def test_redraw_on_color_mapper_update(self): # regression check for https://github.com/enthought/chaco/issues/220 npoints = 200 xs = numpy.linspace(-2 * numpy.pi, +2 * numpy.pi, npoints) ys = numpy.linspace(-1.5 * numpy.pi, +1.5 * numpy.pi, npoints) x, y = numpy.meshgrid(xs, ys) z = y * x index = GridDataSource(xdata=xs, ydata=ys) index_mapper = GridMapper(range=DataRange2D(index)) color_source = ImageData(data=z, value_depth=1) color_mapper = Spectral(DataRange1D(color_source)) cmap_plot = CMapImagePlot( index=index, index_mapper=index_mapper, value=color_source, value_mapper=color_mapper, ) cmap_plot._window = window = mock.Mock(spec=AbstractWindow) #when cmap_plot.color_mapper.updated = True # Then window.redraw.assert_called_once_with()
def setUp(self): # Set up plot component containing xs = np.arange(0, 5) ys = np.arange(0, 5) # Add some fake 2D data for the box's component index = GridDataSource(xdata=xs, ydata=ys, sort_order=('ascending', 'ascending')) index_mapper = GridMapper(range=DataRange2D(index)) color_source = ImageData(data=np.ones(shape=(5, 5)), depth=1) self.plot = CMapImagePlot( index=index, index_mapper=index_mapper, value=color_source, ) self.databox = DataBox( component=self.plot, data_position=[0, 0], ) self.plot.overlays.append(self.databox)
def create_plot(self): # Create the mapper, etc self._image_index = GridDataSource(array([]), array([]), sort_order=("ascending", "ascending")) image_index_range = DataRange2D(self._image_index) # self._image_index.on_trait_change(self._metadata_changed, # "metadata_changed") self._image_value = ImageData(data=array([]), value_depth=1) image_value_range = DataRange1D(self._image_value) # Create the colormapped scalar plot self.plot = CMapImagePlot( index=self._image_index, index_mapper=GridMapper(range=image_index_range), value=self._image_value, value_mapper=self._cmap(image_value_range)) # Add a left axis to the plot left = PlotAxis(orientation='left', title="y", mapper=self.plot.index_mapper._ymapper, component=self.plot) self.plot.overlays.append(left) # Add a bottom axis to the plot bottom = PlotAxis(orientation='bottom', title="x", mapper=self.plot.index_mapper._xmapper, component=self.plot) self.plot.overlays.append(bottom) # Add some tools to the plot self.plot.tools.append(PanTool(self.plot, constrain_key="shift")) self.plot.overlays.append( ZoomTool(component=self.plot, tool_mode="box", always_on=False)) # Create a colorbar cbar_index_mapper = LinearMapper(range=image_value_range) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.plot, padding_top=self.plot.padding_top, padding_bottom=self.plot.padding_bottom, padding_right=40, resizable='v', width=10) # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor="white", use_backbuffer=False) self.container.add(self.colorbar) self.container.add(self.plot)
class GridMapperTestCase(unittest.TestCase): def setUp(self): self.x_ary = array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) self.y_ary = array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0]) ds = GridDataSource(xdata=self.x_ary, ydata=self.y_ary) r = DataRange2D(ds) self.mapper = GridMapper(range=r) def test_basic(self): self.mapper.x_low_pos = 50 self.mapper.x_high_pos = 100 self.mapper.y_low_pos = 0 self.mapper.y_high_pos = 10 result = self.mapper.map_screen(transpose((self.x_ary, self.y_ary))) assert_equal(result, [(50, 0), (60, 0), (70, 5), (80, 5), (90, 10), (100, 10)]) def test_map_screen_scalar(self): self.mapper.x_low_pos = 50 self.mapper.x_high_pos = 100 self.mapper.y_low_pos = 0 self.mapper.y_high_pos = 10 result = self.mapper.map_screen(transpose((6.0, 1.0))) assert_equal(result, [[60, 0]]) def test_map_data(self): self.mapper.x_low_pos = 50 self.mapper.x_high_pos = 100 self.mapper.y_low_pos = 0 self.mapper.y_high_pos = 10 screen_ary = array([(50, 0), (60, 0), (70, 5), (80, 5), (90, 10), (100, 10)]) result = self.mapper.map_data(screen_ary) assert_equal(result, transpose((self.x_ary, self.y_ary))) def test_map_data_scalar(self): self.mapper.x_low_pos = 50 self.mapper.x_high_pos = 100 self.mapper.y_low_pos = 0 self.mapper.y_high_pos = 10 screen_ary = (60, 0) result = self.mapper.map_data(screen_ary) assert_equal(result, [[6.0, 1.0]])
class GridMapperTestCase(unittest.TestCase): def setUp(self): self.x_ary = array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) self.y_ary = array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0]) ds = GridDataSource(xdata=self.x_ary, ydata=self.y_ary) r = DataRange2D(ds) self.mapper = GridMapper(range=r) def test_basic(self): self.mapper.x_low_pos=50 self.mapper.x_high_pos=100 self.mapper.y_low_pos=0 self.mapper.y_high_pos=10 result = self.mapper.map_screen(transpose((self.x_ary, self.y_ary))) assert_equal(result, [(50,0), (60,0), (70,5), (80,5), (90,10), (100,10)]) def test_map_screen_scalar(self): self.mapper.x_low_pos=50 self.mapper.x_high_pos=100 self.mapper.y_low_pos=0 self.mapper.y_high_pos=10 result = self.mapper.map_screen(transpose((6.0, 1.0))) assert_equal(result, [[60, 0]]) def test_map_data(self): self.mapper.x_low_pos=50 self.mapper.x_high_pos=100 self.mapper.y_low_pos=0 self.mapper.y_high_pos=10 screen_ary = array([(50,0), (60,0), (70,5), (80,5), (90,10), (100,10)]) result = self.mapper.map_data(screen_ary) assert_equal(result, transpose((self.x_ary, self.y_ary))) def test_map_data_scalar(self): self.mapper.x_low_pos=50 self.mapper.x_high_pos=100 self.mapper.y_low_pos=0 self.mapper.y_high_pos=10 screen_ary = (60, 0) result = self.mapper.map_data(screen_ary) assert_equal(result, [[6.0, 1.0]])
def test_basic(self): x_ary = array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) y_ary = array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0]) ds = GridDataSource(xdata=x_ary, ydata=y_ary) r = DataRange2D(ds) mapper = GridMapper(range=r) mapper.x_low_pos = 50 mapper.x_high_pos = 100 mapper.y_low_pos = 0 mapper.y_high_pos = 10 result = mapper.map_screen(transpose((x_ary, y_ary))) assert_equal(result, [(50, 0), (60, 0), (70, 5), (80, 5), (90, 10), (100, 10)])
def empty_image(): """ Returns empty image plot """ from chaco.api import ImageData, GridDataSource, GridMapper, DataRange2D, ImagePlot image_source = ImageData.fromfile(config.IMG_NOCOMPLEX_PATH) w, h = image_source.get_width(), image_source.get_height() index = GridDataSource(np.arange(w), np.arange(h)) index_mapper = GridMapper( range=DataRange2D(low=(0, 0), high=(w - 1, h - 1))) image_plot = ImagePlot(index=index, value=image_source, index_mapper=index_mapper, origin='top left') return image_plot
def _corr_plot_default(self): diag = self.covar.diagonal() corr = self.covar / np.sqrt(np.outer(diag, diag)) N = len(diag) value_range = DataRange1D(low=-1, high=1) color_mapper = cmap(range=value_range) index = GridDataSource() value = ImageData() mapper = GridMapper(range=DataRange2D(index), y_low_pos=1.0, y_high_pos=0.0) index.set_data(xdata=np.arange(-0.5, N), ydata=np.arange(-0.5, N)) value.set_data(np.flipud(corr)) self.corr_data = value cmap_plot = CMapImagePlot(index=index, index_mapper=mapper, value=value, value_mapper=color_mapper, padding=(40, 40, 100, 40)) yaxis = PlotAxis( cmap_plot, orientation='left', tick_interval=1, tick_label_formatter=lambda x: self.header[int(N - 1 - x)], tick_generator=ShowAllTickGenerator(positions=np.arange(N))) xaxis = PlotAxis( cmap_plot, orientation='top', tick_interval=1, tick_label_formatter=lambda x: self.header[int(x)], tick_label_alignment='edge', tick_generator=ShowAllTickGenerator(positions=np.arange(N))) cmap_plot.overlays.append(yaxis) cmap_plot.overlays.append(xaxis) colorbar = ColorBar( index_mapper=LinearMapper(range=cmap_plot.value_range), plot=cmap_plot, orientation='v', resizable='v', width=10, padding=(40, 5, 100, 40)) container = HPlotContainer(bgcolor='transparent') container.add(cmap_plot) container.add(colorbar) return container
def test_basic(self): x_ary = array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) y_ary = array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0]) ds = GridDataSource(xdata=x_ary, ydata=y_ary) r = DataRange2D(ds) mapper = GridMapper(range=r) mapper.x_low_pos=50 mapper.x_high_pos=100 mapper.y_low_pos=0 mapper.y_high_pos=10 result = mapper.map_screen(transpose((x_ary, y_ary))) assert_equal(result, [(50,0), (60,0), (70,5), (80,5), (90,10), (100,10)])
def image_histogram_plot_component(self): xs = np.arange(0, len(self.im)) ys = np.arange(0, len(self.im[0])) index = GridDataSource(xdata=xs, ydata=ys, sort_order=('ascending', 'ascending')) index_mapper = GridMapper(range=DataRange2D(index)) color_source = ImageData(data=np.flipud(self.im), value_depth=1) reversed_grays = reverse(Greys) color_mapper = reversed_grays(DataRange1D(color_source)) plot = CMapImagePlot( index=index, index_mapper=index_mapper, value=color_source, value_mapper=color_mapper, ) #: Add overlay for zoom data_box_overlay = MyDataBox( component=plot, data_position=[0, 0], data_bounds=self.data_bounds, ) move_tool = MoveTool(component=data_box_overlay) resize_tool = ResizeTool(component=data_box_overlay) data_box_overlay.tools.append(move_tool) data_box_overlay.tools.append(resize_tool) data_box_overlay.on_trait_change(self.update_position, 'position') data_box_overlay.on_trait_change(self.update_data_bounds, 'bounds') #: Add to plot plot.overlays.append(data_box_overlay) return plot
def image_histogram_plot_component(self): xs = np.arange(0, len(self.im)) ys = np.arange(0, len(self.im[0])) index = GridDataSource(xdata=xs, ydata=ys, sort_order=('ascending', 'ascending')) index_mapper = GridMapper(range=DataRange2D(index)) color_source = ImageData(data=self.im, value_depth=1) reversed_grays = reverse(Greys) color_mapper = reversed_grays(DataRange1D(color_source)) plot = CMapImagePlot( index=index, index_mapper=index_mapper, value=color_source, value_mapper=color_mapper, orientation='h', origin='top left', ) self.data_box_overlay = DataBox( component=plot, data_position=[0, 0], data_bounds=[self.my_data_bounds, self.my_data_bounds], ) move_tool = MoveTool(component=self.data_box_overlay) self.data_box_overlay.tools.append(move_tool) self.data_box_overlay.on_trait_change(self.update_my_position, 'position') #: Add to plot plot.overlays.append(self.data_box_overlay) return plot
def get_image_index_and_mapper(image): h, w = image.shape[:2] index = GridDataSource(np.arange(h+1), np.arange(w+1)) index_mapper = GridMapper(range=DataRange2D(low=(0, 0), high=(h, w))) return index, index_mapper
def create_plot(self): # Create the mapper, etc self._image_index = GridDataSource(array([]), array([]), sort_order=("ascending","ascending")) image_index_range = DataRange2D(self._image_index) self._image_index.on_trait_change(self._metadata_changed, "metadata_changed") self._image_value = ImageData(data=array([]), value_depth=1) image_value_range = DataRange1D(self._image_value) # Create the contour plots self.polyplot = ContourPolyPlot(index=self._image_index, value=self._image_value, index_mapper=GridMapper(range= image_index_range), color_mapper=\ self._cmap(image_value_range), levels=self.num_levels) self.lineplot = ContourLinePlot(index=self._image_index, value=self._image_value, index_mapper=GridMapper(range= self.polyplot.index_mapper.range), levels=self.num_levels) # Add a left axis to the plot left = PlotAxis(orientation='left', title= "y", mapper=self.polyplot.index_mapper._ymapper, component=self.polyplot) self.polyplot.overlays.append(left) # Add a bottom axis to the plot bottom = PlotAxis(orientation='bottom', title= "x", mapper=self.polyplot.index_mapper._xmapper, component=self.polyplot) self.polyplot.overlays.append(bottom) # Add some tools to the plot self.polyplot.tools.append(PanTool(self.polyplot, constrain_key="shift")) self.polyplot.overlays.append(ZoomTool(component=self.polyplot, tool_mode="box", always_on=False)) self.polyplot.overlays.append(LineInspector(component=self.polyplot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=True, color="white")) self.polyplot.overlays.append(LineInspector(component=self.polyplot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=True)) # Add these two plots to one container contour_container = OverlayPlotContainer(padding=20, use_backbuffer=True, unified_draw=True) contour_container.add(self.polyplot) contour_container.add(self.lineplot) # Create a colorbar cbar_index_mapper = LinearMapper(range=image_value_range) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.polyplot, padding_top=self.polyplot.padding_top, padding_bottom=self.polyplot.padding_bottom, padding_right=40, resizable='v', width=30) self.pd = ArrayPlotData(line_index = array([]), line_value = array([]), scatter_index = array([]), scatter_value = array([]), scatter_color = array([])) self.cross_plot = Plot(self.pd, resizable="h") self.cross_plot.height = 100 self.cross_plot.padding = 20 self.cross_plot.plot(("line_index", "line_value"), line_style="dot") self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"), type="cmap_scatter", name="dot", color_mapper=self._cmap(image_value_range), marker="circle", marker_size=8) self.cross_plot.index_range = self.polyplot.index_range.x_range self.pd.set_data("line_index2", array([])) self.pd.set_data("line_value2", array([])) self.pd.set_data("scatter_index2", array([])) self.pd.set_data("scatter_value2", array([])) self.pd.set_data("scatter_color2", array([])) self.cross_plot2 = Plot(self.pd, width = 140, orientation="v", resizable="v", padding=20, padding_bottom=160) self.cross_plot2.plot(("line_index2", "line_value2"), line_style="dot") self.cross_plot2.plot(("scatter_index2","scatter_value2","scatter_color2"), type="cmap_scatter", name="dot", color_mapper=self._cmap(image_value_range), marker="circle", marker_size=8) self.cross_plot2.index_range = self.polyplot.index_range.y_range # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor = "white", use_backbuffer=False) inner_cont = VPlotContainer(padding=0, use_backbuffer=True) inner_cont.add(self.cross_plot) inner_cont.add(contour_container) self.container.add(self.colorbar) self.container.add(inner_cont) self.container.add(self.cross_plot2)
def setUp(self): self.x_ary = array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) self.y_ary = array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0]) ds = GridDataSource(xdata=self.x_ary, ydata=self.y_ary) r = DataRange2D(ds) self.mapper = GridMapper(range=r)
def __init__(self, x, y, z): super(ImagePlot, self).__init__() self.pd_all = ArrayPlotData(imagedata=z) #self.pd_horiz = ArrayPlotData(x=x, horiz=z[4, :]) #self.pd_vert = ArrayPlotData(y=y, vert=z[:,5]) self._imag_index = GridDataSource(xdata=x, ydata=y, sort_order=("ascending", "ascending")) index_mapper = GridMapper(range=DataRange2D(self._imag_index)) self._imag_index.on_trait_change(self._metadata_changed, "metadata_changed") self._image_value = ImageData(data=z, value_depth=1) color_mapper = jet(DataRange1D(self._image_value)) self.color_plot = CMapImagePlot(index=self._imag_index, index_mapper=index_mapper, value=self._image_value, value_mapper=color_mapper, padding=20, use_backbuffer=True, unified_draw=True) #Add axes to image plot left = PlotAxis(orientation='left', title="Frequency (GHz)", mapper=self.color_plot.index_mapper._ymapper, component=self.color_plot) self.color_plot.overlays.append(left) bottom = PlotAxis(orientation='bottom', title="Time (us)", mapper=self.color_plot.index_mapper._xmapper, component=self.color_plot) self.color_plot.overlays.append(bottom) self.color_plot.tools.append( PanTool(self.color_plot, constrain_key="shift")) self.color_plot.overlays.append( ZoomTool(component=self.color_plot, tool_mode="box", always_on=False)) #Add line inspector tool for horizontal and vertical self.color_plot.overlays.append( LineInspector(component=self.color_plot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=True, color="white")) self.color_plot.overlays.append( LineInspector(component=self.color_plot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=True)) myrange = DataRange1D(low=amin(z), high=amax(z)) cmap = jet self.colormap = cmap(myrange) # Create a colorbar cbar_index_mapper = LinearMapper(range=myrange) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.color_plot, padding_top=self.color_plot.padding_top, padding_bottom=self.color_plot.padding_bottom, padding_right=40, resizable='v', width=30) #, ytitle="Magvec (mV)") #create horizontal line plot self.horiz_cross_plot = Plot(self.pd_horiz, resizable="h") self.horiz_cross_plot.height = 100 self.horiz_cross_plot.padding = 20 self.horiz_cross_plot.plot(("x", "horiz")) #, #line_style="dot") # self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.horiz_cross_plot.index_range = self.color_plot.index_range.x_range #create vertical line plot self.vert_cross_plot = Plot(self.pd_vert, width=140, orientation="v", resizable="v", padding=20, padding_bottom=160) self.vert_cross_plot.plot(("y", "vert")) #, # line_style="dot") # self.vert_cross_plot.xtitle="Magvec (mV)" # self.vertica_cross_plot.plot(("vertical_scatter_index", # "vertical_scatter_value", # "vertical_scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.vert_cross_plot.index_range = self.color_plot.index_range.y_range # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor="white", use_backbuffer=False) inner_cont = VPlotContainer(padding=0, use_backbuffer=True) inner_cont.add(self.horiz_cross_plot) inner_cont.add(self.color_plot) self.container.add(self.colorbar) self.container.add(inner_cont) self.container.add(self.vert_cross_plot)