  2393.0949,  2393.0949,
                      2393.0949,  2393.0949,  2393.0949,  2393.0949],
                    [ 2392.6009,  2392.6009,  2392.6009,  2392.6009,  2392.6009,
                      2392.6009,  2392.6009,  2392.6009,  2392.6009]])
data = numpy.around(data, 4)
area.set_data(cfdm.Data(data))

orog = f.get_construct('surface_altitude').data[-1, -1] = 79.8


t = cfdm.DimensionCoordinate(properties={'standard_name': 'time',
                                         'units': 'days since 2018-12-01'})
t.set_data(cfdm.Data([31.0]))

a=cfdm.FieldAncillary(properties={'standard_name': 'air_temperature standard_error',
                                  'units': 'K'})
data = numpy.random.uniform(0.1, 0.9, 90).reshape(10, 9)
data = numpy.around(data, 2)
a.set_data(cfdm.Data(data))

tda = f.set_domain_axis(cfdm.DomainAxis(1))

f.set_dimension_coordinate(t, axes=[tda])
f.set_field_ancillary(a, axes=['domainaxis1', 'domainaxis2'])

f.del_construct('ncvar%ancillary_data')
f.del_construct('ncvar%ancillary_data_1')
f.del_construct('ncvar%ancillary_data_2')

f.get_construct('long_name:greek_letters').set_property('long_name', 'Grid latitude name')
Пример #15
0
import netCDF4
import cfdm
import numpy

f = cfdm.Field(properties={'standard_name': 'precipitation_flux'})

dc = cfdm.DimensionCoordinate(properties={'long_name': 'Longitude'},
                              data=cfdm.Data([0, 1, 2.]))

fa = cfdm.FieldAncillary(
    properties={'standard_name': 'precipitation_flux status_flag'},
    data=cfdm.Data(numpy.array([0, 0, 2], dtype='int8')))

longitude_axis = f.set_construct(cfdm.DomainAxis(3))

key = f.set_construct(dc, axes=longitude_axis)

cm = cfdm.CellMethod(axes=longitude_axis, method='minimum')
f.set_construct(cm)
Пример #16
0
    def test_create_field_2(self):
        """Test ab initio creation of a second variation of field."""
        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.0)))
        dim1.set_property("standard_name", "projection_y_coordinate")
        dim1.set_property("units", "m")

        data = numpy.arange(9.0) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property("standard_name", "projection_x_coordinate")
        dim0.set_property("units", "m")

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.0]])),
        )
        dim2.set_property(
            "standard_name", "atmosphere_hybrid_height_coordinate"
        )

        # Auxiliary coordinates
        aux2 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(-45, 45, dtype="int32").reshape(10, 9))
        )
        aux2.set_property("units", "degree_N")
        aux2.set_property("standard_name", "latitude")

        aux3 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(60, 150, dtype="int32").reshape(9, 10))
        )
        aux3.set_property("standard_name", "longitude")
        aux3.set_property("units", "degreeE")

        array = numpy.ma.array(
            [
                "alpha",
                "beta",
                "gamma",
                "delta",
                "epsilon",
                "zeta",
                "eta",
                "theta",
                "iota",
                "kappa",
            ],
            dtype="S",
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property("standard_name", "greek_letters")

        # Domain ancillaries
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.0]))
        ak.set_property("units", "m")
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.0]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.0]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.0]])))

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234)
        )
        msr0.set_measure("area")
        msr0.set_property("units", "km2")

        # Data
        data = cfdm.Data(numpy.arange(90.0).reshape(10, 9))

        properties = {"units": "m s-1"}

        f = cfdm.Field(properties=properties)
        f.set_property("standard_name", "eastward_wind")

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "grid_mapping_name": "transverse_mercator",
                "latitude_of_projection_origin": 49.0,
                "longitude_of_central_meridian": -2.0,
                "scale_factor_at_central_meridian": 0.9996012717,
                "false_easting": 400000.0,
                "false_northing": -100000.0,
                "unit": "metre",
            }
        )

        datum0 = cfdm.Datum(
            parameters={
                "inverse_flattening": 299.3249646,
                "longitude_of_prime_meridian": 0.0,
                "semi_major_axis": 6377563.396,
            }
        )

        ref0 = cfdm.CoordinateReference(
            coordinates=[x, y],
            datum=datum0,
            coordinate_conversion=coordinate_conversion,
        )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={"grid_mapping_name": "latitude_longitude"}
        )

        datum2 = cfdm.Datum(
            parameters={
                "longitude_of_prime_meridian": 0.0,
                "semi_major_axis": 6378137.0,
                "inverse_flattening": 298.257223563,
            }
        )

        ref2 = cfdm.CoordinateReference(
            coordinates=[lat, lon],
            datum=datum2,
            coordinate_conversion=coordinate_conversion,
        )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)
        f.set_construct(ref2)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property("standard_name", "surface_altitude")
        orog.set_property("units", "m")
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate"
            },
            domain_ancillaries={"orog": orog, "a": ak, "b": bk},
        )

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum0,
            coordinate_conversion=coordinate_conversion,
        )

        f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryA"
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryB"
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryC"
        f.set_construct(anc, axes=[axisY])

        f.set_property("flag_values", numpy.array([1, 2, 4], "int32"))
        f.set_property("flag_meanings", "a bb ccc")
        f.set_property("flag_masks", [2, 1, 0])

        cm0 = cfdm.CellMethod(
            axes=[axisX],
            method="mean",
            qualifiers={"interval": [cfdm.Data(1, "day")], "comment": "ok"},
        )

        cm1 = cfdm.CellMethod(
            axes=[axisY], method="maximum", qualifiers={"where": "sea"}
        )

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself",
        )

        for fmt in (
            "NETCDF3_CLASSIC",
            "NETCDF3_64BIT",
            "NETCDF4",
            "NETCDF4_CLASSIC",
        ):
            cfdm.write(f, self.filename, fmt=fmt, verbose=verbose)

            g = cfdm.read(self.filename, verbose=verbose)

            self.assertEqual(len(g), 1, f"{len(g)} != 1")

            g = g[0].squeeze()

            self.assertEqual(
                sorted(f.constructs),
                sorted(g.constructs),
                f"\n\nf (created in memory)"
                f"\n{f.constructs}"
                f"\n\n{f.constructs.items()}"
                f"\n\ng (read from disk)"
                f"\n{g.constructs}"
                f"\n\n{g.constructs.items()}",
            )

            self.assertTrue(
                g.equals(g.copy(), verbose=verbose),
                "Field g not equal to a copy of itself",
            )

            self.assertTrue(
                g.equals(f, verbose=verbose),
                "Field not equal to itself read back in",
            )

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(
            self.filename,
            verbose=verbose,
            extra=["domain_ancillary"],
            warnings=warnings,
        )
Пример #17
0
print("\n**Stage 1:** The field construct is created without metadata\n")


print("\n**Stage 2:** Metadata constructs are created independently.\n")


print("\n**Stage 3:** The metadata constructs are inserted into the field\n")

p = cfdm.Field(properties={'standard_name': 'precipitation_flux'})
p
dc = cfdm.DimensionCoordinate(properties={'long_name': 'Longitude'},
                               data=cfdm.Data([0, 1, 2.]))
dc
fa = cfdm.FieldAncillary(
        properties={'standard_name': 'precipitation_flux status_flag'},
        data=cfdm.Data(numpy.array([0, 0, 2], dtype='int8')))
fa
p = cfdm.Field()
p
p.set_property('standard_name', 'precipitation_flux')
p
dc = cfdm.DimensionCoordinate()
dc
dc.set_property('long_name', 'Longitude')
dc.set_data(cfdm.Data([1, 2, 3.]))
dc
fa = cfdm.FieldAncillary(
        data=cfdm.Data(numpy.array([0, 0, 2], dtype='int8')))
fa
fa.set_property('standard_name', 'precipitation_flux status_flag')
Пример #18
0
    def test_FieldAncillary_source(self):
        """TODO DOCS."""
        f = self.f.copy()

        a = f.auxiliary_coordinates("latitude").value()
        cfdm.FieldAncillary(source=a)