Пример #1
0
    def generate_body(self, kernel, codegen_state):
        from cgen import Block

        body = Block()

        # {{{ declare temporaries

        body.extend(
            idi.cgen_declarator
            for tv in six.itervalues(kernel.temporary_variables)
            for idi in tv.decl_info(kernel.target, is_written=True, index_dtype=kernel.index_dtype)
        )

        # }}}

        from loopy.codegen.loop import set_up_hw_parallel_loops

        gen_code = set_up_hw_parallel_loops(kernel, 0, codegen_state)

        from cgen import Line

        body.append(Line())

        if isinstance(gen_code.ast, Block):
            body.extend(gen_code.ast.contents)
        else:
            body.append(gen_code.ast)

        return body, gen_code.implemented_domains
Пример #2
0
def get_elwise_module_descriptor(arguments, operation, name="kernel"):
    from codepy.bpl import BoostPythonModule

    from cgen import FunctionBody, FunctionDeclaration, \
            Value, POD, Struct, For, Initializer, Include, Statement, \
            Line, Block

    S = Statement

    mod = BoostPythonModule()
    mod.add_to_preamble([
        Include("pyublas/numpy.hpp"),
        ])

    mod.add_to_module([
        S("namespace ublas = boost::numeric::ublas"),
        S("using namespace pyublas"),
        Line(),
        ])

    body = Block([
        Initializer(
            Value("numpy_array<%s >::iterator"
                % dtype_to_ctype(varg.dtype),
                varg.name),
            "args.%s_ary.begin()" % varg.name)
        for varg in arguments if isinstance(varg, VectorArg)]
        +[Initializer(
            sarg.declarator(), "args." + sarg.name)
        for sarg in arguments if isinstance(sarg, ScalarArg)]
        )

    body.extend([
        Line(),
        For("unsigned i = 0",
            "i < codepy_length",
            "++i",
            Block([S(operation)])
            )
        ])

    arg_struct = Struct("arg_struct", 
            [arg.declarator() for arg in arguments])
    mod.add_struct(arg_struct, "ArgStruct")
    mod.add_to_module([Line()])

    mod.add_function(
            FunctionBody(
                FunctionDeclaration(
                    Value("void", name),
                    [POD(numpy.uintp, "codepy_length"),
                        Value("arg_struct", "args")]),
                body))

    return mod
Пример #3
0
def get_elwise_module_descriptor(arguments, operation, name="kernel"):
    from codepy.bpl import BoostPythonModule

    from cgen import FunctionBody, FunctionDeclaration, \
            Value, POD, Struct, For, Initializer, Include, Statement, \
            Line, Block

    S = Statement  # noqa: N806

    mod = BoostPythonModule()
    mod.add_to_preamble([
        Include("pyublas/numpy.hpp"),
    ])

    mod.add_to_module([
        S("namespace ublas = boost::numeric::ublas"),
        S("using namespace pyublas"),
        Line(),
    ])

    body = Block([
        Initializer(
            Value(
                "numpy_array<{} >::iterator".format(dtype_to_ctype(
                    varg.dtype)), varg.name), f"args.{varg.name}_ary.begin()")
        for varg in arguments if isinstance(varg, VectorArg)
    ] + [
        Initializer(sarg.declarator(), f"args.{sarg.name}")
        for sarg in arguments if isinstance(sarg, ScalarArg)
    ])

    body.extend([
        Line(),
        For("unsigned i = 0", "i < codepy_length", "++i",
            Block([S(operation)]))
    ])

    arg_struct = Struct("arg_struct", [arg.declarator() for arg in arguments])
    mod.add_struct(arg_struct, "ArgStruct")
    mod.add_to_module([Line()])

    mod.add_function(
        FunctionBody(
            FunctionDeclaration(Value("void", name), [
                POD(numpy.uintp, "codepy_length"),
                Value("arg_struct", "args")
            ]), body))

    return mod
Пример #4
0
        def get_flux_code(flux_writer):
            flux_code = Block([])

            flux_code.extend([
                Initializer(Pointer(Value("face_pair", "fpair")),
                            "data.facepairs+fpair_nr"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "a_index")),
                    "fpair->a_base + tex1Dfetch(tex_index_lists, "
                    "fpair->a_ilist_index + FACEDOF_NR)"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "b_index")),
                    "fpair->b_base + tex1Dfetch(tex_index_lists, "
                    "fpair->b_ilist_index + FACEDOF_NR)"),
                Line(),
                flux_writer(),
                Line(),
                S("fpair_nr += CONCURRENT_FACES")
            ])

            return flux_code
Пример #5
0
        def get_flux_code(flux_writer):
            flux_code = Block([])

            flux_code.extend([
                Initializer(Pointer(
                    Value("face_pair", "fpair")),
                    "data.facepairs+fpair_nr"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "a_index")),
                    "fpair->a_base + tex1Dfetch(tex_index_lists, "
                    "fpair->a_ilist_index + FACEDOF_NR)"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "b_index")),
                    "fpair->b_base + tex1Dfetch(tex_index_lists, "
                    "fpair->b_ilist_index + FACEDOF_NR)"),
                Line(),
                flux_writer(),
                Line(),
                S("fpair_nr += CONCURRENT_FACES")
                ])

            return flux_code
Пример #6
0
    def get_kernel(self, with_scaling, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign, \
                ArrayInitializer

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaConstant, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_el_local_mat_smem_mat"),
            [
                Pointer(POD(float_type, "out_vector")),
                Pointer(POD(numpy.uint8, "gmem_matrix")),
                Pointer(POD(float_type, "debugbuf")),
                POD(numpy.uint32, "microblock_count"),
                ]
            ))

        cmod = Module([
                Include("pycuda-helpers.hpp"),
                Line(),
                Value("texture<fp_tex_%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "in_vector_tex"),
                ])
        if with_scaling:
            cmod.append(
                Value("texture<fp_tex_%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "scaling_tex"),
                )

        par = self.plan.parallelism

        cmod.extend([
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("DOFS_PER_EL", given.dofs_per_el()),
                Define("PREIMAGE_DOFS_PER_EL", self.plan.preimage_dofs_per_el),
                Line(),
                Define("SEGMENT_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Line(),
                Define("MB_SEGMENT", "blockIdx.x"),
                Define("MACROBLOCK_NR", "blockIdx.y"),
                Line(),
                Define("DOFS_PER_SEGMENT", self.plan.segment_size),
                Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
                Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB",
                    self.plan.aligned_preimage_dofs_per_microblock),
                Define("MB_EL_COUNT", given.microblock.elements),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
                Define("COALESCING_THREAD_COUNT", "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
                Line(),
                Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
                Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMG_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                Define("MATRIX_COLUMNS", self.plan.gpu_matrix_columns()),
                Define("MATRIX_SEGMENT_FLOATS", self.plan.gpu_matrix_block_floats()),
                Define("MATRIX_SEGMENT_BYTES",
                    "(MATRIX_SEGMENT_FLOATS*%d)" % given.float_size()),

                Line(),
                CudaShared(ArrayOf(POD(float_type, "smem_matrix"),
                    "MATRIX_SEGMENT_FLOATS")),
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            ArrayOf(
                                POD(float_type, "dof_buffer"),
                                "PAR_MB_COUNT"),
                            "INLINE_MB_COUNT"),
                        "DOFS_PER_SEGMENT"),
                    ),
                CudaShared(POD(numpy.uint16, "segment_start_el")),
                CudaShared(POD(numpy.uint16, "segment_stop_el")),
                CudaShared(POD(numpy.uint16, "segment_el_count")),
                Line(),
                ArrayInitializer(
                        CudaConstant(
                            ArrayOf(
                                POD(numpy.uint32, "segment_start_el_lookup"),
                            "SEGMENTS_PER_MB")),
                        [(chk*self.plan.segment_size)//given.dofs_per_el()
                            for chk in range(self.plan.segments_per_microblock())]
                        ),
                ArrayInitializer(
                        CudaConstant(
                            ArrayOf(
                                POD(numpy.uint32, "segment_stop_el_lookup"),
                            "SEGMENTS_PER_MB")),
                        [min(given.microblock.elements,
                            (chk*self.plan.segment_size+self.plan.segment_size-1)
                                //given.dofs_per_el()+1)
                            for chk in range(self.plan.segments_per_microblock())]
                        ),
                ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block("calculate this dof's element", [
            Initializer(POD(numpy.uint8, "mb_el"),
                "MB_DOF/DOFS_PER_EL") ])

        if self.plan.use_prefetch_branch:
            f_body.extend_log_block("calculate segment responsibility data", [
                If("THREAD_NUM==0",
                    Block([
                        Assign("segment_start_el", "segment_start_el_lookup[MB_SEGMENT]"),
                        Assign("segment_stop_el", "segment_stop_el_lookup[MB_SEGMENT]"),
                        Assign("segment_el_count", "segment_stop_el-segment_start_el"),
                        ])
                    ),
                S("__syncthreads()")
                ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(
                dest="smem_matrix",
                base=("gmem_matrix + MB_SEGMENT*MATRIX_SEGMENT_BYTES"),
                bytes="MATRIX_SEGMENT_BYTES",
                descr="load matrix segment")
            +[S("__syncthreads()")]
            )

        # ---------------------------------------------------------------------
        def get_batched_fetch_mat_mul_code(el_fetch_count):
            result = []
            dofs = range(self.plan.preimage_dofs_per_el)

            for load_segment_start in range(0, self.plan.preimage_dofs_per_el,
                    self.plan.segment_size):
                result.extend(
                        [S("__syncthreads()")]
                        +[Assign(
                            "dof_buffer[PAR_MB_NR][%d][SEGMENT_DOF]" % inl,
                            "fp_tex1Dfetch(in_vector_tex, "
                            "GLOBAL_MB_PREIMG_DOF_BASE"
                            " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                            " + (segment_start_el)*PREIMAGE_DOFS_PER_EL + %d + SEGMENT_DOF)"
                            % (inl, load_segment_start)
                            )
                        for inl in range(par.inline)]
                        +[S("__syncthreads()"),
                        Line(),
                        ])

                for dof in dofs[load_segment_start:load_segment_start+self.plan.segment_size]:
                    for inl in range(par.inline):
                        result.append(
                                S("result%d += "
                                    "smem_matrix[SEGMENT_DOF*MATRIX_COLUMNS + %d]"
                                    "*"
                                    "dof_buffer[PAR_MB_NR][%d][%d]"
                                    % (inl, dof, inl, dof-load_segment_start))
                                )
                result.append(Line())
            return result

        from hedge.backends.cuda.tools import unroll
        def get_direct_tex_mat_mul_code():
            return (
                    [POD(float_type, "fof%d" % inl) for inl in range(par.inline)]
                    + [POD(float_type, "lm"), Line()]
                    + unroll(
                        lambda j: [
                        Assign("fof%d" % inl,
                            "fp_tex1Dfetch(in_vector_tex, "
                            "GLOBAL_MB_PREIMG_DOF_BASE"
                            " + %(inl)d * ALIGNED_PREIMAGE_DOFS_PER_MB"
                            " + mb_el*PREIMAGE_DOFS_PER_EL+%(j)s)"
                            % {"j":j, "inl":inl, "row": "SEGMENT_DOF"},)
                        for inl in range(par.inline)
                        ]+[
                        Assign("lm",
                            "smem_matrix["
                            "%(row)s*MATRIX_COLUMNS + %(j)s]"
                            % {"j":j, "row": "SEGMENT_DOF"},
                            )
                        ]+[
                        S("result%(inl)d += fof%(inl)d*lm" % {"inl":inl})
                        for inl in range(par.inline)
                        ],
                        total_number=self.plan.preimage_dofs_per_el,
                        max_unroll=self.plan.max_unroll)
                    + [Line()])

        def get_mat_mul_code(el_fetch_count):
            if el_fetch_count == 1:
                return get_batched_fetch_mat_mul_code(el_fetch_count)
            else:
                return get_direct_tex_mat_mul_code()

        def mat_mul_outer_loop(fetch_count):
            if with_scaling:
                inv_jac_multiplier = ("fp_tex1Dfetch(scaling_tex,"
                        "(GLOBAL_MB_NR + %(inl)d)*MB_EL_COUNT + mb_el)")
            else:
                inv_jac_multiplier = "1"

            write_condition = "MB_DOF < DOFS_PER_EL*MB_EL_COUNT"
            if self.with_index_check:
                write_condition += " && GLOBAL_MB_NR < microblock_count"
            return For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT",
                "++seq_mb_number",
                Block([
                    Initializer(POD(float_type, "result%d" % inl), 0)
                    for inl in range(par.inline)
                    ]+[Line()]
                    +get_mat_mul_code(fetch_count)
                    +[
                    If(write_condition,
                        Block([
                            Assign(
                                "out_vector[GLOBAL_MB_DOF_BASE"
                                " + %d*ALIGNED_DOFS_PER_MB"
                                " + MB_DOF]" % inl,
                                "result%d * %s" % (inl, (inv_jac_multiplier % {"inl":inl}))
                                )
                            for inl in range(par.inline)
                            ])
                        )
                    ])
                )

        if self.plan.use_prefetch_branch:
            from cgen import make_multiple_ifs
            f_body.append(make_multiple_ifs([
                    ("segment_el_count == %d" % fetch_count,
                        mat_mul_outer_loop(fetch_count))
                    for fetch_count in
                    range(1, self.plan.max_elements_touched_by_segment()+1)]
                    ))
        else:
            f_body.append(mat_mul_outer_loop(0))

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file(self.plan.debug_name, ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=12"]
                )

        func = mod.get_function("apply_el_local_mat_smem_mat")

        if self.plan.debug_name in discr.debug:
            print "%s: lmem=%d smem=%d regs=%d" % (
                    self.plan.debug_name,
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        in_vector_texref = mod.get_texref("in_vector_tex")
        texrefs = [in_vector_texref]

        if with_scaling:
            scaling_texref = mod.get_texref("scaling_tex")
            texrefs.append(scaling_texref)
        else:
            scaling_texref = None

        func.prepare(
                "PPPI",
                block=(self.plan.segment_size, self.plan.parallelism.parallel, 1),
                texrefs=texrefs)

        return func, in_vector_texref, scaling_texref
Пример #7
0
    def get_kernel(self, diff_op, elgroup, for_benchmark=False):
        from cgen import (
            Pointer,
            POD,
            Value,
            ArrayOf,
            Const,
            Module,
            FunctionDeclaration,
            FunctionBody,
            Block,
            Comment,
            Line,
            Define,
            Include,
            Initializer,
            If,
            For,
            Statement,
            Assign,
        )

        from pycuda.tools import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        plan = self.plan
        given = plan.given

        elgroup, = discr.element_groups
        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(
                Value("void", "apply_diff_mat_smem"),
                [Pointer(POD(float_type, "debugbuf")), Pointer(POD(float_type, "field"))]
                + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims],
            )
        )

        par = plan.parallelism

        cmod = Module([Include("pycuda-helpers.hpp")])

        if float_type == numpy.float64:
            cmod.append(Value("texture<fp_tex_double, 1, cudaReadModeElementType>", "diff_rst_mat_tex"))
        elif float_type == numpy.float32:
            rst_channels = given.devdata.make_valid_tex_channel_count(d)
            cmod.append(Value("texture<float%d, 1, cudaReadModeElementType>" % rst_channels, "diff_rst_mat_tex"))
        else:
            raise ValueError("unsupported float type: %s" % float_type)

        # only preimage size variation is supported here
        assert plan.image_dofs_per_el == given.dofs_per_el()
        assert plan.aligned_image_dofs_per_microblock == given.microblock.aligned_floats

        # FIXME: aligned_image_dofs_per_microblock must be divisible
        # by this, therefore hardcoding for now.
        chunk_size = 16

        cmod.extend(
            [
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("IMAGE_DOFS_PER_EL", plan.image_dofs_per_el),
                Define("PREIMAGE_DOFS_PER_EL", plan.preimage_dofs_per_el),
                Define("ALIGNED_IMAGE_DOFS_PER_MB", plan.aligned_image_dofs_per_microblock),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB", plan.aligned_preimage_dofs_per_microblock),
                Define("ELS_PER_MB", given.microblock.elements),
                Define("IMAGE_DOFS_PER_MB", "(IMAGE_DOFS_PER_EL*ELS_PER_MB)"),
                Line(),
                Define("CHUNK_SIZE", chunk_size),
                Define("CHUNK_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Define("CHUNK_NR", "threadIdx.z"),
                Define("IMAGE_MB_DOF", "(CHUNK_NR*CHUNK_SIZE+CHUNK_DOF)"),
                Define("IMAGE_EL_DOF", "(IMAGE_MB_DOF - mb_el*IMAGE_DOFS_PER_EL)"),
                Line(),
                Define("MACROBLOCK_NR", "blockIdx.x"),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("GLOBAL_MB_NR_BASE", "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define(
                    "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE" "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"
                ),
                Define("GLOBAL_MB_IMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_IMAGE_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                CudaShared(
                    ArrayOf(
                        ArrayOf(ArrayOf(POD(float_type, "smem_field"), "PAR_MB_COUNT"), "INLINE_MB_COUNT"),
                        "ALIGNED_PREIMAGE_DOFS_PER_MB",
                    )
                ),
                Line(),
            ]
        )

        S = Statement
        f_body = Block([Initializer(Const(POD(numpy.uint16, "mb_el")), "IMAGE_MB_DOF / IMAGE_DOFS_PER_EL"), Line()])

        # ---------------------------------------------------------------------
        def get_load_code():
            mb_img_dofs = plan.aligned_image_dofs_per_microblock
            mb_preimg_dofs = plan.aligned_preimage_dofs_per_microblock
            preimg_dofs_over_dofs = (mb_preimg_dofs + mb_img_dofs - 1) // mb_img_dofs

            load_code = []
            store_code = []

            var_num = 0
            for load_block in range(preimg_dofs_over_dofs):
                for inl in range(par.inline):
                    # load and store are split for better pipelining
                    # compiler can't figure that out because of branch

                    var = "tmp%d" % var_num
                    var_num += 1
                    load_code.append(POD(float_type, var))

                    block_addr = "%d * ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF" % load_block
                    load_instr = Assign(
                        var,
                        "field[GLOBAL_MB_PREIMAGE_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + %s]" % (inl, block_addr),
                    )
                    store_instr = Assign("smem_field[PAR_MB_NR][%d][%s]" % (inl, block_addr), var)
                    if (load_block + 1) * mb_img_dofs >= mb_preimg_dofs:
                        cond = "%s < ALIGNED_PREIMAGE_DOFS_PER_MB" % block_addr
                        load_instr = If(cond, load_instr)
                        store_instr = If(cond, store_instr)

                    load_code.append(load_instr)
                    store_code.append(store_instr)
            return Block(load_code + [Line()] + store_code)

        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0))

            code.append(Line())

            tex_channels = ["x", "y", "z", "w"]

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(
                        Assign(
                            "drst%d_global[GLOBAL_MB_IMAGE_DOF_BASE + "
                            "%d*ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF]" % (rst_axis, inl),
                            "d%drst%d" % (inl, rst_axis),
                        )
                    )

            from hedge.backends.cuda.tools import unroll

            code.extend(
                [
                    Comment("everybody needs to be done with the old data"),
                    S("__syncthreads()"),
                    Line(),
                    get_load_code(),
                    Line(),
                    Comment("all the new data must be loaded"),
                    S("__syncthreads()"),
                    Line(),
                ]
            )

            if float_type == numpy.float32:
                code.append(Value("float%d" % rst_channels, "dmat_entries"))

            code.extend([POD(float_type, "field_value%d" % inl) for inl in range(par.inline)] + [Line()])

            def unroll_body(j):
                result = [
                    Assign("field_value%d" % inl, "smem_field[PAR_MB_NR][%d][mb_el*PREIMAGE_DOFS_PER_EL+%s]" % (inl, j))
                    for inl in range(par.inline)
                ]

                if float_type == numpy.float32:
                    result.append(
                        Assign("dmat_entries", "tex1Dfetch(diff_rst_mat_tex, IMAGE_EL_DOF + %s*IMAGE_DOFS_PER_EL)" % j)
                    )
                    result.extend(
                        S("d%drst%d += dmat_entries.%s * field_value%d" % (inl, axis, tex_channels[axis], inl))
                        for inl in range(par.inline)
                        for axis in dims
                    )
                elif float_type == numpy.float64:
                    result.extend(
                        S(
                            "d%(inl)drst%(axis)d += "
                            "fp_tex1Dfetch(diff_rst_mat_tex, %(axis)d "
                            "+ DIMENSIONS*(IMAGE_EL_DOF + %(j)d*IMAGE_DOFS_PER_EL))"
                            "* field_value%(inl)d" % {"inl": inl, "axis": axis, "j": j}
                        )
                        for inl in range(par.inline)
                        for axis in dims
                    )
                else:
                    assert False

                return result

            code.append(
                If(
                    "IMAGE_MB_DOF < IMAGE_DOFS_PER_MB",
                    Block(unroll(unroll_body, total_number=plan.preimage_dofs_per_el) + [store_code]),
                )
            )

            return code

        f_body.extend(
            [
                For(
                    "unsigned short seq_mb_number = 0",
                    "seq_mb_number < SEQ_MB_COUNT",
                    "++seq_mb_number",
                    Block(get_scalar_diff_code()),
                )
            ]
        )

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file

            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(
            cmod,
            keep="cuda_keep_kernels" in discr.debug,
            # options=["--maxrregcount=16"]
        )

        func = mod.get_function("apply_diff_mat_smem")

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (func.local_size_bytes, func.shared_size_bytes, func.registers)

        diff_rst_mat_texref = mod.get_texref("diff_rst_mat_tex")
        gpu_diffmats = self.gpu_diffmats(diff_op, elgroup)

        if given.float_type == numpy.float32:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, rst_channels)
        elif given.float_type == numpy.float64:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, allow_double_hack=True)
        else:
            assert False

        assert given.microblock.aligned_floats % chunk_size == 0
        block = (chunk_size, plan.parallelism.parallel, given.microblock.aligned_floats // chunk_size)

        func.prepare(["PP"] + discr.dimensions * ["P"], texrefs=[diff_rst_mat_texref])

        return block, func
Пример #8
0
    def get_kernel(self, fdata, ilist_data, for_benchmark):
        from cgen.cuda import CudaShared, CudaGlobal
        from pycuda.tools import dtype_to_ctype

        discr = self.discr
        given = self.plan.given
        fplan = self.plan
        d = discr.dimensions
        dims = range(d)

        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_flux"),
            [
                Pointer(POD(float_type, "debugbuf")),
                Pointer(POD(numpy.uint8, "gmem_facedata")),
                ]+[
                Pointer(POD(float_type, "gmem_fluxes_on_faces%d" % flux_nr))
                for flux_nr in range(len(self.fluxes))
                ]
            ))

        cmod = Module()
        cmod.append(Include("pycuda-helpers.hpp"))

        for dep_expr in self.all_deps:
            cmod.extend([
                Value("texture<%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type, with_fp_tex_hack=True),
                    "field%d_tex" % self.dep_to_index[dep_expr])
                ])

        if fplan.flux_count != len(self.fluxes):
            from warnings import warn
            warn("Flux count in flux execution plan different from actual flux count.\n"
                    "You may want to specify the tune_for= kwarg in the Discretization\n"
                    "constructor.")

        cmod.extend([
            Line(),
            Typedef(POD(float_type, "value_type")),
            Line(),
            flux_header_struct(float_type, discr.dimensions),
            Line(),
            face_pair_struct(float_type, discr.dimensions),
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_FACE", fplan.dofs_per_face),
            Define("THREADS_PER_FACE", fplan.threads_per_face()),
            Line(),
            Define("CONCURRENT_FACES", fplan.parallel_faces),
            Define("BLOCK_MB_COUNT", fplan.mbs_per_block),
            Line(),
            Define("FACEDOF_NR", "threadIdx.x"),
            Define("BLOCK_FACE", "threadIdx.y"),
            Line(),
            Define("FLUX_COUNT", len(self.fluxes)),
            Line(),
            Define("THREAD_NUM", "(FACEDOF_NR + BLOCK_FACE*THREADS_PER_FACE)"),
            Define("THREAD_COUNT", "(THREADS_PER_FACE*CONCURRENT_FACES)"),
            Define("COALESCING_THREAD_COUNT",
                "(THREAD_COUNT < 0x10 ? THREAD_COUNT : THREAD_COUNT & ~0xf)"),
            Line(),
            Define("DATA_BLOCK_SIZE", fdata.block_bytes),
            Define("ALIGNED_FACE_DOFS_PER_MB", fplan.aligned_face_dofs_per_microblock()),
            Define("ALIGNED_FACE_DOFS_PER_BLOCK",
                "(ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT)"),
            Line(),
            Define("FOF_BLOCK_BASE", "(blockIdx.x*ALIGNED_FACE_DOFS_PER_BLOCK)"),
            Line(),
            ] + ilist_data.code + [
            Line(),
            Value("texture<index_list_entry_t, 1, cudaReadModeElementType>",
                "tex_index_lists"),
            Line(),
            fdata.struct,
            Line(),
            CudaShared(Value("flux_data", "data")),
            ])

        if not fplan.direct_store:
            cmod.extend([
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            POD(float_type, "smem_fluxes_on_faces"),
                            "FLUX_COUNT"),
                        "ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT")
                    ),
                Line(),
                ])

        S = Statement
        f_body = Block()

        from hedge.backends.cuda.tools import get_load_code

        f_body.extend(get_load_code(
            dest="&data",
            base="gmem_facedata + blockIdx.x*DATA_BLOCK_SIZE",
            bytes="sizeof(flux_data)",
            descr="load face_pair data")
            +[S("__syncthreads()"), Line() ])

        def get_flux_code(flux_writer):
            flux_code = Block([])

            flux_code.extend([
                Initializer(Pointer(
                    Value("face_pair", "fpair")),
                    "data.facepairs+fpair_nr"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "a_index")),
                    "fpair->a_base + tex1Dfetch(tex_index_lists, "
                    "fpair->a_ilist_index + FACEDOF_NR)"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "b_index")),
                    "fpair->b_base + tex1Dfetch(tex_index_lists, "
                    "fpair->b_ilist_index + FACEDOF_NR)"),
                Line(),
                flux_writer(),
                Line(),
                S("fpair_nr += CONCURRENT_FACES")
                ])

            return flux_code

        flux_computation = Block([
            Comment("fluxes for dual-sided (intra-block) interior face pairs"),
            While("fpair_nr < data.header.same_facepairs_end",
                get_flux_code(lambda:
                    self.write_interior_flux_code(True))
                ),
            Line(),
            Comment("work around nvcc assertion failure"),
            S("fpair_nr+=1"),
            S("fpair_nr-=1"),
            Line(),
            Comment("fluxes for single-sided (inter-block) interior face pairs"),
            While("fpair_nr < data.header.diff_facepairs_end",
                get_flux_code(lambda:
                    self.write_interior_flux_code(False))
                ),
            Line(),
            Comment("fluxes for single-sided boundary face pairs"),
            While("fpair_nr < data.header.bdry_facepairs_end",
                get_flux_code(
                    lambda: self.write_boundary_flux_code(for_benchmark))
                ),
            ])

        f_body.extend_log_block("compute the fluxes", [
            Initializer(POD(numpy.uint32, "fpair_nr"), "BLOCK_FACE"),
            If("FACEDOF_NR < DOFS_PER_FACE", flux_computation)
            ])

        if not fplan.direct_store:
            f_body.extend([
                Line(),
                S("__syncthreads()"),
                Line()
                ])

            f_body.extend_log_block("store fluxes", [
                    #Assign("debugbuf[blockIdx.x]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "sizeof(face_pair)"),
                    For("unsigned word_nr = THREAD_NUM",
                        "word_nr < ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT",
                        "word_nr += COALESCING_THREAD_COUNT",
                        Block([Assign(
                            "gmem_fluxes_on_faces%d[FOF_BLOCK_BASE+word_nr]" % flux_nr,
                            "smem_fluxes_on_faces[%d][word_nr]" % flux_nr)
                            for flux_nr in range(len(self.fluxes))]
                           #+[If("isnan(smem_fluxes_on_faces[%d][word_nr])" % flux_nr,
                               #Block([
                                   #Assign("debugbuf[blockIdx.x]", "word_nr"),
                                   #])
                               #)
                            #for flux_nr in range(len(self.fluxes))]
                        )
                    )
                    ])
        if False:
            f_body.extend([
                    Assign("debugbuf[blockIdx.x*96+32+BLOCK_FACE*32+threadIdx.x]", "fpair_nr"),
                    Assign("debugbuf[blockIdx.x*96+16]", "data.header.same_facepairs_end"),
                    Assign("debugbuf[blockIdx.x*96+17]", "data.header.diff_facepairs_end"),
                    Assign("debugbuf[blockIdx.x*96+18]", "data.header.bdry_facepairs_end"),
                    ]
                    )

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("flux_gather", ".cu").write(str(cmod))

        #from pycuda.tools import allow_user_edit
        mod = SourceModule(
                #allow_user_edit(cmod, "kernel.cu", "the flux kernel"),
                cmod,
                keep="cuda_keep_kernels" in discr.debug)
        expr_to_texture_map = dict(
                (dep_expr, mod.get_texref(
                    "field%d_tex" % self.dep_to_index[dep_expr]))
                for dep_expr in self.all_deps)

        index_list_texref = mod.get_texref("tex_index_lists")
        index_list_texref.set_address(
                ilist_data.device_memory,
                ilist_data.bytes)
        index_list_texref.set_format(
                cuda.dtype_to_array_format(ilist_data.type), 1)
        index_list_texref.set_flags(cuda.TRSF_READ_AS_INTEGER)

        func = mod.get_function("apply_flux")
        block = (fplan.threads_per_face(), fplan.parallel_faces, 1)
        func.prepare(
                (2+len(self.fluxes))*"P",
                texrefs=expr_to_texture_map.values()
                + [index_list_texref])

        if "cuda_flux" in discr.debug:
            print "flux: lmem=%d smem=%d regs=%d" % (
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        return block, func, expr_to_texture_map
Пример #9
0
    def write_interior_flux_code(self, is_twosided):
        given = self.plan.given

        def get_field(flux_rec, is_interior, flipped):
            if is_interior ^ flipped:
                prefix = "a"
            else:
                prefix = "b"

            return ("val_%s_field%d" % (prefix, self.dep_to_index[flux_rec.field_expr]))

        flux_write_code = Block([])

        flux_var_decl = [Initializer(POD(given.float_type, "a_flux"), 0)]

        if is_twosided:
            flux_var_decl.append(Initializer(POD(given.float_type, "b_flux"), 0))
            prefixes = ["a", "b"]
            flip_values = [False, True]
        else:
            prefixes = ["a"]
            flip_values = [False]

        flux_write_code.append(Line())

        for dep in self.interior_deps:
            flux_write_code.append(Comment(str(dep)))

            for side in ["a", "b"]:
                flux_write_code.append(
                        Initializer(
                            MaybeUnused(POD(given.float_type, "val_%s_field%d"
                                % (side, self.dep_to_index[dep]))),
                            "fp_tex1Dfetch(field%d_tex, %s_index)"
                            % (self.dep_to_index[dep], side)))

        f2cm = FluxToCodeMapper(given.float_type)

        flux_sub_codes = []
        for flux_nr, wdflux in enumerate(self.fluxes):
            my_flux_block = Block(flux_var_decl)

            for int_rec in wdflux.interiors:
                for prefix, is_flipped in zip(prefixes, flip_values):
                    my_flux_block.append(
                            Statement("%s_flux += %s"
                                % (prefix,
                                    flux_to_code(f2cm, is_flipped,
                                        int_rec.field_expr,
                                        int_rec.field_expr,
                                        self.dep_to_index,
                                        int_rec.flux_expr, PREC_NONE),
                                    )))

            my_flux_block.append(Line())

            my_flux_block.append(
                    self.gen_store(flux_nr, "fpair->a_dest+FACEDOF_NR",
                        "fpair->face_jacobian*a_flux"))

            #my_flux_block.append(
                    #Statement("if(isnan(val_b_field5)) debugbuf[blockIdx.x] = 1"),
                    #)

            if is_twosided:
                my_flux_block.append(
                        self.gen_store(flux_nr,
                            "fpair->b_dest+tex1Dfetch(tex_index_lists, "
                            "fpair->b_write_ilist_index + FACEDOF_NR)",
                            "fpair->face_jacobian*b_flux"))

                #my_flux_block.append(
                        #Assign("debugbuf[blockIdx.x*96+fpair_nr+8]", "10000+fpair->b_dest"),
                        #)

            flux_sub_codes.append(my_flux_block)

        if f2cm.cse_name_list:
            flux_write_code.append(Line())

        flux_write_code.extend(
                Initializer(
                    Value("value_type", cse_name), cse_str)
                for cse_name, cse_str in f2cm.cse_name_list)

        flux_write_code.extend(flux_sub_codes)

        return flux_write_code
Пример #10
0
    def write_boundary_flux_code(self, for_benchmark):
        given = self.plan.given

        flux_write_code = Block()

        fluxes_by_bdry_number = {}
        for flux_nr, wdflux in enumerate(self.fluxes):
            for bflux_info in wdflux.boundaries:
                if for_benchmark:
                    bdry_number = 0
                else:
                    bdry_number = self.executor.boundary_tag_to_number[
                            bflux_info.bpair.tag]

                fluxes_by_bdry_number.setdefault(bdry_number, [])\
                        .append((flux_nr, bflux_info))

        flux_write_code.extend([
            Initializer(
                MaybeUnused(POD(given.float_type, "flux%d" % flux_nr)),
                0)
            for flux_nr in range(len(self.fluxes))])

        for bdry_number, nrs_and_fluxes in fluxes_by_bdry_number.iteritems():
            bblock = []

            from pytools import set_sum
            int_deps = set_sum(flux_rec.int_dependencies
                    for flux_nr, flux_rec in nrs_and_fluxes)
            ext_deps = set_sum(flux_rec.ext_dependencies
                    for flux_nr, flux_rec in nrs_and_fluxes)

            for dep in int_deps:
                bblock.extend([
                    Comment(str(dep)),
                    Initializer(
                        MaybeUnused(POD(given.float_type, "val_a_field%d"
                            % self.dep_to_index[dep])),
                        "fp_tex1Dfetch(field%d_tex, a_index)" % self.dep_to_index[dep])
                    ])
            for dep in ext_deps:
                bblock.extend([
                    Comment(str(dep)),
                    Initializer(
                        MaybeUnused(POD(given.float_type, "val_b_field%d"
                            % self.dep_to_index[dep])),
                        "fp_tex1Dfetch(field%s_tex, b_index)" % self.dep_to_index[dep])
                    ])

            f2cm = FluxToCodeMapper(given.float_type)

            comp_code = [Line()]
            for flux_nr, flux_rec in nrs_and_fluxes:
                comp_code.append(
                        Statement(("flux%d += " % flux_nr) +
                            flux_to_code(f2cm, is_flipped=False,
                                int_field_expr=flux_rec.bpair.field,
                                ext_field_expr=flux_rec.bpair.bfield,
                                dep_to_index=self.dep_to_index,
                                flux=flux_rec.flux_expr, prec=PREC_NONE)))

            if f2cm.cse_name_list:
                bblock.append(Line())

            bblock.extend(
                    Initializer(
                        Value("value_type", cse_name), cse_str)
                    for cse_name, cse_str in f2cm.cse_name_list)

            flux_write_code.extend([
                Line(),
                Comment(nrs_and_fluxes[0][1].bpair.tag),
                If("(fpair->boundary_bitmap) & (1 << %d)" % (bdry_number),
                    Block(bblock+comp_code)),
                ])

        flux_write_code.extend([Line(),]
            +[
            self.gen_store(flux_nr, "fpair->a_dest+FACEDOF_NR",
                "fpair->face_jacobian * flux%d" % flux_nr)
            for flux_nr in range(len(self.fluxes))
            ]
            #Assign("debugbuf[blockIdx.x*96+fpair_nr]", "10000+fpair->a_dest"),
            )

        return flux_write_code
Пример #11
0
    def get_kernel(self, diff_op, elgroup, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, Const, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Comment, Line, Define, Include, \
                Initializer, If, For, Statement, Assign

        from pycuda.tools import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        plan = self.plan
        given = plan.given

        elgroup, = discr.element_groups
        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_diff_mat_smem"),
            [Pointer(POD(float_type, "debugbuf")), Pointer(POD(float_type, "field")), ]
            + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims]
            ))

        par = plan.parallelism

        cmod = Module([
                Include("pycuda-helpers.hpp"),
                ])

        if float_type == numpy.float64:
            cmod.append(Value("texture<fp_tex_double, 1, cudaReadModeElementType>",
                    "diff_rst_mat_tex"))
        elif float_type == numpy.float32:
            rst_channels = given.devdata.make_valid_tex_channel_count(d)
            cmod.append(Value("texture<float%d, 1, cudaReadModeElementType>"
                    % rst_channels, "diff_rst_mat_tex"))
        else:
            raise ValueError("unsupported float type: %s" % float_type)

        # only preimage size variation is supported here
        assert plan.image_dofs_per_el == given.dofs_per_el()
        assert plan.aligned_image_dofs_per_microblock == given.microblock.aligned_floats

        # FIXME: aligned_image_dofs_per_microblock must be divisible
        # by this, therefore hardcoding for now.
        chunk_size = 16

        cmod.extend([
                Line(),
                Define("DIMENSIONS", discr.dimensions),

                Define("IMAGE_DOFS_PER_EL", plan.image_dofs_per_el),
                Define("PREIMAGE_DOFS_PER_EL", plan.preimage_dofs_per_el),
                Define("ALIGNED_IMAGE_DOFS_PER_MB", plan.aligned_image_dofs_per_microblock),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB", plan.aligned_preimage_dofs_per_microblock),
                Define("ELS_PER_MB", given.microblock.elements),
                Define("IMAGE_DOFS_PER_MB", "(IMAGE_DOFS_PER_EL*ELS_PER_MB)"),
                Line(),
                Define("CHUNK_SIZE", chunk_size),
                Define("CHUNK_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Define("CHUNK_NR", "threadIdx.z"),
                Define("IMAGE_MB_DOF", "(CHUNK_NR*CHUNK_SIZE+CHUNK_DOF)"),
                Define("IMAGE_EL_DOF", "(IMAGE_MB_DOF - mb_el*IMAGE_DOFS_PER_EL)"),
                Line(),
                Define("MACROBLOCK_NR", "blockIdx.x"),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_IMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_IMAGE_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            ArrayOf(
                                POD(float_type, "smem_field"),
                                "PAR_MB_COUNT"),
                            "INLINE_MB_COUNT"),
                        "ALIGNED_PREIMAGE_DOFS_PER_MB")),
                Line(),
                ])

        S = Statement
        f_body = Block([
            Initializer(Const(POD(numpy.uint16, "mb_el")),
                "IMAGE_MB_DOF / IMAGE_DOFS_PER_EL"),
            Line(),
            ])

        # ---------------------------------------------------------------------
        def get_load_code():
            mb_img_dofs = plan.aligned_image_dofs_per_microblock
            mb_preimg_dofs = plan.aligned_preimage_dofs_per_microblock
            preimg_dofs_over_dofs = (mb_preimg_dofs+mb_img_dofs-1) // mb_img_dofs

            load_code = []
            store_code = []

            var_num = 0
            for load_block in range(preimg_dofs_over_dofs):
                for inl in range(par.inline):
                    # load and store are split for better pipelining
                    # compiler can't figure that out because of branch

                    var = "tmp%d" % var_num
                    var_num += 1
                    load_code.append(POD(float_type, var))

                    block_addr = "%d * ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF" % load_block
                    load_instr = Assign(var,
                        "field[GLOBAL_MB_PREIMAGE_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + %s]" % (inl, block_addr))
                    store_instr = Assign(
                            "smem_field[PAR_MB_NR][%d][%s]" % (inl, block_addr),
                            var
                            )
                    if (load_block+1)*mb_img_dofs >= mb_preimg_dofs:
                        cond = "%s < ALIGNED_PREIMAGE_DOFS_PER_MB" % block_addr
                        load_instr = If(cond, load_instr)
                        store_instr = If(cond, store_instr)

                    load_code.append(load_instr)
                    store_code.append(store_instr)
            return Block(load_code + [Line()] + store_code)

        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(
                        Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0))

            code.append(Line())

            tex_channels = ["x", "y", "z", "w"]

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(Assign(
                        "drst%d_global[GLOBAL_MB_IMAGE_DOF_BASE + "
                        "%d*ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF]"
                        % (rst_axis, inl),
                        "d%drst%d" % (inl, rst_axis)
                        ))

            from hedge.backends.cuda.tools import unroll
            code.extend([
                Comment("everybody needs to be done with the old data"),
                S("__syncthreads()"),
                Line(),
                get_load_code(),
                Line(),
                Comment("all the new data must be loaded"),
                S("__syncthreads()"),
                Line(),
                ])

            if float_type == numpy.float32:
                code.append(Value("float%d" % rst_channels, "dmat_entries"))

            code.extend([
                POD(float_type, "field_value%d" % inl)
                for inl in range(par.inline)
                ]+[Line()])

            def unroll_body(j):
                result = [
                    Assign("field_value%d" % inl,
                        "smem_field[PAR_MB_NR][%d][mb_el*PREIMAGE_DOFS_PER_EL+%s]" % (inl, j))
                    for inl in range(par.inline)
                    ]

                if float_type == numpy.float32:
                    result.append(Assign("dmat_entries",
                        "tex1Dfetch(diff_rst_mat_tex, IMAGE_EL_DOF + %s*IMAGE_DOFS_PER_EL)" % j))
                    result.extend(
                        S("d%drst%d += dmat_entries.%s * field_value%d"
                            % (inl, axis, tex_channels[axis], inl))
                        for inl in range(par.inline)
                        for axis in dims)
                elif float_type == numpy.float64:
                    result.extend(
                        S("d%(inl)drst%(axis)d += "
                            "fp_tex1Dfetch(diff_rst_mat_tex, %(axis)d "
                            "+ DIMENSIONS*(IMAGE_EL_DOF + %(j)d*IMAGE_DOFS_PER_EL))"
                            "* field_value%(inl)d" % {
                            "inl": inl,
                            "axis": axis,
                            "j": j
                            })
                        for inl in range(par.inline)
                        for axis in dims)
                else:
                    assert False

                return result

            code.append(If("IMAGE_MB_DOF < IMAGE_DOFS_PER_MB", Block(unroll(unroll_body,
                    total_number=plan.preimage_dofs_per_el)
                    +[store_code])))

            return code

        f_body.extend([
            For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT",
                "++seq_mb_number",
                Block(get_scalar_diff_code())
                )
            ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=16"]
                )

        func = mod.get_function("apply_diff_mat_smem")

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.registers)

        diff_rst_mat_texref = mod.get_texref("diff_rst_mat_tex")
        gpu_diffmats = self.gpu_diffmats(diff_op, elgroup)

        if given.float_type == numpy.float32:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, rst_channels)
        elif given.float_type == numpy.float64:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref,
                    allow_double_hack=True)
        else:
            assert False

        assert given.microblock.aligned_floats % chunk_size == 0
        block = (
                chunk_size,
                plan.parallelism.parallel,
                given.microblock.aligned_floats//chunk_size)

        func.prepare(
                ["PP"] + discr.dimensions*["P"],
                texrefs=[diff_rst_mat_texref])

        return block, func
Пример #12
0
    def generate_body(self, kernel, codegen_state):
        from cgen import Block
        body = Block()

        temp_decls = []

        # {{{ declare temporaries

        base_storage_sizes = {}
        base_storage_to_is_local = {}
        base_storage_to_align_bytes = {}

        from cgen import ArrayOf, Pointer, Initializer, AlignedAttribute
        from loopy.codegen import POD  # uses the correct complex type

        class ConstRestrictPointer(Pointer):
            def get_decl_pair(self):
                sub_tp, sub_decl = self.subdecl.get_decl_pair()
                return sub_tp, ("*const restrict %s" % sub_decl)

        for tv in sorted(
                six.itervalues(kernel.temporary_variables),
                key=lambda tv: tv.name):
            decl_info = tv.decl_info(self, index_dtype=kernel.index_dtype)

            if not tv.base_storage:
                for idi in decl_info:
                    temp_var_decl = POD(self, idi.dtype, idi.name)

                    if idi.shape:
                        temp_var_decl = ArrayOf(temp_var_decl,
                                " * ".join(str(s) for s in idi.shape))

                    temp_decls.append(
                            self.wrap_temporary_decl(temp_var_decl, tv.is_local))

            else:
                offset = 0
                base_storage_sizes.setdefault(tv.base_storage, []).append(
                        tv.nbytes)
                base_storage_to_is_local.setdefault(tv.base_storage, []).append(
                        tv.is_local)

                align_size = tv.dtype.itemsize

                from loopy.kernel.array import VectorArrayDimTag
                for dim_tag, axis_len in zip(tv.dim_tags, tv.shape):
                    if isinstance(dim_tag, VectorArrayDimTag):
                        align_size *= axis_len

                base_storage_to_align_bytes.setdefault(tv.base_storage, []).append(
                        align_size)

                for idi in decl_info:
                    cast_decl = POD(self, idi.dtype, "")
                    temp_var_decl = POD(self, idi.dtype, idi.name)

                    cast_decl = self.wrap_temporary_decl(cast_decl, tv.is_local)
                    temp_var_decl = self.wrap_temporary_decl(
                            temp_var_decl, tv.is_local)

                    # The 'restrict' part of this is a complete lie--of course
                    # all these temporaries are aliased. But we're promising to
                    # not use them to shovel data from one representation to the
                    # other. That counts, right?

                    cast_decl = ConstRestrictPointer(cast_decl)
                    temp_var_decl = ConstRestrictPointer(temp_var_decl)

                    cast_tp, cast_d = cast_decl.get_decl_pair()
                    temp_var_decl = Initializer(
                            temp_var_decl,
                            "(%s %s) (%s + %s)" % (
                                " ".join(cast_tp), cast_d,
                                tv.base_storage,
                                offset))

                    temp_decls.append(temp_var_decl)

                    from pytools import product
                    offset += (
                            idi.dtype.itemsize
                            * product(si for si in idi.shape))

        for bs_name, bs_sizes in sorted(six.iteritems(base_storage_sizes)):
            bs_var_decl = POD(self, np.int8, bs_name)
            bs_var_decl = self.wrap_temporary_decl(
                    bs_var_decl, base_storage_to_is_local[bs_name])
            bs_var_decl = ArrayOf(bs_var_decl, max(bs_sizes))

            alignment = max(base_storage_to_align_bytes[bs_name])
            bs_var_decl = AlignedAttribute(alignment, bs_var_decl)

            body.append(bs_var_decl)

        body.extend(temp_decls)

        # }}}

        from loopy.codegen.loop import set_up_hw_parallel_loops
        gen_code = set_up_hw_parallel_loops(kernel, 0, codegen_state)

        from cgen import Line
        body.append(Line())

        if isinstance(gen_code.ast, Block):
            body.extend(gen_code.ast.contents)
        else:
            body.append(gen_code.ast)

        return body, gen_code.implemented_domains
Пример #13
0
    def get_kernel(self, fdata, ilist_data, for_benchmark):
        from cgen.cuda import CudaShared, CudaGlobal
        from pycuda.tools import dtype_to_ctype

        discr = self.discr
        given = self.plan.given
        fplan = self.plan
        d = discr.dimensions
        dims = range(d)

        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(Value("void", "apply_flux"), [
                Pointer(POD(float_type, "debugbuf")),
                Pointer(POD(numpy.uint8, "gmem_facedata")),
            ] + [
                Pointer(POD(float_type, "gmem_fluxes_on_faces%d" % flux_nr))
                for flux_nr in range(len(self.fluxes))
            ]))

        cmod = Module()
        cmod.append(Include("pycuda-helpers.hpp"))

        for dep_expr in self.all_deps:
            cmod.extend([
                Value(
                    "texture<%s, 1, cudaReadModeElementType>" %
                    dtype_to_ctype(float_type, with_fp_tex_hack=True),
                    "field%d_tex" % self.dep_to_index[dep_expr])
            ])

        if fplan.flux_count != len(self.fluxes):
            from warnings import warn
            warn(
                "Flux count in flux execution plan different from actual flux count.\n"
                "You may want to specify the tune_for= kwarg in the Discretization\n"
                "constructor.")

        cmod.extend([
            Line(),
            Typedef(POD(float_type, "value_type")),
            Line(),
            flux_header_struct(float_type, discr.dimensions),
            Line(),
            face_pair_struct(float_type, discr.dimensions),
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_FACE", fplan.dofs_per_face),
            Define("THREADS_PER_FACE", fplan.threads_per_face()),
            Line(),
            Define("CONCURRENT_FACES", fplan.parallel_faces),
            Define("BLOCK_MB_COUNT", fplan.mbs_per_block),
            Line(),
            Define("FACEDOF_NR", "threadIdx.x"),
            Define("BLOCK_FACE", "threadIdx.y"),
            Line(),
            Define("FLUX_COUNT", len(self.fluxes)),
            Line(),
            Define("THREAD_NUM", "(FACEDOF_NR + BLOCK_FACE*THREADS_PER_FACE)"),
            Define("THREAD_COUNT", "(THREADS_PER_FACE*CONCURRENT_FACES)"),
            Define(
                "COALESCING_THREAD_COUNT",
                "(THREAD_COUNT < 0x10 ? THREAD_COUNT : THREAD_COUNT & ~0xf)"),
            Line(),
            Define("DATA_BLOCK_SIZE", fdata.block_bytes),
            Define("ALIGNED_FACE_DOFS_PER_MB",
                   fplan.aligned_face_dofs_per_microblock()),
            Define("ALIGNED_FACE_DOFS_PER_BLOCK",
                   "(ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT)"),
            Line(),
            Define("FOF_BLOCK_BASE",
                   "(blockIdx.x*ALIGNED_FACE_DOFS_PER_BLOCK)"),
            Line(),
        ] + ilist_data.code + [
            Line(),
            Value("texture<index_list_entry_t, 1, cudaReadModeElementType>",
                  "tex_index_lists"),
            Line(),
            fdata.struct,
            Line(),
            CudaShared(Value("flux_data", "data")),
        ])

        if not fplan.direct_store:
            cmod.extend([
                CudaShared(
                    ArrayOf(
                        ArrayOf(POD(float_type, "smem_fluxes_on_faces"),
                                "FLUX_COUNT"),
                        "ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT")),
                Line(),
            ])

        S = Statement
        f_body = Block()

        from hedge.backends.cuda.tools import get_load_code

        f_body.extend(
            get_load_code(dest="&data",
                          base="gmem_facedata + blockIdx.x*DATA_BLOCK_SIZE",
                          bytes="sizeof(flux_data)",
                          descr="load face_pair data") +
            [S("__syncthreads()"), Line()])

        def get_flux_code(flux_writer):
            flux_code = Block([])

            flux_code.extend([
                Initializer(Pointer(Value("face_pair", "fpair")),
                            "data.facepairs+fpair_nr"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "a_index")),
                    "fpair->a_base + tex1Dfetch(tex_index_lists, "
                    "fpair->a_ilist_index + FACEDOF_NR)"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "b_index")),
                    "fpair->b_base + tex1Dfetch(tex_index_lists, "
                    "fpair->b_ilist_index + FACEDOF_NR)"),
                Line(),
                flux_writer(),
                Line(),
                S("fpair_nr += CONCURRENT_FACES")
            ])

            return flux_code

        flux_computation = Block([
            Comment("fluxes for dual-sided (intra-block) interior face pairs"),
            While("fpair_nr < data.header.same_facepairs_end",
                  get_flux_code(lambda: self.write_interior_flux_code(True))),
            Line(),
            Comment("work around nvcc assertion failure"),
            S("fpair_nr+=1"),
            S("fpair_nr-=1"),
            Line(),
            Comment(
                "fluxes for single-sided (inter-block) interior face pairs"),
            While("fpair_nr < data.header.diff_facepairs_end",
                  get_flux_code(lambda: self.write_interior_flux_code(False))),
            Line(),
            Comment("fluxes for single-sided boundary face pairs"),
            While(
                "fpair_nr < data.header.bdry_facepairs_end",
                get_flux_code(
                    lambda: self.write_boundary_flux_code(for_benchmark))),
        ])

        f_body.extend_log_block("compute the fluxes", [
            Initializer(POD(numpy.uint32, "fpair_nr"), "BLOCK_FACE"),
            If("FACEDOF_NR < DOFS_PER_FACE", flux_computation)
        ])

        if not fplan.direct_store:
            f_body.extend([Line(), S("__syncthreads()"), Line()])

            f_body.extend_log_block(
                "store fluxes",
                [
                    #Assign("debugbuf[blockIdx.x]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "sizeof(face_pair)"),
                    For(
                        "unsigned word_nr = THREAD_NUM",
                        "word_nr < ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT",
                        "word_nr += COALESCING_THREAD_COUNT",
                        Block([
                            Assign(
                                "gmem_fluxes_on_faces%d[FOF_BLOCK_BASE+word_nr]"
                                % flux_nr,
                                "smem_fluxes_on_faces[%d][word_nr]" % flux_nr)
                            for flux_nr in range(len(self.fluxes))
                        ]
                              #+[If("isnan(smem_fluxes_on_faces[%d][word_nr])" % flux_nr,
                              #Block([
                              #Assign("debugbuf[blockIdx.x]", "word_nr"),
                              #])
                              #)
                              #for flux_nr in range(len(self.fluxes))]
                              ))
                ])
        if False:
            f_body.extend([
                Assign("debugbuf[blockIdx.x*96+32+BLOCK_FACE*32+threadIdx.x]",
                       "fpair_nr"),
                Assign("debugbuf[blockIdx.x*96+16]",
                       "data.header.same_facepairs_end"),
                Assign("debugbuf[blockIdx.x*96+17]",
                       "data.header.diff_facepairs_end"),
                Assign("debugbuf[blockIdx.x*96+18]",
                       "data.header.bdry_facepairs_end"),
            ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("flux_gather", ".cu").write(str(cmod))

        #from pycuda.tools import allow_user_edit
        mod = SourceModule(
            #allow_user_edit(cmod, "kernel.cu", "the flux kernel"),
            cmod,
            keep="cuda_keep_kernels" in discr.debug)
        expr_to_texture_map = dict(
            (dep_expr,
             mod.get_texref("field%d_tex" % self.dep_to_index[dep_expr]))
            for dep_expr in self.all_deps)

        index_list_texref = mod.get_texref("tex_index_lists")
        index_list_texref.set_address(ilist_data.device_memory,
                                      ilist_data.bytes)
        index_list_texref.set_format(
            cuda.dtype_to_array_format(ilist_data.type), 1)
        index_list_texref.set_flags(cuda.TRSF_READ_AS_INTEGER)

        func = mod.get_function("apply_flux")
        block = (fplan.threads_per_face(), fplan.parallel_faces, 1)
        func.prepare(
            (2 + len(self.fluxes)) * "P",
            texrefs=expr_to_texture_map.values() + [index_list_texref])

        if "cuda_flux" in discr.debug:
            print "flux: lmem=%d smem=%d regs=%d" % (
                func.local_size_bytes, func.shared_size_bytes, func.num_regs)

        return block, func, expr_to_texture_map
Пример #14
0
    def generate_code(self, kernel, codegen_state, impl_arg_info):
        from cgen import (FunctionBody, FunctionDeclaration, Value, Module,
                Block, Line, Statement as S)
        from cgen.ispc import ISPCExport, ISPCTask

        knl_body, implemented_domains = kernel.target.generate_body(
                kernel, codegen_state)

        inner_name = "lp_ispc_inner_"+kernel.name
        arg_decls = [iai.cgen_declarator for iai in impl_arg_info]
        arg_names = [iai.name for iai in impl_arg_info]

        # {{{ occa compatibility hackery

        if self.occa_mode:
            from cgen import ArrayOf, Const
            from cgen.ispc import ISPCUniform

            arg_decls = [
                    Const(ISPCUniform(ArrayOf(Value("int", "loopy_dims")))),
                    Const(ISPCUniform(Value("int", "o1"))),
                    Const(ISPCUniform(Value("int", "o2"))),
                    Const(ISPCUniform(Value("int", "o3"))),
                    ] + arg_decls
            arg_names = ["loopy_dims", "o1", "o2", "o3"] + arg_names

        # }}}

        knl_fbody = FunctionBody(
                ISPCTask(
                    FunctionDeclaration(
                        Value("void", inner_name),
                        arg_decls)),
                knl_body)

        # {{{ generate wrapper

        wrapper_body = Block()

        gsize, lsize = kernel.get_grid_sizes_as_exprs()
        if len(lsize) > 1:
            for i, ls_i in enumerate(lsize[1:]):
                if ls_i != 1:
                    raise LoopyError("local axis %d (0-based) "
                            "has length > 1, which is unsupported "
                            "by ISPC" % ls_i)

        from pymbolic.mapper.stringifier import PREC_COMPARISON, PREC_NONE
        ccm = self.get_expression_to_code_mapper(codegen_state)

        wrapper_body.extend([
                S("assert(programCount == %s)"
                    % ccm(lsize[0], PREC_COMPARISON)),
                S("launch[%s] %s(%s)"
                    % (
                        ", ".join(
                            ccm(gs_i, PREC_NONE)
                            for gs_i in gsize),
                        inner_name,
                        ", ".join(arg_names)
                        ))
                ])

        wrapper_fbody = FunctionBody(
                ISPCExport(
                    FunctionDeclaration(
                        Value("void", kernel.name),
                        arg_decls)),
                wrapper_body)

        # }}}

        mod = Module([
            knl_fbody,
            Line(),
            wrapper_fbody,
            ])

        return str(mod), implemented_domains
Пример #15
0
    def write_boundary_flux_code(self, for_benchmark):
        given = self.plan.given

        flux_write_code = Block()

        fluxes_by_bdry_number = {}
        for flux_nr, wdflux in enumerate(self.fluxes):
            for bflux_info in wdflux.boundaries:
                if for_benchmark:
                    bdry_number = 0
                else:
                    bdry_number = self.executor.boundary_tag_to_number[
                        bflux_info.bpair.tag]

                fluxes_by_bdry_number.setdefault(bdry_number, [])\
                        .append((flux_nr, bflux_info))

        flux_write_code.extend([
            Initializer(MaybeUnused(POD(given.float_type, "flux%d" % flux_nr)),
                        0) for flux_nr in range(len(self.fluxes))
        ])

        for bdry_number, nrs_and_fluxes in fluxes_by_bdry_number.iteritems():
            bblock = []

            from pytools import set_sum
            int_deps = set_sum(flux_rec.int_dependencies
                               for flux_nr, flux_rec in nrs_and_fluxes)
            ext_deps = set_sum(flux_rec.ext_dependencies
                               for flux_nr, flux_rec in nrs_and_fluxes)

            for dep in int_deps:
                bblock.extend([
                    Comment(str(dep)),
                    Initializer(
                        MaybeUnused(
                            POD(given.float_type,
                                "val_a_field%d" % self.dep_to_index[dep])),
                        "fp_tex1Dfetch(field%d_tex, a_index)" %
                        self.dep_to_index[dep])
                ])
            for dep in ext_deps:
                bblock.extend([
                    Comment(str(dep)),
                    Initializer(
                        MaybeUnused(
                            POD(given.float_type,
                                "val_b_field%d" % self.dep_to_index[dep])),
                        "fp_tex1Dfetch(field%s_tex, b_index)" %
                        self.dep_to_index[dep])
                ])

            f2cm = FluxToCodeMapper(given.float_type)

            comp_code = [Line()]
            for flux_nr, flux_rec in nrs_and_fluxes:
                comp_code.append(
                    Statement(
                        ("flux%d += " % flux_nr) +
                        flux_to_code(f2cm,
                                     is_flipped=False,
                                     int_field_expr=flux_rec.bpair.field,
                                     ext_field_expr=flux_rec.bpair.bfield,
                                     dep_to_index=self.dep_to_index,
                                     flux=flux_rec.flux_expr,
                                     prec=PREC_NONE)))

            if f2cm.cse_name_list:
                bblock.append(Line())

            bblock.extend(
                Initializer(Value("value_type", cse_name), cse_str)
                for cse_name, cse_str in f2cm.cse_name_list)

            flux_write_code.extend([
                Line(),
                Comment(nrs_and_fluxes[0][1].bpair.tag),
                If("(fpair->boundary_bitmap) & (1 << %d)" % (bdry_number),
                   Block(bblock + comp_code)),
            ])

        flux_write_code.extend(
            [
                Line(),
            ] + [
                self.gen_store(flux_nr, "fpair->a_dest+FACEDOF_NR",
                               "fpair->face_jacobian * flux%d" % flux_nr)
                for flux_nr in range(len(self.fluxes))
            ]
            #Assign("debugbuf[blockIdx.x*96+fpair_nr]", "10000+fpair->a_dest"),
        )

        return flux_write_code
Пример #16
0
    def write_interior_flux_code(self, is_twosided):
        given = self.plan.given

        def get_field(flux_rec, is_interior, flipped):
            if is_interior ^ flipped:
                prefix = "a"
            else:
                prefix = "b"

            return ("val_%s_field%d" %
                    (prefix, self.dep_to_index[flux_rec.field_expr]))

        flux_write_code = Block([])

        flux_var_decl = [Initializer(POD(given.float_type, "a_flux"), 0)]

        if is_twosided:
            flux_var_decl.append(
                Initializer(POD(given.float_type, "b_flux"), 0))
            prefixes = ["a", "b"]
            flip_values = [False, True]
        else:
            prefixes = ["a"]
            flip_values = [False]

        flux_write_code.append(Line())

        for dep in self.interior_deps:
            flux_write_code.append(Comment(str(dep)))

            for side in ["a", "b"]:
                flux_write_code.append(
                    Initializer(
                        MaybeUnused(
                            POD(
                                given.float_type, "val_%s_field%d" %
                                (side, self.dep_to_index[dep]))),
                        "fp_tex1Dfetch(field%d_tex, %s_index)" %
                        (self.dep_to_index[dep], side)))

        f2cm = FluxToCodeMapper(given.float_type)

        flux_sub_codes = []
        for flux_nr, wdflux in enumerate(self.fluxes):
            my_flux_block = Block(flux_var_decl)

            for int_rec in wdflux.interiors:
                for prefix, is_flipped in zip(prefixes, flip_values):
                    my_flux_block.append(
                        Statement("%s_flux += %s" % (
                            prefix,
                            flux_to_code(f2cm, is_flipped, int_rec.field_expr,
                                         int_rec.field_expr, self.dep_to_index,
                                         int_rec.flux_expr, PREC_NONE),
                        )))

            my_flux_block.append(Line())

            my_flux_block.append(
                self.gen_store(flux_nr, "fpair->a_dest+FACEDOF_NR",
                               "fpair->face_jacobian*a_flux"))

            #my_flux_block.append(
            #Statement("if(isnan(val_b_field5)) debugbuf[blockIdx.x] = 1"),
            #)

            if is_twosided:
                my_flux_block.append(
                    self.gen_store(
                        flux_nr, "fpair->b_dest+tex1Dfetch(tex_index_lists, "
                        "fpair->b_write_ilist_index + FACEDOF_NR)",
                        "fpair->face_jacobian*b_flux"))

                #my_flux_block.append(
                #Assign("debugbuf[blockIdx.x*96+fpair_nr+8]", "10000+fpair->b_dest"),
                #)

            flux_sub_codes.append(my_flux_block)

        if f2cm.cse_name_list:
            flux_write_code.append(Line())

        flux_write_code.extend(
            Initializer(Value("value_type", cse_name), cse_str)
            for cse_name, cse_str in f2cm.cse_name_list)

        flux_write_code.extend(flux_sub_codes)

        return flux_write_code
Пример #17
0
    def get_kernel(self, diff_op_cls, elgroup, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        par = self.plan.parallelism

        diffmat_data = self.gpu_diffmats(diff_op_cls, elgroup)
        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_diff_mat"),
            [Pointer(POD(numpy.uint8, "gmem_diff_rst_mat")),
                #Pointer(POD(float_type, "debugbuf")),
                ] + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims]
            ))

        rst_channels = given.devdata.make_valid_tex_channel_count(d)
        cmod = Module([
                Include("pycuda-helpers.hpp"),
                Line(),
                Value("texture<fp_tex_%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "field_tex"),
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("DOFS_PER_EL", given.dofs_per_el()),
                Line(),
                Define("SEGMENT_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Line(),
                Define("MB_SEGMENT", "blockIdx.x"),
                Define("MACROBLOCK_NR", "blockIdx.y"),
                Line(),
                Define("DOFS_PER_SEGMENT", self.plan.segment_size),
                Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
                Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
                Define("ELS_PER_MB", given.microblock.elements),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
                Define("COALESCING_THREAD_COUNT", "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
                Line(),
                Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
                Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
                Line(),
                Define("DIFFMAT_SEGMENT_FLOATS", diffmat_data.block_floats),
                Define("DIFFMAT_SEGMENT_BYTES", "(DIFFMAT_SEGMENT_FLOATS*%d)"
                     % given.float_size()),
                Define("DIFFMAT_COLUMNS", diffmat_data.matrix_columns),
                Line(),
                CudaShared(ArrayOf(POD(float_type, "smem_diff_rst_mat"),
                    "DIFFMAT_COLUMNS*DOFS_PER_SEGMENT")),
                Line(),
                ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block("calculate responsibility data", [
            Initializer(POD(numpy.uint16, "mb_el"),
                "MB_DOF/DOFS_PER_EL"),
            ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(
                dest="smem_diff_rst_mat",
                base="gmem_diff_rst_mat + MB_SEGMENT*DIFFMAT_SEGMENT_BYTES",
                bytes="DIFFMAT_SEGMENT_BYTES",
                descr="load diff mat segment")
            +[S("__syncthreads()"), Line()])

        # ---------------------------------------------------------------------
        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(
                        Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0))

            code.append(Line())

            def get_mat_entry(row, col, axis):
                return ("smem_diff_rst_mat["
                        "%(row)s*DIFFMAT_COLUMNS + %(axis)s*DOFS_PER_EL"
                        " + %(col)s"
                        "]" % {"row":row, "col":col, "axis":axis}
                        )

            tex_channels = ["x", "y", "z", "w"]
            from hedge.backends.cuda.tools import unroll
            code.extend(
                    [POD(float_type, "field_value%d" % inl)
                        for inl in range(par.inline)]
                    +[Line()]
                    +unroll(lambda j: [
                        Assign("field_value%d" % inl,
                            "fp_tex1Dfetch(field_tex, GLOBAL_MB_DOF_BASE + %d*ALIGNED_DOFS_PER_MB "
                            "+ mb_el*DOFS_PER_EL + %s)" % (inl, j)
                            )
                        for inl in range(par.inline)]
                        +[Line()]
                        +[S("d%drst%d += %s * field_value%d"
                            % (inl, axis, get_mat_entry("SEGMENT_DOF", j, axis), inl))
                        for axis in dims
                        for inl in range(par.inline)]
                        +[Line()],
                        given.dofs_per_el(), self.plan.max_unroll)
                    )

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(Assign(
                        "drst%d_global[GLOBAL_MB_DOF_BASE"
                        " + %d*ALIGNED_DOFS_PER_MB + MB_DOF]" % (rst_axis, inl),
                        "d%drst%d" % (inl, rst_axis),
                        ))

            code.append(If("MB_DOF < DOFS_PER_EL*ELS_PER_MB", store_code))

            return code

        f_body.extend([
            For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT",
                "++seq_mb_number",
                Block(get_scalar_diff_code()))
            ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=10"]
                )

        field_texref = mod.get_texref("field_tex")

        func = mod.get_function("apply_diff_mat")
        func.prepare(
                discr.dimensions*[float_type] + ["P"],
                block=(self.plan.segment_size, par.parallel, 1),
                texrefs=[field_texref])

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        return func, field_texref
Пример #18
0
    def get_kernel(self, diff_op_cls, elgroup, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        par = self.plan.parallelism

        diffmat_data = self.gpu_diffmats(diff_op_cls, elgroup)
        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(
                Value("void", "apply_diff_mat"),
                [
                    Pointer(POD(numpy.uint8, "gmem_diff_rst_mat")),
                    #Pointer(POD(float_type, "debugbuf")),
                ] +
                [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims]))

        rst_channels = given.devdata.make_valid_tex_channel_count(d)
        cmod = Module([
            Include("pycuda-helpers.hpp"),
            Line(),
            Value(
                "texture<fp_tex_%s, 1, cudaReadModeElementType>" %
                dtype_to_ctype(float_type), "field_tex"),
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_EL", given.dofs_per_el()),
            Line(),
            Define("SEGMENT_DOF", "threadIdx.x"),
            Define("PAR_MB_NR", "threadIdx.y"),
            Line(),
            Define("MB_SEGMENT", "blockIdx.x"),
            Define("MACROBLOCK_NR", "blockIdx.y"),
            Line(),
            Define("DOFS_PER_SEGMENT", self.plan.segment_size),
            Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
            Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
            Define("ELS_PER_MB", given.microblock.elements),
            Line(),
            Define("PAR_MB_COUNT", par.parallel),
            Define("INLINE_MB_COUNT", par.inline),
            Define("SEQ_MB_COUNT", par.serial),
            Line(),
            Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
            Define("COALESCING_THREAD_COUNT",
                   "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
            Line(),
            Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
            Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
            Define(
                "GLOBAL_MB_NR_BASE",
                "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
            Define(
                "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE"
                "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
            Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
            Line(),
            Define("DIFFMAT_SEGMENT_FLOATS", diffmat_data.block_floats),
            Define("DIFFMAT_SEGMENT_BYTES",
                   "(DIFFMAT_SEGMENT_FLOATS*%d)" % given.float_size()),
            Define("DIFFMAT_COLUMNS", diffmat_data.matrix_columns),
            Line(),
            CudaShared(
                ArrayOf(POD(float_type, "smem_diff_rst_mat"),
                        "DIFFMAT_COLUMNS*DOFS_PER_SEGMENT")),
            Line(),
        ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block("calculate responsibility data", [
            Initializer(POD(numpy.uint16, "mb_el"), "MB_DOF/DOFS_PER_EL"),
        ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(
                dest="smem_diff_rst_mat",
                base="gmem_diff_rst_mat + MB_SEGMENT*DIFFMAT_SEGMENT_BYTES",
                bytes="DIFFMAT_SEGMENT_BYTES",
                descr="load diff mat segment") +
            [S("__syncthreads()"), Line()])

        # ---------------------------------------------------------------------
        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(
                        Initializer(POD(float_type, "d%drst%d" % (inl, axis)),
                                    0))

            code.append(Line())

            def get_mat_entry(row, col, axis):
                return ("smem_diff_rst_mat["
                        "%(row)s*DIFFMAT_COLUMNS + %(axis)s*DOFS_PER_EL"
                        " + %(col)s"
                        "]" % {
                            "row": row,
                            "col": col,
                            "axis": axis
                        })

            tex_channels = ["x", "y", "z", "w"]
            from hedge.backends.cuda.tools import unroll
            code.extend([
                POD(float_type, "field_value%d" % inl)
                for inl in range(par.inline)
            ] + [Line()] + unroll(
                lambda j: [
                    Assign(
                        "field_value%d" % inl,
                        "fp_tex1Dfetch(field_tex, GLOBAL_MB_DOF_BASE + %d*ALIGNED_DOFS_PER_MB "
                        "+ mb_el*DOFS_PER_EL + %s)" % (inl, j))
                    for inl in range(par.inline)
                ] + [Line()] + [
                    S("d%drst%d += %s * field_value%d" %
                      (inl, axis, get_mat_entry("SEGMENT_DOF", j, axis), inl))
                    for axis in dims for inl in range(par.inline)
                ] + [Line()], given.dofs_per_el(), self.plan.max_unroll))

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(
                        Assign(
                            "drst%d_global[GLOBAL_MB_DOF_BASE"
                            " + %d*ALIGNED_DOFS_PER_MB + MB_DOF]" %
                            (rst_axis, inl),
                            "d%drst%d" % (inl, rst_axis),
                        ))

            code.append(If("MB_DOF < DOFS_PER_EL*ELS_PER_MB", store_code))

            return code

        f_body.extend([
            For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number",
                Block(get_scalar_diff_code()))
        ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(
            cmod,
            keep="cuda_keep_kernels" in discr.debug,
            #options=["--maxrregcount=10"]
        )

        field_texref = mod.get_texref("field_tex")

        func = mod.get_function("apply_diff_mat")
        func.prepare(discr.dimensions * [float_type] + ["P"],
                     block=(self.plan.segment_size, par.parallel, 1),
                     texrefs=[field_texref])

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (
                func.local_size_bytes, func.shared_size_bytes, func.num_regs)

        return func, field_texref
Пример #19
0
    def get_kernel(self, with_scaling, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign, \
                ArrayInitializer

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaConstant, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(Value("void", "apply_el_local_mat_smem_mat"), [
                Pointer(POD(float_type, "out_vector")),
                Pointer(POD(numpy.uint8, "gmem_matrix")),
                Pointer(POD(float_type, "debugbuf")),
                POD(numpy.uint32, "microblock_count"),
            ]))

        cmod = Module([
            Include("pycuda-helpers.hpp"),
            Line(),
            Value(
                "texture<fp_tex_%s, 1, cudaReadModeElementType>" %
                dtype_to_ctype(float_type), "in_vector_tex"),
        ])
        if with_scaling:
            cmod.append(
                Value(
                    "texture<fp_tex_%s, 1, cudaReadModeElementType>" %
                    dtype_to_ctype(float_type), "scaling_tex"), )

        par = self.plan.parallelism

        cmod.extend([
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_EL", given.dofs_per_el()),
            Define("PREIMAGE_DOFS_PER_EL", self.plan.preimage_dofs_per_el),
            Line(),
            Define("SEGMENT_DOF", "threadIdx.x"),
            Define("PAR_MB_NR", "threadIdx.y"),
            Line(),
            Define("MB_SEGMENT", "blockIdx.x"),
            Define("MACROBLOCK_NR", "blockIdx.y"),
            Line(),
            Define("DOFS_PER_SEGMENT", self.plan.segment_size),
            Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
            Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
            Define("ALIGNED_PREIMAGE_DOFS_PER_MB",
                   self.plan.aligned_preimage_dofs_per_microblock),
            Define("MB_EL_COUNT", given.microblock.elements),
            Line(),
            Define("PAR_MB_COUNT", par.parallel),
            Define("INLINE_MB_COUNT", par.inline),
            Define("SEQ_MB_COUNT", par.serial),
            Line(),
            Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
            Define("COALESCING_THREAD_COUNT",
                   "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
            Line(),
            Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
            Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
            Define(
                "GLOBAL_MB_NR_BASE",
                "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
            Define(
                "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE"
                "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
            Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
            Define("GLOBAL_MB_PREIMG_DOF_BASE",
                   "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
            Line(),
            Define("MATRIX_COLUMNS", self.plan.gpu_matrix_columns()),
            Define("MATRIX_SEGMENT_FLOATS",
                   self.plan.gpu_matrix_block_floats()),
            Define("MATRIX_SEGMENT_BYTES",
                   "(MATRIX_SEGMENT_FLOATS*%d)" % given.float_size()),
            Line(),
            CudaShared(
                ArrayOf(POD(float_type, "smem_matrix"),
                        "MATRIX_SEGMENT_FLOATS")),
            CudaShared(
                ArrayOf(
                    ArrayOf(
                        ArrayOf(POD(float_type, "dof_buffer"), "PAR_MB_COUNT"),
                        "INLINE_MB_COUNT"), "DOFS_PER_SEGMENT"), ),
            CudaShared(POD(numpy.uint16, "segment_start_el")),
            CudaShared(POD(numpy.uint16, "segment_stop_el")),
            CudaShared(POD(numpy.uint16, "segment_el_count")),
            Line(),
            ArrayInitializer(
                CudaConstant(
                    ArrayOf(POD(numpy.uint32, "segment_start_el_lookup"),
                            "SEGMENTS_PER_MB")),
                [(chk * self.plan.segment_size) // given.dofs_per_el()
                 for chk in range(self.plan.segments_per_microblock())]),
            ArrayInitializer(
                CudaConstant(
                    ArrayOf(POD(numpy.uint32, "segment_stop_el_lookup"),
                            "SEGMENTS_PER_MB")),
                [
                    min(given.microblock.elements,
                        (chk * self.plan.segment_size +
                         self.plan.segment_size - 1) // given.dofs_per_el() +
                        1)
                    for chk in range(self.plan.segments_per_microblock())
                ]),
        ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block(
            "calculate this dof's element",
            [Initializer(POD(numpy.uint8, "mb_el"), "MB_DOF/DOFS_PER_EL")])

        if self.plan.use_prefetch_branch:
            f_body.extend_log_block("calculate segment responsibility data", [
                If(
                    "THREAD_NUM==0",
                    Block([
                        Assign("segment_start_el",
                               "segment_start_el_lookup[MB_SEGMENT]"),
                        Assign("segment_stop_el",
                               "segment_stop_el_lookup[MB_SEGMENT]"),
                        Assign("segment_el_count",
                               "segment_stop_el-segment_start_el"),
                    ])),
                S("__syncthreads()")
            ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(dest="smem_matrix",
                          base=(
                              "gmem_matrix + MB_SEGMENT*MATRIX_SEGMENT_BYTES"),
                          bytes="MATRIX_SEGMENT_BYTES",
                          descr="load matrix segment") +
            [S("__syncthreads()")])

        # ---------------------------------------------------------------------
        def get_batched_fetch_mat_mul_code(el_fetch_count):
            result = []
            dofs = range(self.plan.preimage_dofs_per_el)

            for load_segment_start in range(0, self.plan.preimage_dofs_per_el,
                                            self.plan.segment_size):
                result.extend([S("__syncthreads()")] + [
                    Assign(
                        "dof_buffer[PAR_MB_NR][%d][SEGMENT_DOF]" %
                        inl, "fp_tex1Dfetch(in_vector_tex, "
                        "GLOBAL_MB_PREIMG_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + (segment_start_el)*PREIMAGE_DOFS_PER_EL + %d + SEGMENT_DOF)"
                        % (inl, load_segment_start))
                    for inl in range(par.inline)
                ] + [
                    S("__syncthreads()"),
                    Line(),
                ])

                for dof in dofs[load_segment_start:load_segment_start +
                                self.plan.segment_size]:
                    for inl in range(par.inline):
                        result.append(
                            S("result%d += "
                              "smem_matrix[SEGMENT_DOF*MATRIX_COLUMNS + %d]"
                              "*"
                              "dof_buffer[PAR_MB_NR][%d][%d]" %
                              (inl, dof, inl, dof - load_segment_start)))
                result.append(Line())
            return result

        from hedge.backends.cuda.tools import unroll

        def get_direct_tex_mat_mul_code():
            return (
                [POD(float_type, "fof%d" % inl) for inl in range(par.inline)] +
                [POD(float_type, "lm"), Line()] + unroll(
                    lambda j: [
                        Assign(
                            "fof%d" % inl,
                            "fp_tex1Dfetch(in_vector_tex, "
                            "GLOBAL_MB_PREIMG_DOF_BASE"
                            " + %(inl)d * ALIGNED_PREIMAGE_DOFS_PER_MB"
                            " + mb_el*PREIMAGE_DOFS_PER_EL+%(j)s)" % {
                                "j": j,
                                "inl": inl,
                                "row": "SEGMENT_DOF"
                            },
                        ) for inl in range(par.inline)
                    ] + [
                        Assign(
                            "lm",
                            "smem_matrix["
                            "%(row)s*MATRIX_COLUMNS + %(j)s]" % {
                                "j": j,
                                "row": "SEGMENT_DOF"
                            },
                        )
                    ] + [
                        S("result%(inl)d += fof%(inl)d*lm" % {"inl": inl})
                        for inl in range(par.inline)
                    ],
                    total_number=self.plan.preimage_dofs_per_el,
                    max_unroll=self.plan.max_unroll) + [Line()])

        def get_mat_mul_code(el_fetch_count):
            if el_fetch_count == 1:
                return get_batched_fetch_mat_mul_code(el_fetch_count)
            else:
                return get_direct_tex_mat_mul_code()

        def mat_mul_outer_loop(fetch_count):
            if with_scaling:
                inv_jac_multiplier = (
                    "fp_tex1Dfetch(scaling_tex,"
                    "(GLOBAL_MB_NR + %(inl)d)*MB_EL_COUNT + mb_el)")
            else:
                inv_jac_multiplier = "1"

            write_condition = "MB_DOF < DOFS_PER_EL*MB_EL_COUNT"
            if self.with_index_check:
                write_condition += " && GLOBAL_MB_NR < microblock_count"
            return For(
                "unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number",
                Block([
                    Initializer(POD(float_type, "result%d" % inl), 0)
                    for inl in range(par.inline)
                ] + [Line()] + get_mat_mul_code(fetch_count) + [
                    If(
                        write_condition,
                        Block([
                            Assign(
                                "out_vector[GLOBAL_MB_DOF_BASE"
                                " + %d*ALIGNED_DOFS_PER_MB"
                                " + MB_DOF]" % inl, "result%d * %s" %
                                (inl, (inv_jac_multiplier % {
                                    "inl": inl
                                }))) for inl in range(par.inline)
                        ]))
                ]))

        if self.plan.use_prefetch_branch:
            from cgen import make_multiple_ifs
            f_body.append(
                make_multiple_ifs([
                    ("segment_el_count == %d" % fetch_count,
                     mat_mul_outer_loop(fetch_count)) for fetch_count in range(
                         1,
                         self.plan.max_elements_touched_by_segment() + 1)
                ]))
        else:
            f_body.append(mat_mul_outer_loop(0))

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file(self.plan.debug_name,
                                   ".cu").write(str(cmod))

        mod = SourceModule(
            cmod,
            keep="cuda_keep_kernels" in discr.debug,
            #options=["--maxrregcount=12"]
        )

        func = mod.get_function("apply_el_local_mat_smem_mat")

        if self.plan.debug_name in discr.debug:
            print "%s: lmem=%d smem=%d regs=%d" % (
                self.plan.debug_name, func.local_size_bytes,
                func.shared_size_bytes, func.num_regs)

        in_vector_texref = mod.get_texref("in_vector_tex")
        texrefs = [in_vector_texref]

        if with_scaling:
            scaling_texref = mod.get_texref("scaling_tex")
            texrefs.append(scaling_texref)
        else:
            scaling_texref = None

        func.prepare("PPPI",
                     block=(self.plan.segment_size,
                            self.plan.parallelism.parallel, 1),
                     texrefs=texrefs)

        return func, in_vector_texref, scaling_texref