Пример #1
0
    def __call__(self, x, t):
        """Computes the loss value for given input and ground truth labels.

        Args:
            x (~chainer.Variable): Input of the weight matrix multiplication.
            t (~chainer.Variable): Batch of ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        batch_size = x.shape[0]
        if hasattr(self, 'sample_data'):
            # for test
            sample_data = self.sample_data
        else:
            shape = (batch_size, self.sample_size)
            sample_data = self.sampler.sample(shape)
        samples = chainer.Variable(sample_data)
        return black_out.black_out(x, t, self.W, samples)
Пример #2
0
    def forward(self, x, t):
        """Computes the loss value for given input and ground truth labels.

        Args:
            x (~chainer.Variable): Input of the weight matrix multiplication.
            t (~chainer.Variable): Batch of ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        batch_size = x.shape[0]
        if self.sample_data is not None:
            # for test
            sample_data = self.sample_data
        else:
            shape = (batch_size, self.sample_size)
            sample_data = self.sampler.sample(shape)
        samples = variable.Variable(sample_data, requires_grad=False)
        return black_out.black_out(x, t, self.W, samples)
Пример #3
0
    def forward(self, x, t):
        """Computes the loss value for given input and ground truth labels.

        Args:
            x (~chainer.Variable): Input of the weight matrix multiplication.
            t (~chainer.Variable): Batch of ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        batch_size = x.shape[0]
        if self.sample_data is not None:
            # for test
            sample_data = self.sample_data
        else:
            shape = (batch_size, self.sample_size)
            sample_data = self.sampler.sample(shape)
        samples = variable.Variable(sample_data, requires_grad=False)
        return black_out.black_out(x, t, self.W, samples)
Пример #4
0
    def __call__(self, x, t):
        """Computes the loss value for given input and ground truth labels.

        Args:
            x (~chainer.Variable): Input of the weight matrix multiplication.
            t (~chainer.Variable): Batch of ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        batch_size = x.shape[0]
        if hasattr(self, 'sample_data'):
            # for test
            sample_data = self.sample_data
        else:
            shape = (batch_size, self.sample_size)
            sample_data = self.sampler.sample(shape)
        samples = chainer.Variable(sample_data)
        return black_out.black_out(x, t, self.W, samples)