Пример #1
0
 def _create_plot(self, max, min, dataobj, title):
     x = dataobj[:, 0]
     y = dataobj[:, 1]
     if y.max() > max:
         max = y.max()
     if y.min() < min:
         min = y.min()
     if self.sample_size > 1:
         y2 = dataobj[:, 6]
         y3 = dataobj[:, 7]
         if y3.max() > max:
             max = y3.max()
         if y2.min() < min:
             min = y2.min()
         plotdata = ArrayPlotData(x=x, y=y, y2=y2, y3=y3)
     else:
         plotdata = ArrayPlotData(x=x, y=y)
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="line", color="blue")
     if self.sample_size > 1:
         plot.plot(("x", "y2"), type="line", color="red")
         plot.plot(("x", "y3"), type="line", color="red")
     # plot.padding_right = 45
     # plot.padding_left = 25
     # plot.padding_top = 25
     # plot.padding_bottom = 25
     plot.title = title
     plot.title_font = "Arial 10"
     return plot, max, min
Пример #2
0
 def _create_plot(self, max, min, dataobj, title):
     x = dataobj[:,0]
     y = dataobj[:,1]
     if y.max()>max:
         max = y.max()
     if y.min()<min:
         min = y.min()
     if self.sample_size>1:
         y2 = dataobj[:,6]
         y3 = dataobj[:,7]
         if y3.max()>max:
             max = y3.max()
         if y2.min()<min:
             min = y2.min()
         plotdata = ArrayPlotData(x=x, y=y, y2=y2, y3=y3)
     else:
         plotdata = ArrayPlotData(x=x, y=y)
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="line", color="blue")
     if self.sample_size>1:
         plot.plot(("x", "y2"), type="line", color="red")
         plot.plot(("x", "y3"), type="line", color="red")
     plot.title = title
     plot.title_font = 'Arial 10'
     return plot, max, min
Пример #3
0
    def create_hplot(self, key=None, mini=False):
        if mini:
            hpc = HPlotContainer(bgcolor='darkgrey',
                                 height=MINI_HEIGHT,
                                 resizable='h',
                                 padding=HPLOT_PADDING
                                 )
        else:
            hpc = HPlotContainer(bgcolor='lightgrey',
                                 padding=HPLOT_PADDING,
                                 resizable='hv'
                                 )

        # make slice plot for showing intesity profile of main plot
        #************************************************************
        slice_plot = Plot(self.data,
                          width=SLICE_PLOT_WIDTH,
                          orientation="v",
                          resizable="v",
                          padding=MAIN_PADDING,
                          padding_left=MAIN_PADDING_LEFT,
                          padding_bottom=MAIN_PADDING_BOTTOM,
                          bgcolor='beige',
                          origin='top left'
                          )
        mini_slice = Plot(self.data,
                          width=SLICE_PLOT_WIDTH,
                          orientation="v",
                          resizable="v",
                          padding=MAIN_PADDING,
                          padding_left=MAIN_PADDING_LEFT,
                          padding_bottom=MAIN_PADDING_BOTTOM,
                          bgcolor='beige',
                          origin='top left'
                          )
        slice_plot.x_axis.visible = True
        slice_key = key + '_slice'
        ydata_key = key + '_y'
        slice_plot.plot((ydata_key, slice_key), name=slice_key)

        # make plot to show line at depth of cursor.  y values constant
        slice_depth_key = key + '_depth'
        slice_plot.plot(('slice_depth_depth', 'slice_depth_y'),
                        name=slice_depth_key, color='red')
        self.update_slice_depth_line_plot(slice_plot, depth=0)

        # make main plot for editing depth lines
        #************************************************************
        main = Plot(self.data,
                    border_visible=True,
                    bgcolor='beige',
                    origin='top left',
                    padding=MAIN_PADDING,
                    padding_left=MAIN_PADDING_LEFT,
                    padding_bottom=MAIN_PADDING_BOTTOM
                    )
        if mini:
            #main.padding = MINI_PADDING
            main.padding_bottom = MINI_PADDING_BOTTOM

        # add intensity img to plot and get reference for line inspector
        #************************************************************
        img_plot = main.img_plot(key, name=key,
                                 xbounds=self.model.xbounds[key],
                                 ybounds=self.model.ybounds[key],
                                 colormap=self._cmap
                                 )[0]

        # add line plots: use method since these may change
        #************************************************************
        self.update_line_plots(key, main, update=True)
        self.plot_mask_array(key, main)

        # set slice plot index range to follow main plot value range
        #************************************************************
        slice_plot.index_range = main.value_range

        # add vertical core lines to main plots and slices
        #************************************************************
        # save pos and distance in session dict for view info and control
        for core in self.model.core_samples:
            # add boundarys to slice plot
            self.plot_core_depths(slice_plot, core, ref_depth_line=None)
            # add positions to main plots
            self.plot_core(main, core, ref_depth_line=None)

        # now add tools depending if it is a mini plot or not
        #************************************************************
        if mini:
            # add range selection tool only
            # first add a reference line to attach it to
            reference = self.make_reference_plot()
            main.add(reference)
            main.plots['reference'] = [reference]
            # attache range selector to this plot
            range_tool = RangeSelection(reference)
            reference.tools.append(range_tool)
            range_overlay = RangeSelectionOverlay(reference,
                                                  metadata_name="selections")
            reference.overlays.append(range_overlay)
            range_tool.on_trait_change(self._range_selection_handler,
                                       "selection")
            # add zoombox to mini plot
            main.plot(('zoombox_x', 'zoombox_y'), type='polygon',
                      face_color=ZOOMBOX_COLOR, alpha=ZOOMBOX_ALPHA)
            # add to hplot and dict
            hpc.add(main, mini_slice)
            self.hplot_dict['mini'] = hpc

        else:
            # add zoom tools
            zoom = ZoomTool(main, tool_mode='box', axis='both', alpha=0.5,
                            drag_button="left")
            main.tools.append(zoom)
            main.overlays.append(zoom)
            self.zoom_tools[key] = zoom
            main.value_mapper.on_trait_change(self.zoom_all_value, 'updated')
            main.index_mapper.on_trait_change(self.zoom_all_index, 'updated')

            # add line inspector and attach to freeze tool
            #*********************************************
            line_inspector = LineInspector(component=img_plot,
                                           axis='index_x',
                                           inspect_mode="indexed",
                                           is_interactive=True,
                                           write_metadata=True,
                                           metadata_name='x_slice',
                                           is_listener=True,
                                           color="white")

            img_plot.overlays.append(line_inspector)
            self.inspector_freeze_tool.tool_set.add(line_inspector)

            # add listener for changes to metadata made by line inspector
            #************************************************************
            img_plot.on_trait_change(self.metadata_changed, 'index.metadata')

            # set slice plot index range to follow main plot value range
            #************************************************************
            slice_plot.index_range = main.value_range

            # add clickable legend ; must update legend when depth_dict updated
            #******************************************************************
            legend = Legend(component=main, padding=0,
                            align="ur", font='modern 8')
            legend_highlighter = LegendHighlighter(legend,
                                                   drag_button="right")
            legend.tools.append(legend_highlighter)
            self.legend_dict[key] = [legend, legend_highlighter]
            self.update_legend_plots(legend, main)
            legend.visible = False
            main.overlays.append(legend)
            legend_highlighter.on_trait_change(self.legend_moved, '_drag_state')

            # add pan tool
            pan_tool = PanTool(main, drag_button="right")
            main.tools.append(pan_tool)
            self.pan_tool_dict[key] = pan_tool

            # add main and slice plot to hplot container and dict
            #****************************************************
            main.title = 'frequency = {} kHz'.format(key)
            main.title_font = TITLE_FONT
            hpc.add(main, slice_plot)
            self.hplot_dict[key] = hpc

        return hpc
Пример #4
0
    def create_hplot(self, key=None, mini=False):
        if mini:
            hpc = HPlotContainer(bgcolor='darkgrey',
                                 height=MINI_HEIGHT,
                                 resizable='h',
                                 padding=0)
        else:
            hpc = HPlotContainer(bgcolor='lightgrey',
                                 padding=HPLOT_PADDING,
                                 resizable='hv')

        # make slice plot for showing intesity profile of main plot
        #************************************************************
        slice_plot = Plot(self.data,
                          width=SLICE_PLOT_WIDTH,
                          orientation="v",
                          resizable="v",
                          padding=MAIN_PADDING,
                          padding_left=MAIN_PADDING_LEFT,
                          bgcolor='beige',
                          origin='top left')

        slice_plot.x_axis.visible = False
        slice_key = key + '_slice'
        ydata_key = key + '_y'
        slice_plot.plot((ydata_key, slice_key), name=slice_key)

        # make main plot for editing depth lines
        #************************************************************
        main = Plot(
            self.data,
            border_visible=True,
            bgcolor='beige',
            origin='top left',
            padding=MAIN_PADDING,
            padding_left=MAIN_PADDING_LEFT,
        )
        if mini:
            main.padding = MINI_PADDING

        # add intensity img to plot and get reference for line inspector
        #************************************************************
        img_plot = main.img_plot(key,
                                 name=key,
                                 xbounds=self.model.xbounds[key],
                                 ybounds=self.model.ybounds[key],
                                 colormap=self._cmap)[0]

        # add line plots: use method since these may change
        #************************************************************
        self.update_line_plots(key, main, update=True)

        # set slice plot index range to follow main plot value range
        #************************************************************
        slice_plot.index_range = main.value_range

        # add vertical core lines to main plots and slices
        #************************************************************
        # save pos and distance in session dict for view info and control
        for core in self.model.core_samples:
            loc_index, loc, dist = self.model.core_info_dict[core.core_id]
            # add boundarys to slice plot
            ref_line = self.model.final_lake_depth
            self.plot_core_depths(slice_plot, core, ref_line, loc_index)
            # add positions to main plots
            self.plot_core(main, core, ref_line, loc_index, loc)

        # now add tools depending if it is a mini plot or not
        #************************************************************
        if mini:
            # add range selection tool only
            # first add a reference line to attach it to
            reference = self.make_reference_plot()
            main.add(reference)
            # attache range selector to this plot
            range_tool = RangeSelection(reference)
            reference.tools.append(range_tool)
            range_overlay = RangeSelectionOverlay(reference,
                                                  metadata_name="selections")
            reference.overlays.append(range_overlay)
            range_tool.on_trait_change(self._range_selection_handler,
                                       "selection")
            # add zoombox to mini plot
            main.plot(('zoombox_x', 'zoombox_y'),
                      type='polygon',
                      face_color=ZOOMBOX_COLOR,
                      alpha=ZOOMBOX_ALPHA)
            # add to hplot and dict
            hpc.add(main)
            self.hplot_dict['mini'] = hpc

        else:
            # add zoom tools
            main.tools.append(PanTool(main))
            zoom = ZoomTool(main, tool_mode='box', axis='both', alpha=0.5)
            main.tools.append(zoom)
            main.overlays.append(zoom)
            main.value_mapper.on_trait_change(self.zoom_all_value, 'updated')
            main.index_mapper.on_trait_change(self.zoom_all_index, 'updated')
            # add line inspector and attach to freeze tool
            #*********************************************
            line_inspector = LineInspector(component=img_plot,
                                           axis='index_x',
                                           inspect_mode="indexed",
                                           is_interactive=True,
                                           write_metadata=True,
                                           metadata_name='x_slice',
                                           is_listener=True,
                                           color="white")
            img_plot.overlays.append(line_inspector)
            self.inspector_freeze_tool.tool_set.add(line_inspector)

            # add listener for changes to metadata made by line inspector
            #************************************************************
            img_plot.on_trait_change(self.metadata_changed, 'index.metadata')

            # set slice plot index range to follow main plot value range
            #************************************************************
            slice_plot.index_range = main.value_range

            # add clickable legend ; must update legend when depth_dict updated
            #******************************************************************
            legend = Legend(component=main,
                            padding=0,
                            align="ur",
                            font='modern 8')
            legend_highlighter = LegendHighlighter(legend, drag_button="right")
            legend.tools.append(legend_highlighter)
            self.update_legend_plots(legend, main)
            legend.visible = False
            self.legend_dict[key] = [legend, legend_highlighter]
            main.overlays.append(legend)

            # add main and slice plot to hplot container and dict
            #****************************************************
            main.title = 'frequency = {} kHz'.format(key)
            main.title_font = TITLE_FONT
            hpc.add(main, slice_plot)
            self.hplot_dict[key] = hpc

        return hpc