Пример #1
0
def isConverged(TrajDir, PdbName, TempSet = 300, OutFile = None):
    if OutFile is None: OutFile = os.path.abspath('./rmsd_convergence.png')
    import cgprotein as lib, measure as m
    TempFile = os.path.join(TrajDir, 'temps.txt')
    Temps = np.loadtxt(TempFile)
    Ind = np.argmin(abs(Temps - TempSet))
    TrajTemp = Temps[Ind]
    Traj = os.path.join(TrajDir, 'prot_%s.%3.2f.lammpstrj.gz' % (PdbName, TrajTemp))
    NativePdb = parseNative(PdbName)
    LammpsREMDLog = os.path.join(TrajDir, 'prot_%slammps.log' % PdbName)
    
    calc = lib.Compute(TrajFn = Traj, NativePdb = NativePdb, Temp = TrajTemp)
    rmsd = calc.RMSD_frame()
    avgrmsd = rmsd.mean()
    stdrmsd = np.std(rmsd, ddof = 1)
    avgerr = stdrmsd / avgrmsd
    avgerr *= 100.
    m.NBins = 50 ; m.NBlocks = 4 ; m.Normalize = True
    rmsdhist = m.makeHist(rmsd)
    
    Walk = np.loadtxt(LammpsREMDLog, skiprows = 3)[:, 1:]
    
    fig = plt.figure(facecolor = 'w', edgecolor = 'w', figsize = (8, 4))
    ax1 = fig.add_subplot(2,2,1)
    ax2 = fig.add_subplot(2,2,2)
    ax3 = fig.add_subplot(2,2,3)
    ax1.plot(rmsd, lw = 1, color = 'blue', label = 'fluct from mean = %3.2f %%' % avgerr)
    ax1.axhline(avgrmsd, ls = '--', color = 'black', lw = 2)
    ax1.legend(loc = 'best')
    ax2.errorbar(rmsdhist[0], rmsdhist[1], yerr = rmsdhist[2], color = 'black', lw = 2, marker = 'o', markersize = 5)
    ax2.set_xlabel(r'$RMSD (\AA)$') ; ax2.set_ylabel('distribution')
    for i, T in enumerate(Temps):
        x = Walk[:,i]
        y = np.array([Temps[int(k)] for k in x])
        m.NBins = len(Temps) ; m.NBlocks = 1; m.Normalize = False
        walkhist = m.makeHist(y)
        ax3.plot(walkhist[0], walkhist[1], lw = 2, label = 'Replica: %d' % i)
        ax3.legend(loc = 'best', fontsize = 5)
    ax3.set_xlabel('Temp (K)') ; ax3.set_ylabel('distribution')
    fig.tight_layout()
    plt.savefig(OutFile)
    return
Пример #2
0
else:
    TempSet = None
    TrajFn = None

# output locations
OutPrefix = os.path.join(OutDir, Prefix)
if not os.path.isdir(OutDir): os.system('mkdir -p %s' % OutDir)

print '\n'
print 'ANALYZING POLYPEPTIDE'
print '====================='

# compute object
print '\nCreating Compute object'
calc = lib.Compute(NativePdb=NativePdb,
                   TrajFn=TrajFn,
                   Temp=TempSet,
                   Prefix=OutPrefix)

# replica object
print '\nCreating Replica object'
rep = lib.Replica(NativePdb=NativePdb,
                  TrajPrefix=TrajPrefix,
                  Prefix=OutPrefix,
                  TempSet=TempSet,
                  OrderParams=['U', 'Rg', 'RMSD', 'HScore', 'BScore'],
                  NStepsProd=NStepsProd,
                  NStepsSwap=NStepsSwap,
                  WriteFreq=WriteFreq)


def Cluster():
Пример #3
0
# extract AA and CG paths
print 'Setting ouput locations'
AAPrefix = OutPrefix + '_AA'
CGPrefix = OutPrefix + '_CG'
OutDir = os.path.dirname(OutPrefix)
if not os.path.isdir(OutDir): os.mkdir(OutDir)

# nativepdb w.r.t all calculations are done
NativePdb = os.path.expanduser('~/Go/%s_AA/topclust.pdb' % polymer)
if not os.path.isfile(NativePdb):
    raise IOError('AA top cluster struct missing.')

# global compute and replica objects for AA and CG
print 'Creating global Compute objects for AA and CG'
c_AA = lib.Compute(NativePdb = NativePdb, Prefix = AAPrefix)
c_CG = lib.Compute(NativePdb = NativePdb, Prefix = CGPrefix)

# global replica objects for AA
print 'Creating global Replica objects for AA'
fAA = utils.parseAA(polymer)
if not fAA['hasReplica']:
    print 'Error: Not enough data to create AA Replica object'
    r_AA = None
else:
    r_AA = lib.Replica(NativePdb = NativePdb, Prefix = AAPrefix,
                       TrajPrefix = os.path.join(fAA['MasterDir'], 'Lammps', polymer))

# global replica objects for CG
print 'Creating global Replica objects for CG'
fCG = utils.parseCG(polymer)
Пример #4
0
TempSet = float(sys.argv[5])
hasPseudoGLY = int(sys.argv[6]) if len(sys.argv) > 6 else False

# get Traj
if not os.path.isdir(OutDir): os.system('mkdir -p %s' % OutDir)
OutPrefix = os.path.join(OutDir, Prefix)
TrajPrefix = os.path.join(TrajDir, Prefix)
TrajFn = FMT['TRAJ'] % (TrajPrefix, TempSet)

# fancy intro
print 'ANALYSING MULTI-PROTEIN FOR %s at %3.2f K' % (Prefix, TempSet)
print '----------------------------------------------------------------'

# set up Compute object
print 'Creating Compute object'
calc = cg.Compute(NativePdb = NativePdb, TrajFn = TrajFn, Temp = TempSet, Prefix = OutPrefix, hasPseudoGLY = hasPseudoGLY)

# cluster the room temp traj
print 'Clustering trajectory'
calc.Cluster()

# top-cluster contact analysis
Trj = pickleTraj(TrajFn)
BoxL = Trj.FrameData['BoxL']
ClustPdb = FMT['CLUSTPDB'] % (calc.Prefix, calc.Temp)
p = cg.ProteinNCOS(ClustPdb, Model = 1)

# top cluster contact map
print 'Calculating contact map for top cluster'
cmap, cdist = p.GetResContacts(BoxL = BoxL)
picklename = FMT['RESCONTACTS'] % (calc.Prefix + '_topclust', calc.Temp)
Пример #5
0
NativePdb = {'ala_spc': 'ideal_helix.pdb', 'ala15': 'ideal_helix.pdb', 'leu15': 'ideal_helix.pdb', 'val15': hairpin_pdb}

fig = plt.figure(figsize = (22, 15), facecolor = 'w', edgecolor = 'w')
ind = 1
gs = gridspec.GridSpec(3,4)
for i, fftype in enumerate(fftypes):
    print '-------- %s --------' % fftype
    # get native Ramachandran angles
    pNative = cg.ProteinNCOS(NativePdb[fftype])
    PhiNative, PsiNative = pNative.GetPhiPsi(RamaType = 'Generic')
    PhiNative, PsiNative = cg.TrimDihedrals(PhiNative, PsiNative, ResNums = range(NRes))
    PhiNative *= (180 / np.pi)
    PsiNative *= (180 / np.pi)
    
    # create compute object
    calc = cg.Compute(NativePdb = NativePdb[fftype], TrajFn = Traj[fftype], Temp = Temp[fftype], Prefix = fftype)
    
    # get cluster ramachandran angle probabilities
    calc.RamaChandran()
    RamaPickle = utils.FMT['RAMA'] % (fftype, Temp[fftype])
    with open(RamaPickle, 'r') as of: data = pickle.load(of)['Generic']
    (x,y), ramahist, err = data[-1]
    x *= (180 / np.pi)
    y *= (180 / np.pi)
    pmf = -np.log(ramahist)
    pmf = pmf.clip(min = -5, max = 5)
    
    # get cluster contact maps
    NativeCM, TrajCM = calc.CompareContactMap()
    
    # get fraction of native contacts
Пример #6
0
#!/usr/bin/env python

import numpy as np
import utils, cgprotein

polymers = ['ala15', 'leu15', 'val15']

for p in polymers:
    dict_AA = utils.parseAA(PolyPrefix = p)
    nativepdb = dict_AA['Pdb']
    trajfn = dict_AA['Traj']
    Temp = dict_AA['Temp']
    calc = cgprotein.Compute(NativePdb = nativepdb, TrajFn = trajfn, Temp = Temp, Prefix = p)
    nativeco, cohist = calc.CompareCO()
    avgco = np.sum(cohist[0] * cohist[1]) / np.sum(cohist[1])
    print 'Polymer: %s, Native CO: %g, TrajAvg CO: %g' % (p, nativeco, avgco)