def _scatter(link, array, target):
    size, num = size_num_grads(link)

    ptrs = numpy.zeros(num, dtype=numpy.uint64)
    dtypes = numpy.zeros(num, dtype=numpy.int8)
    info = numpy.zeros(num + 1, dtype=numpy.int32)
    info[0] = 0
    i = 0
    for _, param in sorted(link.namedparams()):
        if param.size == 0:
            continue
        ptrs[i] = 0  # NULL pointer
        d = getattr(param, target)
        if d is None:
            d = cuda.cupy.zeros(param.shape, dtype=param.dtype)
            setattr(param, target, d)
        ptrs[i] = d.data.ptr
        dtypes[i] = 0  # fp32
        if param.dtype == numpy.float16:
            dtypes[i] = 1  # fp16
        info[i + 1] = info[i] + param.size
        i += 1
    if i != num:
        raise()
    info[0] = num

    ptrs = cuda.to_gpu(ptrs)
    dtypes = cuda.to_gpu(dtypes)
    info = cuda.to_gpu(info)

    return _memcpy_scatter()(ptrs, dtypes, info, array, size=size)
Пример #2
0
 def test_forward_gpu_train(self):
     self.rnn.to_gpu()
     with chainer.using_config('use_cudnn', 'always'), \
             chainer.using_config('train', True):
         self.check_forward(
             cuda.to_gpu(self.h),
             [cuda.to_gpu(x) for x in self.xs])
Пример #3
0
 def test_double_backward_gpu(self):
     self.check_double_backward(
         cuda.to_gpu(self.x1),
         cuda.to_gpu(self.x2),
         cuda.to_gpu(self.gy),
         cuda.to_gpu(self.ggx1),
         cuda.to_gpu(self.ggx2))
Пример #4
0
 def test_double_backward_gpu(self):
     b = None if self.b is None else cuda.to_gpu(self.b)
     inputs = [cuda.to_gpu(self.x), cuda.to_gpu(self.W), b]
     grad_outputs = cuda.to_gpu([self.gy])
     grad_grad_inputs = cuda.to_gpu([self.ggx, self.ggW, self.ggb])
     self.check_double_backward(
         inputs, grad_outputs, grad_grad_inputs, use_cudnn='never')
def _gather(link, target):
    size, num = size_num_grads(link)

    ptrs = numpy.empty(num, dtype=numpy.uint64)
    dtypes = numpy.empty(num, dtype=numpy.int8)
    info = numpy.empty(num + 1, dtype=numpy.int32)
    info[0] = 0
    i = 0
    for _, param in sorted(link.namedparams()):
        if param.size == 0:
            continue
        ptrs[i] = 0  # NULL pointer
        d = getattr(param, target)
        if d is not None:
            ptrs[i] = d.data.ptr
        dtypes[i] = 0  # fp32
        if param.dtype == numpy.float16:
            dtypes[i] = 1  # fp16
        info[i + 1] = info[i] + param.size
        i += 1
    info[0] = num

    ptrs = cuda.to_gpu(ptrs)
    dtypes = cuda.to_gpu(dtypes)
    info = cuda.to_gpu(info)

    return _memcpy_gather()(ptrs, dtypes, info, size=size)
Пример #6
0
 def test_backward_chainerx_cuda_nobias(self):
     self._skip_if_not_chainerx_supported()
     self.check_backward(
         backend.to_chainerx(cuda.to_gpu(self.x)),
         backend.to_chainerx(cuda.to_gpu(self.W)),
         None,
         backend.to_chainerx(cuda.to_gpu(self.gy)))
Пример #7
0
 def test_double_backward_gpu(self):
     self.check_double_backward(
         cuda.to_gpu(self.h),
         cuda.to_gpu(self.x),
         cuda.to_gpu(self.gy),
         cuda.to_gpu(self.ggh),
         cuda.to_gpu(self.ggx))
Пример #8
0
    def test_backward_cpu_gpu(self):
        # This test compares gradients of CPU and GPU modes.

        rng = numpy.random.RandomState()
        rng_state = rng.get_state()

        # Call CPU mode link and save samples
        x = chainer.Variable(self.x)
        t = chainer.Variable(self.t)
        link = self.create_link(rng)

        y, samples = link(x, t, return_samples=True)

        y.backward()
        assert t.grad is None
        gw_cpu = link.W.grad
        gx_cpu = x.grad

        # Call GPU mode link
        rng.set_state(rng_state)
        link = self.create_link(rng)
        link.to_gpu()
        x = chainer.Variable(cuda.to_gpu(self.x))
        t = chainer.Variable(cuda.to_gpu(self.t))
        y = self.call_link_with_samples(
            cuda.to_gpu(samples), lambda: link(x, t))

        y.backward()
        assert t.grad is None
        gw_gpu = link.W.grad
        gx_gpu = x.grad

        # Compare gradients from CPU and GPU modes
        testing.assert_allclose(gx_cpu, gx_gpu, **self.test_backward_options)
        testing.assert_allclose(gw_cpu, gw_gpu, **self.test_backward_options)
Пример #9
0
 def test_double_backward_gpu(self):
     x1 = cuda.to_gpu(self.x1)
     x2 = cuda.to_gpu(self.x2)
     gy = cuda.to_gpu(self.gy)
     ggx1 = cuda.to_gpu(self.ggx1)
     ggx2 = cuda.to_gpu(self.ggx2)
     self.check_double_backward(x1, x2, gy, ggx1, ggx2)
Пример #10
0
    def test_forward_output_size_zero(self, backend_config):
        if backend_config.use_chainerx:
            # TODO(sonots): Support it
            if self.dtype == numpy.float16:
                raise unittest.SkipTest('ChainerX does not support float16')

        with self.assertRaises(Exception):
            x = numpy.random.rand(4, 4, 1, 4).astype(self.dtype)
            # TODO(sonots): Cleanup to use testing.backend.get_array after
            # chainerx.asfortranarray is implemented.
            if (backend_config.use_cuda
                or (backend_config.use_chainerx
                    and backend_config.chainerx_device.startswith('cuda:'))):
                x = cuda.to_gpu(x)
            if backend_config.use_chainerx:
                x = chainer.backend.to_chainerx(x)
            x = chainer.Variable(x)
            with backend_config:
                functions.max_pooling_2d(x, 3, stride=2)

        with self.assertRaises(Exception):
            x = numpy.random.rand(4, 4, 4, 1).astype(self.dtype)
            # TODO(sonots): Cleanup to use testing.backend.get_array after
            # chainerx.asfortranarray is implemented.
            if (backend_config.use_cuda
                or (backend_config.use_chainerx
                    and backend_config.chainerx_device.startswith('cuda:'))):
                x = cuda.to_gpu(x)
            if backend_config.use_chainerx:
                x = chainer.backend.to_chainerx(x)
            x = chainer.Variable(x)
            with backend_config:
                functions.max_pooling_2d(x, 3, stride=2)
Пример #11
0
 def test_batch_double_backward_gpu(self):
     x_data = cuda.to_gpu(self.x)
     y_grad = cuda.to_gpu(self.gy)
     x_grad_grad = cuda.to_gpu(self.ggx)
     gradient_check.check_double_backward(
         self.det, x_data, y_grad, x_grad_grad,
         **self.check_double_backward_options)
Пример #12
0
    def test_backward_gpu(self):
        y = self.f(chainer.Variable(cuda.to_gpu(self.x)),
                   chainer.Variable(cuda.to_gpu(self.x)))
        y.grad = cuda.to_gpu(self.gy)
        self.f.add_hook(self.h)
        y.backward()
        expect = r'''^function\tDummyFunction
input data
<variable at 0x[0-9a-f]+>
- device: <CUDA Device 0>
- backend: <(type|class) 'cupy.core.core.ndarray'>
- shape: \(3L?, 5L?\)
- dtype: float32
- statistics: mean=[0-9.\-e]+, std=[0-9.\-e]+
- grad: None
\(removed\)
output gradient
<variable at 0x[0-9a-f]+>
- device: <CUDA Device 0>
- backend: <(type|class) 'cupy.core.core.ndarray'>
- shape: \(3L?, 5L?\)
- dtype: float32
- statistics: mean=[0-9.\-e]+, std=[0-9.\-e]+
- grad: mean=[0-9.\-e]+, std=[0-9.\-e]+$
'''
        actual = self.io.getvalue()
        self.assertTrue(re.match(expect, actual), actual)
Пример #13
0
    def check_double_backward(
            self, inputs, grad_outputs, grad_grad_inputs, backend_config):
        # TODO(sonots): Support it
        if backend_config.use_chainerx and self.dtype == numpy.float16:
            raise unittest.SkipTest('ChainerX does not support float16')

        # TODO(sonots): Cleanup to use testing.backend.get_array after
        # chainerx.asfortranarray is implemented.
        if (backend_config.use_cuda
            or (backend_config.use_chainerx
                and backend_config.chainerx_device.startswith('cuda:'))):
            inputs = cuda.to_gpu(inputs)
            grad_outputs = cuda.to_gpu(grad_outputs)
            grad_grad_inputs = cuda.to_gpu(grad_grad_inputs)
        if not self.c_contiguous:
            inputs = _to_fcontiguous(inputs)
            grad_outputs = _to_fcontiguous(grad_outputs)
            grad_grad_inputs = _to_fcontiguous(grad_grad_inputs)
        if backend_config.use_chainerx:
            inputs = chainer.backend.to_chainerx(inputs)
            grad_outputs = chainer.backend.to_chainerx(grad_outputs)
            grad_grad_inputs = chainer.backend.to_chainerx(grad_grad_inputs)

        def f(x):
            return functions.max_pooling_2d(
                x, 3, stride=2, pad=1, cover_all=self.cover_all)

        with backend_config:
            gradient_check.check_double_backward(
                f, inputs, grad_outputs, grad_grad_inputs,
                dtype='d',
                **self.check_double_backward_options)
Пример #14
0
    def __call__(self, inputs, device=None):
        """Convert DALI arrays to Numpy/CuPy arrays"""

        xp = cuda.get_array_module(self.perturbation)
        if xp is not cuda.cupy:
            self.perturbation = cuda.to_gpu(self.perturbation, device)

        outputs = []
        for i in range(len(inputs)):
            x = inputs[i].as_tensor()
            if (isinstance(x, dali.backend_impl.TensorCPU)):
                x = np.array(x)
                if x.ndim == 2 and x.shape[1] == 1:
                    x = x.squeeze(axis=1)
                if device is not None and device >= 0:
                    x = cuda.to_gpu(x, device)
            elif (isinstance(x, dali.backend_impl.TensorGPU)):
                x_cupy = cuda.cupy.empty(shape=x.shape(), dtype=x.dtype())
                # Synchronization is necessary here to avoid data corruption
                # because DALI and CuPy will use different CUDA streams.
                cuda.cupy.cuda.runtime.deviceSynchronize()
                # copy data from DALI array to CuPy array
                x.copy_to_external(ctypes.c_void_p(x_cupy.data.ptr))
                cuda.cupy.cuda.runtime.deviceSynchronize()
                x = x_cupy
                if self.perturbation is not None:
                    x = x - self.perturbation
                if device is not None and device < 0:
                    x = cuda.to_cpu(x)
            else:
                raise ValueError('Unexpected object')
            outputs.append(x)
        return tuple(outputs)
Пример #15
0
 def test_sqnorm_array_multi_gpu(self):
     x0 = cuda.to_gpu(self.x, device=0)
     x1 = cuda.to_gpu(self.x, device=1)
     a0 = cuda.to_gpu(self.a, device=0)
     a1 = cuda.to_gpu(self.a, device=1)
     self.assertAlmostEqual(optimizer._sum_sqnorm(
         [self.x, self.a, x0, a0, x1, a1]), 8.75 * 3)
Пример #16
0
 def test_backward_chainerx_cuda(self):
     # TODO(niboshi): Support it
     if self.dtype == numpy.float16:
         raise unittest.SkipTest('ChainerX does not support float16')
     self.check_backward_chainerx(
         backend.to_chainerx(cuda.to_gpu(self.x)),
         backend.to_chainerx(cuda.to_gpu(self.t)))
Пример #17
0
    def check_backward(self, inputs, grad_outputs, backend_config):

        xp = backend_config.xp
        if backend_config.use_cuda:
            inputs = cuda.to_gpu(inputs)
            grad_outputs = cuda.to_gpu(grad_outputs)

        x_data, W_data, b_data = inputs
        y_grad, = grad_outputs

        if not self.c_contiguous:
            x_data = xp.asfortranarray(x_data)
            W_data = xp.asfortranarray(W_data)
            y_grad = xp.asfortranarray(y_grad)
            assert not x_data.flags.c_contiguous
            assert not W_data.flags.c_contiguous
            assert not y_grad.flags.c_contiguous
            if b_data is not None:
                b = xp.empty((len(b_data) * 2,), dtype=b_data.dtype)
                b[::2] = b_data
                b_data = b[::2]
                assert not b_data.flags.c_contiguous

        args = (x_data, W_data)
        if b_data is not None:
            args = args + (b_data,)

        def f(*args):
            return F.deconvolution_2d(
                *args, stride=self.stride, pad=self.pad, outsize=self.outsize,
                dilate=self.dilate, groups=self.groups)

        with backend_config:
            gradient_check.check_backward(
                f, args, y_grad, **self.check_backward_options)
Пример #18
0
    def to_gpu(self):
        """Make a sampler GPU mode.

        """
        if not self.use_gpu:
            self.threshold = cuda.to_gpu(self.threshold)
            self.values = cuda.to_gpu(self.values)
            self.use_gpu = True
Пример #19
0
 def test_forward_gpu(self):
     self.link.to_gpu()
     x = cuda.to_gpu(self.x)
     if self.learn_b:
         b = None
     else:
         b = cuda.to_gpu(self.b)
     self.check_forward(x, b, self.y_expected)
Пример #20
0
 def test_forward_gpu(self):
     self.link.to_gpu()
     x = cuda.to_gpu(self.x)
     if self.learn_W:
         W = None
     else:
         W = cuda.to_gpu(self.W)
     self.check_forward(x, W, self.y_expected)
Пример #21
0
 def test_backward_non_default_gpu(self):
     x0 = chainer.Variable(cuda.to_gpu(self.x0, 1))
     x1 = chainer.Variable(cuda.to_gpu(self.x1, 1))
     gy = cuda.to_gpu(self.gy, 1)
     with cuda.get_device_from_id(0):
         y = functions.absolute_error(x0, x1)
         y.grad = gy
         y.backward()
Пример #22
0
 def test_cupy_array2(self):
     x = cuda.to_gpu(self.x, device=self.device_dtype(0))
     with x.device:
         if not self.c_contiguous:
             x = cuda.cupy.asfortranarray(x)
     y = cuda.to_gpu(x, device=self.device_dtype(1))
     assert isinstance(y, cuda.ndarray)
     assert int(y.device) == 1
 def test_forward_gpu(self):
     if not self.weight_apply:
         weight = None
     else:
         weight = cuda.to_gpu(self.class_weight)
     with chainer.using_config('use_cudnn', self.use_cudnn):
         self.check_forward(
             cuda.to_gpu(self.x), cuda.to_gpu(self.t), weight)
Пример #24
0
 def test_debug_backward_gpu(self):
     self.f.forward_gpu = mock.MagicMock(
         return_value=(cuda.to_gpu(self.one),))
     return_value = tuple(None if x is None else cuda.to_gpu(x)
                          for x in self.return_value)
     input_value = (cuda.to_gpu(self.one),) * len(self.return_value)
     self.f.backward_gpu = mock.MagicMock(return_value=return_value)
     self.check_debug_backward(*input_value)
Пример #25
0
 def test_double_backward_no_reduction_gpu(self):
     with chainer.using_config('use_cudnn', 'always'):
         self.check_double_backward(cuda.to_gpu(self.x),
                                    cuda.to_gpu(self.t),
                                    cuda.to_gpu(self.gy),
                                    cuda.to_gpu(self.ggx),
                                    normalize=self.normalize,
                                    reduce='no')
Пример #26
0
 def test_no_gh_backward_gpu(self):
     self.check_backward(
         cuda.to_gpu(self.c_prev1),
         cuda.to_gpu(self.c_prev2),
         cuda.to_gpu(self.x1),
         cuda.to_gpu(self.x2),
         cuda.to_gpu(self.gc),
         None)
Пример #27
0
 def test_backward_gpu(self):
     self.rnn.to_gpu()
     with chainer.using_config('use_cudnn', 'auto'):
         self.check_backward(
             cuda.to_gpu(self.h),
             [cuda.to_gpu(x) for x in self.xs],
             cuda.to_gpu(self.gh),
             [cuda.to_gpu(gy) for gy in self.gys])
Пример #28
0
 def test_forward_gpu_multi(self):
     with cuda.get_device_from_id(0):
         self.link.to_gpu()
         x1 = cuda.to_gpu(self.x1)
         x2 = cuda.to_gpu(self.x2)
         x3 = cuda.to_gpu(self.x3)
     with cuda.get_device_from_id(1):
         self.check_forward(x1, x2, x3)
Пример #29
0
 def test_forward_gpu_multi(self):
     with cuda.get_device_from_id(0):
         self.link.to_gpu()
         c = cuda.to_gpu(self.c)
         h = cuda.to_gpu(self.h)
         x = cuda.to_gpu(self.x)
     with cuda.get_device_from_id(1):
         self.check_forward(c, h, x)
    def check_backward(self, inputs, grad_outputs, backend_config):
        if backend_config.use_cuda:
            inputs = cuda.to_gpu(inputs)
            grad_outputs = cuda.to_gpu(grad_outputs)

        with backend_config:
            gradient_check.check_backward(
                functions.local_response_normalization, inputs, grad_outputs,
                eps=1, dtype=numpy.float64, **self.check_backward_options)
Пример #31
0
def get_scenes():
    data = contrib.get_data()

    scenes = visualize_data()

    models = morefusion.datasets.YCBVideoModels()

    transform = []
    points = []
    sdf = []
    pitch = []
    origin = []
    grid_target = []
    grid_nontarget_empty = []
    for instance in data["instances"]:
        transform.append(instance["transform_init"].astype(np.float32))
        points_i, sdf_i = models.get_sdf(class_id=instance["class_id"])
        points.append(cuda.to_gpu(points_i).astype(np.float32))
        sdf.append(cuda.to_gpu(sdf_i).astype(np.float32))
        pitch.append(instance["pitch"].astype(np.float32))
        origin.append(instance["origin"].astype(np.float32))
        grid_target.append(instance["grid_target"].astype(np.float32))
        grid_nontarget_empty.append(instance["grid_nontarget_empty"].astype(
            np.float32))
    pitch = cuda.cupy.asarray(pitch)
    origin = cuda.cupy.asarray(origin)
    grid_target = cuda.cupy.asarray(grid_target)
    grid_nontarget_empty = cuda.cupy.asarray(grid_nontarget_empty)

    link = morefusion.contrib.IterativeCollisionCheckLink(transform,
                                                          sdf_offset=0.02)
    link.to_gpu()
    optimizer = chainer.optimizers.Adam(alpha=0.01)
    optimizer.setup(link)
    link.translation.update_rule.hyperparam.alpha *= 0.1

    for i in tqdm.trange(100):
        transform = morefusion.functions.transformation_matrix(
            link.quaternion, link.translation)
        transform = cuda.to_cpu(transform.array)
        for j, instance in enumerate(data["instances"]):
            # cad = models.get_cad(instance["class_id"])
            # if hasattr(cad.visual, "to_color"):
            #     cad.visual = cad.visual.to_color()
            scenes["cad"].graph.update(
                frame_to=str(instance["id"]),
                frame_from="world",
                matrix=transform[j],
            )
            # scenes["cad"].add_geometry(
            #     cad,
            #     node_name=str(instance["id"]),
            #     geom_name=str(instance["id"]),
            #     transform=transform[j],
            # )
        yield {"icc": scenes["cad"]}

        loss = link(points, sdf, pitch, origin, grid_target,
                    grid_nontarget_empty)
        loss.backward()
        optimizer.update()
        link.zerograds()
Пример #32
0
def run(which, steps, which_labels, frames, model, bg_model, face_model,
        optimizer, pred_diff, loss_saving, trait, ordered, save_all_results,
        twostream, same_frame, record_loss, record_predictions):
    print('steps: ', steps)
    assert (which in ['train', 'test', 'val'])
    assert (trait in ['O', 'C', 'E', 'A', 'S'])

    if which == 'train':
        which_batch_size = C.TRAIN_BATCH_SIZE
    elif which == 'val':
        which_batch_size = C.VAL_BATCH_SIZE
    elif which == 'test':
        which_batch_size = C.TEST_BATCH_SIZE

    loss_tmp = []
    pd_tmp = np.zeros((steps, 1), dtype=float)
    _labs = list(which_labels)

    preds = np.zeros((steps, 1), dtype=float)

    if not ordered:
        shuffle(_labs)

    ts = time.time()
    for s in tqdm(range(steps)):
        labels_selected = _labs[s * which_batch_size:(s + 1) *
                                which_batch_size]
        assert (len(labels_selected) == which_batch_size)

        labels_bg, bg_data, frame_num = D.load_data_single(
            labels_selected,
            which_labels,
            frames,
            which_data='bg',
            resize=True,
            ordered=ordered,
            twostream=twostream,
            same_frame=same_frame,
            trait=trait)
        labels_face, face_data, _ = D.load_data_single(labels_selected,
                                                       which_labels,
                                                       frames,
                                                       which_data='face',
                                                       resize=True,
                                                       ordered=ordered,
                                                       twostream=twostream,
                                                       frame_num=frame_num,
                                                       same_frame=same_frame,
                                                       trait=trait)

        if C.ON_GPU:
            bg_data = to_gpu(bg_data, device=C.DEVICE)
            face_data = to_gpu(face_data, device=C.DEVICE)
            labels = to_gpu(labels_bg, device=C.DEVICE)

        with cp.cuda.Device(C.DEVICE):
            if which == 'train':
                config = True
            else:
                config = False

            with chainer.using_config('train', False):
                prediction_bg, bg_activations = bg_model(bg_data)
                prediction_face, face_activations = face_model(face_data)

            with chainer.using_config('train', config):
                if config:
                    model.cleargrads()
                prediction = model(bg_activations, face_activations)

                loss = mean_absolute_error(prediction, labels)

                if which == 'train':
                    loss.backward()
                    optimizer.update()

        if record_loss:
            loss_tmp.append(float(loss.data))
            pd_tmp[s] = U.pred_diff_trait(to_cpu(prediction.data),
                                          to_cpu(labels))
        if record_predictions and which == 'test':
            preds[s] = to_cpu(prediction.data)

    if record_loss:
        pred_diff[0] = np.mean(pd_tmp, axis=0)
        loss_tmp_mean = np.mean(loss_tmp, axis=0)
        loss_saving.append(loss_tmp_mean)
        print('E %d. %s loss: ' % (0, which), loss_tmp_mean,
              ' pred diff %s: ' % trait, pred_diff[0], ' time: ',
              time.time() - ts)

        U.record_loss_sanity(which, loss_tmp_mean, pred_diff[0])

        if which == 'test' and save_all_results:
            U.record_loss_all_test(loss_tmp, trait=True)

    if record_predictions and which == 'test':
        U.record_all_predictions(which, preds)
Пример #33
0
 def to_xp(arrs):
     if backend_config.use_cuda:
         return cuda.to_gpu(arrs)
     else:
         return arrs
Пример #34
0
 def test_backward_gpu(self):
     b = None if self.b is None else cuda.to_gpu(self.b)
     self.check_backward(
         cuda.to_gpu(self.x), cuda.to_gpu(self.W), b,
         cuda.to_gpu(self.gy), use_cudnn='never')
Пример #35
0
 def test_rtol_gpu(self):
     self.check_rtol(cuda.to_gpu(self.x), cuda.to_gpu(self.y))
Пример #36
0
 def test_invalid_reduce_gpu(self):
     self.check_invalid_reduce(cuda.to_gpu(self.x), cuda.to_gpu(self.t))
Пример #37
0
 def test_forward_gpu(self):
     self.check_forward(cuda.to_gpu(self.x))
Пример #38
0
 def test_double_backward_gpu(self):
     self.check_double_backward(cuda.to_gpu(self.x), self.output_shape,
                                cuda.to_gpu(self.gy), cuda.to_gpu(self.ggx))
Пример #39
0
def predict_value_model_0(experiment_number,
                          epoch,
                          which='val',
                          time_gap=1,
                          model_number=0):
    use_ccc = True
    use_pearson = True
    _loss_steps = []
    _all_ccc = []
    _all_pearson = []

    model = Siamese_pilot()

    models_path = '/scratch/users/gabras/data/omg_empathy/saving_data/models'
    p = os.path.join(
        models_path,
        'model_%d_experiment_%d' % (model_number, experiment_number),
        'epoch_%d' % epoch)
    chainer.serializers.load_npz(p, model)
    if C.ON_GPU:
        model = model.to_gpu(device=C.DEVICE)

    for subject in range(10):
        _loss_steps_subject = []
        all_predictions = []

        name = 'Subject_%d_Story_1' % (subject + 1)
        path = '/scratch/users/gabras/data/omg_empathy/Validation'
        subject_folder = os.path.join(path, 'jpg_participant_662_542', name)
        all_frames = os.listdir(subject_folder)

        full_name = os.path.join(path, 'Annotations', name + '.csv')
        all_labels = np.genfromtxt(full_name,
                                   dtype=np.float32,
                                   skip_header=True)

        # num_frames = len(all_frames)
        num_frames = 1000
        _b = 0
        _e = num_frames

        for f in range(0, num_frames):
            if f == 0:
                with cp.cuda.Device(C.DEVICE):

                    with chainer.using_config('train', False):
                        prediction = np.array([0.0],
                                              dtype=np.float32)  # baseline
                        labels = np.array([all_labels[f]])

                        loss = mean_squared_error(prediction, labels)
                        _loss_steps_subject.append(float(loss.data))

                all_predictions.append(0.0)
            else:
                data_left, data_right = L.get_left_right_consecutively(
                    which, name, f, time_gap=time_gap)
                data_left = np.expand_dims(data_left, 0)
                data_right = np.expand_dims(data_right, 0)
                labels = np.array([all_labels[f]])

                if C.ON_GPU:
                    data_left = to_gpu(data_left, device=C.DEVICE)
                    data_right = to_gpu(data_right, device=C.DEVICE)
                    labels = to_gpu(labels, device=C.DEVICE)

                with cp.cuda.Device(C.DEVICE):

                    with chainer.using_config('train', False):
                        prediction = model(data_left, data_right)
                        loss = mean_squared_error(prediction.data[0], labels)

                _loss_steps_subject.append(float(to_cpu(loss.data)))

                all_predictions.append(float(to_cpu(prediction.data)))

        if use_ccc:
            ccc_subject = calculate_ccc(all_predictions, all_labels[_b:_e])
            _all_ccc.append(ccc_subject)
            print('%s, loss: %f, ccc: %f' %
                  (name, float(np.mean(_loss_steps_subject)), ccc_subject))

        if use_pearson:
            pearson_subject, p_vals = calculate_pearson(
                all_predictions, all_labels[_b:_e])
            _all_pearson.append(pearson_subject)
            print('%s, loss: %f, pearson: %f' %
                  (name, float(np.mean(_loss_steps_subject)), pearson_subject))
        _loss_steps.append(np.mean(_loss_steps_subject))

    print(
        'model_%d_experiment_%d_epoch_%d, val_loss: %f, CCC: %f, pearson: %f' %
        (model_number, experiment_number, epoch, float(np.mean(_loss_steps)),
         float(np.mean(_all_ccc)), float(np.mean(_all_pearson))))
Пример #40
0
 def forward(self, inputs):
     # Cause inconsistency between outputs
     return inputs[0], cuda.to_gpu(inputs[1])
Пример #41
0
 def test_forward_gpu(self):
     self.check_forward(cuda.to_gpu(self.x),
                        output_shape=self.output_shape[2:])
Пример #42
0
 def test_reference_gpu(self):
     self.check_reference(cuda.to_gpu(self.x))
Пример #43
0
    def test_numerical_grad_gpu(self):
        xs = tuple(map(cuda.to_gpu, self.xs))
        gys = tuple(None if gy is None else cuda.to_gpu(gy) for gy in self.gys)

        self.check_invalid_eps(xs, gys, 0)
        self.check_invalid_eps(xs, gys, -1.0)
Пример #44
0
 def test_invalid_mixed(self):
     y = cuda.to_gpu(self.y)
     with self.assertRaises(RuntimeError):
         gradient_check.numerical_grad(self.f, (self.x, ), (y, ))
Пример #45
0
 def test_backward_consistency_regression_gpu(self):
     self.check_backward_consistency_regression(cuda.to_gpu(self.x),
                                                cuda.to_gpu(self.gy))
Пример #46
0
 def test_identical_gpu(self):
     self.check_identical(cuda.to_gpu(self.x))
Пример #47
0
 def test_backward_gpu(self):
     self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy))
Пример #48
0
 def test_gpu(self):
     x = cuda.to_gpu(self.x)
     with chainer.using_config('use_cudnn', 'never'):
         self._check(x)
     with chainer.using_config('use_cudnn', 'always'):
         self._check(x)
Пример #49
0
 def test_forward_consistency_regression_gpu(self):
     self.check_forward_consistency_regression(cuda.to_gpu(self.x))
Пример #50
0
 def test_double_backward_gpu_no_cudnn(self):
     self.check_double_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy),
                                cuda.to_gpu(self.ggx), 'never')
Пример #51
0
 def test_array_supplied_gpu(self):
     self.check_array_supplied(cuda.to_gpu(self.x_data),
                               cuda.to_gpu(self.W_data),
                               cuda.to_gpu(self.b_data))
Пример #52
0
 def test_backward_gpu(self):
     self.check_backward(cuda.to_gpu(self.x), self.output_shape,
                         cuda.to_gpu(self.gy))
Пример #53
0
 def test_value_check_gpu_cudnn(self):
     self.check_value_check(cuda.to_gpu(self.x), cuda.to_gpu(self.t),
                            'always')
Пример #54
0
 def test_forward_gpu_test(self):
     self.rnn.to_gpu()
     with chainer.using_config('use_cudnn', 'always'), \
             chainer.using_config('train', False):
         self.check_forward(cuda.to_gpu(self.h), cuda.to_gpu(self.c),
                            [cuda.to_gpu(x) for x in self.xs])
Пример #55
0
 def test_forward_consistency_regression_im2col(self):
     # Regression test to deconvolution_nd.
     if len(self.dims) == 2:
         self.check_forward_consistency_regression(
             cuda.to_gpu(self.x), cuda.to_gpu(self.W), cuda.to_gpu(self.b),
             use_cudnn='never')
Пример #56
0
 def test_double_backward_gpu_non_contiguous(self):
     self.check_double_backward(
         cuda.cupy.asfortranarray(cuda.to_gpu(self.x)),
         cuda.cupy.asfortranarray(cuda.to_gpu(self.gy)),
         cuda.cupy.asfortranarray(cuda.to_gpu(self.ggx)))
Пример #57
0
 def test_forward_gpu(self):
     self.link.to_gpu()
     self.check_forward(cuda.to_gpu(self.xs), cuda.to_gpu(self.ys))
Пример #58
0
def make_pred_vs_y_plot(experiment_number,
                        epoch,
                        which='val',
                        time_gap=1,
                        model_number=1,
                        label_type='discrete'):
    use_ccc = True
    use_pearson = True
    _loss_steps = []
    _all_ccc = []
    _all_pearson = []

    if model_number == 1:
        model = Siamese()
    elif model_number == 3:
        model = Triplet()
    elif model_number == 4:
        model = TernaryClassifier()

    models_path = '/scratch/users/gabras/data/omg_empathy/saving_data/models'
    p = os.path.join(
        models_path,
        'model_%d_experiment_%d' % (model_number, experiment_number),
        'epoch_%d' % epoch)
    chainer.serializers.load_npz(p, model)
    if C.ON_GPU:
        model = model.to_gpu(device=C.DEVICE)

    for subject in range(10):
        _loss_steps_subject = []
        previous_prediction = np.array([0.], dtype=np.float32)
        all_predictions = []

        name = 'Subject_%d_Story_1' % (subject + 1)
        path = '/scratch/users/gabras/data/omg_empathy/Validation'
        subject_folder = os.path.join(path, 'jpg_participant_662_542', name)
        all_frames = os.listdir(subject_folder)

        if label_type == 'discrete':
            full_name = os.path.join(path, 'Annotations', name + '.csv')
        elif label_type == 'smooth':
            full_name = os.path.join(path, C.SMOOTH_ANNOTATIONS_PATH,
                                     name + '.csv')
        all_labels = np.genfromtxt(full_name,
                                   dtype=np.float32,
                                   skip_header=True)

        # num_frames = len(all_frames)
        num_frames = 50
        # num_frames = 10

        if time_gap > 1:
            _b = C.OMG_EMPATHY_FRAME_RATE
            _e = _b + num_frames
        else:
            _b = 0
            _e = num_frames

        # for f in tqdm(range(_b, _e)):
        for f in range(_b, _e):
            if f == 0:
                with cp.cuda.Device(C.DEVICE):

                    with chainer.using_config('train', False):
                        prediction = np.array([0.0],
                                              dtype=np.float32)  # baseline
                        labels = np.array([all_labels[f]])

                        loss = mean_squared_error(prediction, labels)
                        _loss_steps_subject.append(float(loss.data))
            else:
                data_left, data_right = L.get_left_right_consecutively(
                    which, name, f, time_gap=time_gap)
                data_left = np.expand_dims(data_left, 0)
                data_right = np.expand_dims(data_right, 0)
                labels = np.array([all_labels[f]])

                if C.ON_GPU:
                    previous_prediction = to_gpu(previous_prediction,
                                                 device=C.DEVICE)
                    data_left = to_gpu(data_left, device=C.DEVICE)
                    data_right = to_gpu(data_right, device=C.DEVICE)
                    labels = to_gpu(labels, device=C.DEVICE)

                with cp.cuda.Device(C.DEVICE):

                    with chainer.using_config('train', False):
                        if model_number == 3:
                            pred_1, pred_2 = model(data_left, data_right)

                            pred_1 = chainer.functions.sigmoid(pred_1)

                            pred_1 = U.threshold_all(to_cpu(pred_1.data))

                            prediction = to_gpu(pred_1,
                                                device=C.DEVICE) * pred_2

                            prediction = previous_prediction + prediction

                            loss = mean_squared_error(prediction.data[0],
                                                      labels)
                            _loss_steps_subject.append(float(loss.data))

                            prediction = float(prediction.data)
                        else:
                            prediction = model(data_left, data_right)

                            prediction = previous_prediction + prediction

                            loss = mean_squared_error(prediction.data[0],
                                                      labels)
                            _loss_steps_subject.append(float(loss.data))

                            prediction = float(prediction.data)

            previous_prediction = to_cpu(previous_prediction)

            previous_prediction[0] = float(prediction)
            all_predictions.append(prediction)

        # if use_ccc:
        #     ccc_subject = calculate_ccc(all_predictions, all_labels[_b:_e])
        #     _all_ccc.append(ccc_subject)
        #     print('%s, loss: %f, ccc: %f' % (name, float(np.mean(_loss_steps_subject)), ccc_subject))
        #
        # if use_pearson:
        #     pearson_subject, p_vals = calculate_pearson(all_predictions, all_labels[_b:_e])
        #     _all_pearson.append(pearson_subject)
        #     print('%s, loss: %f, pearson: %f' % (name, float(np.mean(_loss_steps_subject)), pearson_subject))
        #
        # _loss_steps.append(np.mean(_loss_steps_subject))

        # save graph
        save_graph = True
        if save_graph:
            labs = all_labels[_b:_e]
            diff_arr = labs - all_predictions

            diff_matrix = np.zeros((num_frames, num_frames))

            for i in range(num_frames):
                diff_matrix[i, i] = diff_arr[i]

            p = '/scratch/users/gabras/data/omg_empathy/saving_data/logs/val/pred_vs_y'
            plots_folder = 'model_%d_experiment_%d' % (model_number,
                                                       experiment_number)
            plot_path = os.path.join(p, plots_folder)

            if not os.path.exists(plot_path):
                os.mkdir(plot_path)

            fig = plt.figure()

            # assert len(labs) == len(all_predictions)
            # plt.scatter(labs, all_predictions)

            fig, ax = plt.subplots()
            im = ax.imshow(diff_matrix)

            # We want to show all ticks...
            ax.set_xticks(np.arange(len(diff_arr)))
            ax.set_yticks(np.arange(len(diff_arr)))
            # ... and label them with the respective list entries
            # ax.set_xticklabels(farmers)
            # ax.set_yticklabels(vegetables)

            # Rotate the tick labels and set their alignment.
            # plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
            #          rotation_mode="anchor")

            # Loop over data dimensions and create text annotations.
            # for i in range(len(diff_arr)):
            #     for j in range(len(diff_arr)):
            #         text = ax.text(j, i, str(diff_matrix[i, j])[0:7], ha="center", va="center", color="w")

            ax.set_title('difference: labels - predictions')
            fig.tight_layout()

            plt.savefig(
                os.path.join(plot_path, '%s_epoch_%d_.png' % (name, epoch)))
Пример #59
0
 def test_debug_forward_gpu(self):
     return_value = tuple(None if x is None else cuda.to_gpu(x)
                          for x in self.return_value)
     self.f.forward_gpu = mock.MagicMock(return_value=return_value)
     self.check_debug_forward(cuda.to_gpu(self.one))
Пример #60
0
 def test_differenct_eps_gpu(self):
     self.check_different_eps(cuda.to_gpu(self.x), cuda.to_gpu(self.y))