def set_data_in_plot(self): if self.data is None or self.map_container is None: return selected_data = self.data[self.data_selector] imagedata = np.mean(selected_data[self.tstart:self.tend,:,:], axis=0) self.rfdata.set_data('image', imagedata) self.rfdata.set_data('coastlon', self.coastlon) self.rfdata.set_data('coastlat', self.coastlat) self.plot_title = 'CERES RF DATA %d months average since %04d-%02d-01' % (self.nmonth, self.show_year, self.month_start) self.map_plot.title = self.plot_title if 'model - measurements' in self.data_selector: cmin, cmax = -80, 80 elif self.data_selector.startswith('Shortwave'): cmin, cmax = 0, 250 elif self.data_selector.startswith('Longwave'): cmin, cmax = 0, 400 else: cmin, cmax = -50, 50 self.map_img.color_mapper.range.set_bounds(cmin,cmax) self.map_colorbar._axis.title = self.data_selector if 'model - measurements' in self.data_selector or 'Impact' in self.data_selector: self.map_img.color_mapper = chaco.RdBu(self.map_img.color_mapper.range) self.map_img.color_mapper.reverse_colormap() else: self.map_img.color_mapper = chaco.jet(self.map_img.color_mapper.range)
def setUp(self): self.index = ArrayDataSource(arange(10)) self.value = ArrayDataSource(arange(10)) self.color_data = ArrayDataSource(arange(10)) self.size_data = arange(10) self.index_range = DataRange1D() self.index_range.add(self.index) self.index_mapper = LinearMapper(range=self.index_range) self.value_range = DataRange1D() self.value_range.add(self.value) self.value_mapper = LinearMapper(range=self.value_range) self.color_range = DataRange1D() self.color_range.add(self.color_data) self.color_mapper = jet(self.color_range) self.scatterplot = ColormappedScatterPlot( index=self.index, value=self.value, index_mapper=self.index_mapper, value_mapper=self.value_mapper, color_data=self.color_data, marker_size=self.size_data, color_mapper=self.color_mapper, ) self.scatterplot.outer_bounds = [50, 50] self.gc = PlotGraphicsContext((50, 50))
def _plot_default(self): plot = Plot(self.plotdata) plot.title = "Simplex on the Rosenbrock function" plot.img_plot("background", name="background", xbounds=(0,1.5), ybounds=(0,1.5), colormap=jet(DataRange1D(low=0,high=100)), ) plot.plot(("values_x", "values_y"), type="scatter", color="red") background = plot.plots["background"][0] colormap = background.color_mapper colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range), color_mapper=colormap, plot=background, orientation='v', resizable='v', width=30, padding=20) colorbar.padding_top = plot.padding_top colorbar.padding_bottom = plot.padding_bottom container = HPlotContainer(use_backbuffer = True) container.add(plot) container.add(colorbar) container.bgcolor = "lightgray" return container
def _create_plot_component(): # Create some data numpts = 1000 x = numpy.arange(0, numpts) y = numpy.random.random(numpts) marker_size = numpy.random.normal(4.0, 4.0, numpts) color = numpy.random.random(numpts) # Create a plot data object and give it this data pd = ArrayPlotData() pd.set_data("index", x) pd.set_data("value", y) # Because this is a non-standard renderer, we can't call plot.plot, which # sets up the array data sources, mappers and default index/value ranges. # So, its gotta be done manually for now. index_ds = ArrayDataSource(x) value_ds = ArrayDataSource(y) color_ds = ArrayDataSource(color) # Create the plot plot = Plot(pd) plot.index_range.add(index_ds) plot.value_range.add(value_ds) # Create the index and value mappers using the plot data ranges imapper = LinearMapper(range=plot.index_range) vmapper = LinearMapper(range=plot.value_range) # Create the scatter renderer scatter = ColormappedScatterPlot( index=index_ds, value=value_ds, color_data=color_ds, color_mapper=jet(range=DataRange1D( low=0.0, high=1.0)), fill_alpha=0.4, index_mapper=imapper, value_mapper=vmapper, marker='circle', marker_size=marker_size) # Append the renderer to the list of the plot's plots plot.add(scatter) plot.plots['var_size_scatter'] = [scatter] # Tweak some of the plot properties plot.title = "Variable Size and Color Scatter Plot" plot.line_width = 0.5 plot.padding = 50 # Attach some tools to the plot plot.tools.append(PanTool(plot, constrain_key="shift")) zoom = ZoomTool(component=plot, tool_mode="box", always_on=False) plot.overlays.append(zoom) return plot
def _create_plot_component(): # Create some data numpts = 1000 x = numpy.arange(0, numpts) y = numpy.random.random(numpts) marker_size = numpy.random.normal(4.0, 4.0, numpts) color = numpy.random.random(numpts) # Create a plot data object and give it this data pd = ArrayPlotData() pd.set_data("index", x) pd.set_data("value", y) # Because this is a non-standard renderer, we can't call plot.plot, which # sets up the array data sources, mappers and default index/value ranges. # So, its gotta be done manually for now. index_ds = ArrayDataSource(x) value_ds = ArrayDataSource(y) color_ds = ArrayDataSource(color) # Create the plot plot = Plot(pd) plot.index_range.add(index_ds) plot.value_range.add(value_ds) # Create the index and value mappers using the plot data ranges imapper = LinearMapper(range=plot.index_range) vmapper = LinearMapper(range=plot.value_range) # Create the scatter renderer scatter = ColormappedScatterPlot( index=index_ds, value=value_ds, color_data=color_ds, color_mapper=jet(range=DataRange1D(low=0.0, high=1.0)), fill_alpha=0.4, index_mapper = imapper, value_mapper = vmapper, marker='circle', marker_size=marker_size) # Append the renderer to the list of the plot's plots plot.add(scatter) plot.plots['var_size_scatter'] = [scatter] # Tweak some of the plot properties plot.title = "Variable Size and Color Scatter Plot" plot.line_width = 0.5 plot.padding = 50 # Attach some tools to the plot plot.tools.append(PanTool(plot, constrain_key="shift")) zoom = ZoomTool(component=plot, tool_mode="box", always_on=False) plot.overlays.append(zoom) return plot
def render_scatplot(self): peakdata=ArrayPlotData() peakdata.set_data("index",self.peaks[self.img_idx][:,0]) peakdata.set_data("value",self.peaks[self.img_idx][:,1]) peakdata.set_data("color",self.peaks[self.img_idx][:,2]) scatplot=Plot(peakdata,aspect_ratio=self.img_plot.aspect_ratio,default_origin="top left") scatplot.plot(("index", "value", "color"), type="cmap_scatter", name="my_plot", color_mapper=jet(DataRange1D(low = 0.0, high = 1.0)), marker = "circle", fill_alpha = 0.5, marker_size = 6, ) scatplot.x_grid.visible = False scatplot.y_grid.visible = False scatplot.range2d=self.img_plot.range2d self.scatplot=scatplot self.peakdata=peakdata return scatplot
def __init__(self, x, y, z): super(ImagePlot, self).__init__() self.pd_all = ArrayPlotData(imagedata=z) #self.pd_horiz = ArrayPlotData(x=x, horiz=z[4, :]) #self.pd_vert = ArrayPlotData(y=y, vert=z[:,5]) self._imag_index = GridDataSource(xdata=x, ydata=y, sort_order=("ascending", "ascending")) index_mapper = GridMapper(range=DataRange2D(self._imag_index)) self._imag_index.on_trait_change(self._metadata_changed, "metadata_changed") self._image_value = ImageData(data=z, value_depth=1) color_mapper = jet(DataRange1D(self._image_value)) self.color_plot = CMapImagePlot(index=self._imag_index, index_mapper=index_mapper, value=self._image_value, value_mapper=color_mapper, padding=20, use_backbuffer=True, unified_draw=True) #Add axes to image plot left = PlotAxis(orientation='left', title="Frequency (GHz)", mapper=self.color_plot.index_mapper._ymapper, component=self.color_plot) self.color_plot.overlays.append(left) bottom = PlotAxis(orientation='bottom', title="Time (us)", mapper=self.color_plot.index_mapper._xmapper, component=self.color_plot) self.color_plot.overlays.append(bottom) self.color_plot.tools.append( PanTool(self.color_plot, constrain_key="shift")) self.color_plot.overlays.append( ZoomTool(component=self.color_plot, tool_mode="box", always_on=False)) #Add line inspector tool for horizontal and vertical self.color_plot.overlays.append( LineInspector(component=self.color_plot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=True, color="white")) self.color_plot.overlays.append( LineInspector(component=self.color_plot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=True)) myrange = DataRange1D(low=amin(z), high=amax(z)) cmap = jet self.colormap = cmap(myrange) # Create a colorbar cbar_index_mapper = LinearMapper(range=myrange) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.color_plot, padding_top=self.color_plot.padding_top, padding_bottom=self.color_plot.padding_bottom, padding_right=40, resizable='v', width=30) #, ytitle="Magvec (mV)") #create horizontal line plot self.horiz_cross_plot = Plot(self.pd_horiz, resizable="h") self.horiz_cross_plot.height = 100 self.horiz_cross_plot.padding = 20 self.horiz_cross_plot.plot(("x", "horiz")) #, #line_style="dot") # self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.horiz_cross_plot.index_range = self.color_plot.index_range.x_range #create vertical line plot self.vert_cross_plot = Plot(self.pd_vert, width=140, orientation="v", resizable="v", padding=20, padding_bottom=160) self.vert_cross_plot.plot(("y", "vert")) #, # line_style="dot") # self.vert_cross_plot.xtitle="Magvec (mV)" # self.vertica_cross_plot.plot(("vertical_scatter_index", # "vertical_scatter_value", # "vertical_scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.vert_cross_plot.index_range = self.color_plot.index_range.y_range # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor="white", use_backbuffer=False) inner_cont = VPlotContainer(padding=0, use_backbuffer=True) inner_cont.add(self.horiz_cross_plot) inner_cont.add(self.color_plot) self.container.add(self.colorbar) self.container.add(inner_cont) self.container.add(self.vert_cross_plot)
def __init__(self, x,y,z): super(ImagePlot, self).__init__() self.pd_all = ArrayPlotData(imagedata = z) #self.pd_horiz = ArrayPlotData(x=x, horiz=z[4, :]) #self.pd_vert = ArrayPlotData(y=y, vert=z[:,5]) self._imag_index = GridDataSource(xdata=x, ydata=y, sort_order=("ascending","ascending")) index_mapper = GridMapper(range=DataRange2D(self._imag_index)) self._imag_index.on_trait_change(self._metadata_changed, "metadata_changed") self._image_value = ImageData(data=z, value_depth=1) color_mapper = jet(DataRange1D(self._image_value)) self.color_plot= CMapImagePlot( index=self._imag_index, index_mapper=index_mapper, value=self._image_value, value_mapper=color_mapper, padding=20, use_backbuffer=True, unified_draw=True) #Add axes to image plot left = PlotAxis(orientation='left', title= "Frequency (GHz)", mapper=self.color_plot.index_mapper._ymapper, component=self.color_plot) self.color_plot.overlays.append(left) bottom = PlotAxis(orientation='bottom', title= "Time (us)", mapper=self.color_plot.index_mapper._xmapper, component=self.color_plot) self.color_plot.overlays.append(bottom) self.color_plot.tools.append(PanTool(self.color_plot, constrain_key="shift")) self.color_plot.overlays.append(ZoomTool(component=self.color_plot, tool_mode="box", always_on=False)) #Add line inspector tool for horizontal and vertical self.color_plot.overlays.append(LineInspector(component=self.color_plot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=True, color="white")) self.color_plot.overlays.append(LineInspector(component=self.color_plot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=True)) myrange = DataRange1D(low=amin(z), high=amax(z)) cmap=jet self.colormap = cmap(myrange) # Create a colorbar cbar_index_mapper = LinearMapper(range=myrange) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.color_plot, padding_top=self.color_plot.padding_top, padding_bottom=self.color_plot.padding_bottom, padding_right=40, resizable='v', width=30)#, ytitle="Magvec (mV)") #create horizontal line plot self.horiz_cross_plot = Plot(self.pd_horiz, resizable="h") self.horiz_cross_plot.height = 100 self.horiz_cross_plot.padding = 20 self.horiz_cross_plot.plot(("x", "horiz"))#, #line_style="dot") # self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.horiz_cross_plot.index_range = self.color_plot.index_range.x_range #create vertical line plot self.vert_cross_plot = Plot(self.pd_vert, width = 140, orientation="v", resizable="v", padding=20, padding_bottom=160) self.vert_cross_plot.plot(("y", "vert"))#, # line_style="dot") # self.vert_cross_plot.xtitle="Magvec (mV)" # self.vertica_cross_plot.plot(("vertical_scatter_index", # "vertical_scatter_value", # "vertical_scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.vert_cross_plot.index_range = self.color_plot.index_range.y_range # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor = "white", use_backbuffer=False) inner_cont = VPlotContainer(padding=0, use_backbuffer=True) inner_cont.add(self.horiz_cross_plot) inner_cont.add(self.color_plot) self.container.add(self.colorbar) self.container.add(inner_cont) self.container.add(self.vert_cross_plot)