def __init__(self, emb_dim, vocab_size, layer_dims, label_dim, z_dim): super(SequenceDecoder, self).__init__( rnn=Rnn(emb_dim, vocab_size, layer_dims, label_dim, suppress_output=False), ) ls_zh = ChainList() for d in layer_dims: ls_zh.add_link(L.Linear(z_dim, d)) self.add_link('ls_zh', ls_zh)
class NNAutoEncoder(): def __init__(self, encoder, decoder, optimizer, epoch=20, batch_size=100, log_path="", export_path="", gpu_flag=-1): self.encoder = encoder self.decoder = decoder self.optimizer = optimizer self.epoch = epoch self.batch_size = batch_size self.log_path = log_path self.export_path = export_path self.autoencoded = ChainList() self.gpu_flag = gpu_flag def fit(self, x_train): for layer in range(0, len(self.encoder)): # Creating model self.model = ChainList(self.encoder[layer].copy(), self.decoder[layer].copy()) NNManager.forward = self.forward nn = NNManager(self.model, self.optimizer, F.mean_squared_error, self.epoch, self.batch_size, self.log_path, gpu_flag=self.gpu_flag) # Training x_data = self.encode(x_train, layer).data nn.fit(x_data, x_data) self.autoencoded.add_link(nn.model[0].copy()) if self.export_path != "": if self.gpu_flag >= 0: self.autoencoded.to_cpu() pickle.dump(self.autoencoded, open(self.export_path, 'wb'), -1) return self def predict(self, x_test): raise Exception("Prediction for AutoEncoder is not implemented.") def encode(self, x, n): if n == 0: return Variable(x) else: h = self.encode(x, n - 1) return F.relu(self.autoencoded[n - 1](h)) def forward(self, x): h = F.dropout(F.relu(self.model[0](x))) return F.dropout(F.relu(self.model[1](h)))
def __init__(self, in_dim, hidden_dims, active): super(_Mlp, self).__init__() self.active = active ds = [in_dim] + hidden_dims ls = ChainList() for d_in, d_out in zip(ds, ds[1:]): l = L.Linear(d_in, d_out) ls.add_link(l) self.add_link('ls', ls)
def __init__(self, emb_dim, vocab_size, layer_dims, label_dim, z_dim): super(SequenceDecoder, self).__init__(rnn=Rnn(emb_dim, vocab_size, layer_dims, label_dim, suppress_output=False), ) ls_zh = ChainList() for d in layer_dims: ls_zh.add_link(L.Linear(z_dim, d)) self.add_link('ls_zh', ls_zh)
def __init__(self, emb_dim, vocab_size, layer_dims, label_dim, z_dim): super(SequenceEncoder, self).__init__( rnn=Rnn(emb_dim, vocab_size, layer_dims, label_dim, suppress_output=True), ) ls_mu = ChainList() ls_ln_var = ChainList() for d in layer_dims: ls_mu.add_link(L.Linear(d, z_dim)) ls_ln_var.add_link(L.Linear(d, z_dim)) self.add_link('ls_mu', ls_mu) self.add_link('ls_ln_var', ls_ln_var)
def __init__(self, emb_dim, vocab_size, layer_dims, label_dim, z_dim): super(SequenceEncoder, self).__init__(rnn=Rnn(emb_dim, vocab_size, layer_dims, label_dim, suppress_output=True), ) ls_mu = ChainList() ls_ln_var = ChainList() for d in layer_dims: ls_mu.add_link(L.Linear(d, z_dim)) ls_ln_var.add_link(L.Linear(d, z_dim)) self.add_link('ls_mu', ls_mu) self.add_link('ls_ln_var', ls_ln_var)
def __init__(self, n_input, n_output, n_hidden=10, n_hidden_layers=1, link=L.LSTM): """ :param n_input: number of inputs :param n_hidden: number of hidden units :param n_output: number of outputs :param n_hidden_layers: number of hidden layers :param link: used recurrent link (LSTM) """ links = ChainList() if n_hidden_layers == 0: links.add_link(L.Linear(n_input, n_output)) else: links.add_link(link(n_input, n_hidden)) for i in range(n_hidden_layers - 1): links.add_link(link(n_hidden, n_hidden)) links.add_link(L.Linear(n_hidden, n_output)) self.n_input = n_input self.n_hidden = n_hidden self.n_output = n_output self.n_hidden_layers = n_hidden_layers self.monitor = [] super(RNN, self).__init__(links)
def __init__(self, in_dim, hidden_dims, active): super(_Mlp, self).__init__() self.active = active ds = [in_dim] + hidden_dims ls = ChainList() bns = ChainList() for d_in, d_out in zip(ds, ds[1:]): l = L.Linear(d_in, d_out) bn = L.BatchNormalization(d_out) ls.add_link(l) bns.add_link(bn) self.add_link('ls', ls) self.add_link('bns', bns)
def __init__(self, n_input, n_output, n_hidden=10, n_hidden_layers=1, actfun=F.relu): """ :param n_input: number of inputs :param n_output: number of outputs :param n_hidden: number of hidden units :param n_hidden_layers: number of hidden layers (1; standard MLP) :param actfun: used activation function (ReLU) """ links = ChainList() if n_hidden_layers == 0: links.add_link(L.Linear(n_input, n_output)) else: links.add_link(L.Linear(n_input, n_hidden)) for i in range(n_hidden_layers - 1): links.add_link(L.Linear(n_hidden, n_hidden)) links.add_link(L.Linear(n_hidden, n_output)) self.n_input = n_input self.n_hidden = n_hidden self.n_output = n_output self.n_hidden_layers = n_hidden_layers self.actfun = actfun self.monitor = [] super(MLP, self).__init__(links)
def __init__(self, ninput, nhidden, noutput, nlayer=2, actfun=F.relu): """ :param ninput: number of inputs :param nhidden: number of hidden units :param noutput: number of outputs :param nlayer: number of weight matrices (2; standard MLP) :param actfun: used activation function (ReLU) """ links = ChainList() if nlayer == 1: links.add_link(L.Linear(ninput, noutput)) else: links.add_link(L.Linear(ninput, nhidden)) for i in range(nlayer - 2): links.add_link(L.Linear(nhidden, nhidden)) links.add_link(L.Linear(nhidden, noutput)) self.ninput = ninput self.nhidden = nhidden self.noutput = noutput self.nlayer = nlayer self.actfun = actfun self.h = {} super(DeepNeuralNetwork, self).__init__(links)
def __init__(self, ninput, nhidden, noutput, nlayer=2, link=L.LSTM): """ :param ninput: number of inputs :param nhidden: number of hidden units :param noutput: number of outputs :param nlayer: number of weight matrices (2 = standard RNN with one layer of hidden units) :param link: used recurrent link (LSTM) """ links = ChainList() if nlayer == 1: links.add_link(L.Linear(ninput, noutput)) else: links.add_link(link(ninput, nhidden)) for i in range(nlayer - 2): links.add_link(link(nhidden, nhidden)) links.add_link(L.Linear(nhidden, noutput)) self.ninput = ninput self.nhidden = nhidden self.noutput = noutput self.nlayer = nlayer self.h = {} super(RecurrentNeuralNetwork, self).__init__(links)
class NNAutoEncoder (): def __init__(self, encoder, decoder, optimizer, epoch=20, batch_size=100, log_path="", export_path="", gpu_flag=-1): self.encoder = encoder self.decoder = decoder self.optimizer = optimizer self.epoch = epoch self.batch_size = batch_size self.log_path = log_path self.export_path = export_path self.autoencoded = ChainList() self.gpu_flag= gpu_flag def fit(self, x_train): for layer in range(0, len(self.encoder)): # Creating model self.model = ChainList(self.encoder[layer].copy(), self.decoder[layer].copy()) NNManager.forward = self.forward nn = NNManager(self.model, self.optimizer, F.mean_squared_error, self.epoch, self.batch_size, self.log_path, gpu_flag=self.gpu_flag) # Training x_data = self.encode(x_train, layer).data nn.fit(x_data, x_data) self.autoencoded.add_link(nn.model[0].copy()) if self.export_path != "": if self.gpu_flag >= 0: self.autoencoded.to_cpu() pickle.dump(self.autoencoded, open(self.export_path, 'wb'), -1) return self def predict(self, x_test): raise Exception("Prediction for AutoEncoder is not implemented.") def encode(self, x, n): if n == 0: return Variable(x) else: h = self.encode(x, n-1) return F.relu(self.autoencoded[n-1](h)) def forward(self, x): h = F.dropout(F.relu(self.model[0](x))) return F.dropout(F.relu(self.model[1](h)))
def __init__(self, in_vocab_size, hidden_dim, layer_num, out_vocab_size, gru, bidirectional, pyramidal, dropout_ratio, src_vocab_size=None): super(AttentionalEncoderDecoder, self).__init__() if src_vocab_size is None: # use same vocabulary for source/target word_emb = L.EmbedID(in_vocab_size, hidden_dim, ignore_label=IGNORE_ID) self.add_link('word_emb', word_emb) self.word_emb_src = word_emb self.word_emb_trg = word_emb else: word_emb_src = L.EmbedID(src_vocab_size, hidden_dim, ignore_label=IGNORE_ID) word_emb_trg = L.EmbedID(in_vocab_size, hidden_dim, ignore_label=IGNORE_ID) self.add_link('word_emb_src', word_emb_src) self.add_link('word_emb_trg', word_emb_trg) rnns = ChainList() Rnn = GruRnn if gru else LstmRnn for i in range(layer_num): if bidirectional: rnn_f = Rnn(hidden_dim) rnn_b = Rnn(hidden_dim) rnn = BiRnn(rnn_f, rnn_b) else: rnn = Rnn(hidden_dim) rnns.add_link(rnn) multi_rnn = MultiLayerRnn(rnns, [hidden_dim] * layer_num, pyramidal, dropout_ratio) self.add_link('encoder', Encoder(self.word_emb_src, multi_rnn)) self.add_link('decoder', AttentionalDecoder(self.word_emb_trg, hidden_dim, layer_num, out_vocab_size, gru, dropout_ratio)) self.in_vocab_size = in_vocab_size self.hidden_dim = hidden_dim self.layer_num = layer_num self.out_vocab_size = out_vocab_size self.gru = gru self.bidirectional = bidirectional self.pyramidal = pyramidal
def __init__(self, emb_dim, vocab_size, layer_dims, feature_dim, suppress_output, eos_id=0): """ Recurrent Neural Network with multiple layers. in_dim -> layers[0] -> ... -> layers[-1] -> out_dim (optional) :param int emb_dim: dimension of embeddings :param int vocab_size: size of vocabulary :param layer_dims: dimensions of hidden layers :param int feature_dim: dimesion of external feature :type layer_dims: list of int :param bool suppress_output: whether to suppress output :param int eos_id: ID of <BOS> and <EOS> """ super(Rnn, self).__init__(emb=F.EmbedID(vocab_size, emb_dim)) self.emb_dim = emb_dim self.vocab_size = vocab_size self.layer_dims = layer_dims self.feature_dim = feature_dim self.suppress_output = suppress_output self.eos_id = eos_id # add hidden layer_dims ls_xh = ChainList() ls_hh = ChainList() ls_fh = ChainList() layer_dims = [emb_dim] + layer_dims for in_dim, out_dim in zip(layer_dims, layer_dims[1:]): ls_xh.add_link(F.Linear(in_dim, out_dim * 4)) ls_hh.add_link(F.Linear(out_dim, out_dim * 4)) ls_fh.add_link(F.Linear(feature_dim, out_dim * 4)) self.add_link('ls_xh', ls_xh) self.add_link('ls_hh', ls_hh) self.add_link('ls_fh', ls_fh) if not suppress_output: # add output layer self.add_link('l_y', F.Linear(layer_dims[-1], self.vocab_size))
def __init__(self, emb_dim, vocab_size, layer_dims, feature_dim, suppress_output, eos_id=0): """ Recurrent Neural Network with multiple layers. in_dim -> layers[0] -> ... -> layers[-1] -> out_dim (optional) :param int emb_dim: dimension of embeddings :param int vocab_size: size of vocabulary :param layer_dims: dimensions of hidden layers :param int feature_dim: dimesion of external feature :type layer_dims: list of int :param bool suppress_output: whether to suppress output :param int eos_id: ID of <BOS> and <EOS> """ super(Rnn, self).__init__(emb=F.EmbedID(vocab_size, emb_dim)) self.emb_dim = emb_dim self.vocab_size = vocab_size self.layer_dims = layer_dims self.feature_dim = feature_dim self.suppress_output = suppress_output self.eos_id = eos_id # add hidden layer_dims ls_xh = ChainList() ls_hh = ChainList() ls_fh = ChainList() layer_dims = [emb_dim] + layer_dims for in_dim, out_dim in zip(layer_dims, layer_dims[1:]): ls_xh.add_link(F.Linear(in_dim, out_dim*4)) ls_hh.add_link(F.Linear(out_dim, out_dim*4)) ls_fh.add_link(F.Linear(feature_dim, out_dim*4)) self.add_link('ls_xh', ls_xh) self.add_link('ls_hh', ls_hh) self.add_link('ls_fh', ls_fh) if not suppress_output: # add output layer self.add_link('l_y', F.Linear(layer_dims[-1], self.vocab_size))
def __init__(self, n_input, n_output, n_hidden1=10, n_hidden2=10, n_hidden_layers=1, link=L.LSTM): """ :param n_input: nchannels x height x width :param n_hidden: number of hidden units :param n_output: number of outputs :param n_hidden_layers: number of hidden layers :param link: used recurrent link (LSTM) """ k = 3 # kernel size s = 1 # stride p = 1 # padding n_linear = n_hidden1 * np.prod(1 + (np.array(n_input[1:]) - k + 2*p)/s) links = ChainList() if n_hidden_layers == 0: links.add_link(L.Convolution2D(n_input[0], n_hidden1, k, s, p)) links.add_link(L.Linear(n_linear, n_output)) else: links.add_link(L.Convolution2D(n_input[0], n_hidden1, k, s, p)) links.add_link(link(n_linear, n_hidden2)) for i in range(n_hidden_layers - 1): links.add_link(link(n_hidden2, n_hidden2)) links.add_link(L.Linear(n_hidden2, n_output)) self.n_input = n_input self.n_hidden1 = n_hidden1 self.n_hidden2 = n_hidden2 self.n_output = n_output self.n_hidden_layers = n_hidden_layers self.monitor = [] super(CRNN3, self).__init__(links)