Пример #1
0
class TestSegNetBasic(unittest.TestCase):
    def setUp(self):
        self.n_class = 10
        self.link = SegNetBasic(n_class=self.n_class)

    def check_call(self):
        xp = self.link.xp
        x = chainer.Variable(
            xp.random.uniform(low=-1, high=1,
                              size=(2, 3, 128, 160)).astype(np.float32))
        y = self.link(x)

        self.assertIsInstance(y, chainer.Variable)
        self.assertIsInstance(y.array, xp.ndarray)
        self.assertEqual(y.shape, (2, self.n_class, 128, 160))

    @attr.slow
    def test_call_cpu(self):
        self.check_call()

    @attr.gpu
    @attr.slow
    def test_call_gpu(self):
        self.link.to_gpu()
        self.check_call()

    @attr.slow
    def test_predict_cpu(self):
        assert_is_semantic_segmentation_link(self.link, self.n_class)

    @attr.gpu
    @attr.slow
    def test_predict_gpu(self):
        self.link.to_gpu()
        assert_is_semantic_segmentation_link(self.link, self.n_class)
Пример #2
0
class TestSegNetBasic(unittest.TestCase):

    def setUp(self):
        self.n_class = 10
        self.link = SegNetBasic(n_class=self.n_class)

    def check_call(self):
        xp = self.link.xp
        x = chainer.Variable(xp.random.uniform(
            low=-1, high=1, size=(2, 3, 128, 160)).astype(np.float32))
        y = self.link(x)

        self.assertIsInstance(y, chainer.Variable)
        self.assertIsInstance(y.array, xp.ndarray)
        self.assertEqual(y.shape, (2, self.n_class, 128, 160))

    @attr.slow
    def test_call_cpu(self):
        self.check_call()

    @attr.gpu
    @attr.slow
    def test_call_gpu(self):
        self.link.to_gpu()
        self.check_call()

    @attr.slow
    def test_predict_cpu(self):
        assert_is_semantic_segmentation_link(self.link, self.n_class)

    @attr.gpu
    @attr.slow
    def test_predict_gpu(self):
        self.link.to_gpu()
        assert_is_semantic_segmentation_link(self.link, self.n_class)
Пример #3
0
def main():
    chainer.config.train = False

    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained_model', default='camvid')
    parser.add_argument('image')
    args = parser.parse_args()

    model = SegNetBasic(
        n_class=len(camvid_label_names),
        pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    labels = model.predict([img])
    label = labels[0]

    fig = plot.figure()
    ax1 = fig.add_subplot(1, 2, 1)
    vis_image(img, ax=ax1)
    ax2 = fig.add_subplot(1, 2, 2)
    vis_label(label, camvid_label_names, camvid_label_colors, ax=ax2)
    plot.show()
Пример #4
0
def main():
    chainer.config.train = False

    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained_model', default='camvid')
    parser.add_argument('image')
    args = parser.parse_args()

    model = SegNetBasic(
        n_class=len(camvid_label_names),
        pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    labels = model.predict([img])
    label = labels[0]

    fig = plot.figure()
    ax1 = fig.add_subplot(1, 2, 1)
    vis_image(img, ax=ax1)
    ax2 = fig.add_subplot(1, 2, 2)
    vis_semantic_segmentation(
        label, camvid_label_names, camvid_label_colors, ax=ax2)
    plot.show()
Пример #5
0
def main():
    chainer.config.train = False

    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    parser.add_argument('--dataset', choices=('camvid', ), default='camvid')
    parser.add_argument('image')
    args = parser.parse_args()

    if args.dataset == 'camvid':
        if args.pretrained_model is None:
            args.pretrained_model = 'camvid'
        label_names = camvid_label_names
        colors = camvid_label_colors

    model = SegNetBasic(n_class=len(label_names),
                        pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    labels = model.predict([img])
    label = labels[0]

    fig = plt.figure()
    ax1 = fig.add_subplot(1, 2, 1)
    vis_image(img, ax=ax1)
    ax2 = fig.add_subplot(1, 2, 2)
    # Do not overlay the label image on the color image
    vis_semantic_segmentation(None, label, label_names, colors, ax=ax2)
    plt.show()
Пример #6
0
    def test_pretrained(self):
        kwargs = {
            'n_class': self.n_class,
            'pretrained_model': self.pretrained_model,
        }

        if self.pretrained_model == 'camvid':
            valid = self.n_class in {None, 11}

        if valid:
            SegNetBasic(**kwargs)
        else:
            with self.assertRaises(ValueError):
                SegNetBasic(**kwargs)
def get_dataset_and_model(dataset_name, model_name, pretrained_model,
                          input_size):
    if dataset_name == 'cityscapes':
        dataset = CityscapesSemanticSegmentationDataset(
            split='val', label_resolution='fine')
        label_names = cityscapes_semantic_segmentation_label_names
    elif dataset_name == 'ade20k':
        dataset = ADE20KSemanticSegmentationDataset(split='val')
        label_names = ade20k_semantic_segmentation_label_names
    elif dataset_name == 'camvid':
        dataset = CamVidDataset(split='test')
        label_names = camvid_label_names

    n_class = len(label_names)

    if pretrained_model:
        pretrained_model = pretrained_model
    else:
        pretrained_model = dataset_name
    if model_name == 'pspnet_resnet101':
        model = PSPNetResNet101(n_class=n_class,
                                pretrained_model=pretrained_model,
                                input_size=input_size)
    elif model_name == 'pspnet_resnet50':
        model = PSPNetResNet50(n_class=n_class,
                               pretrained_model=pretrained_model,
                               input_size=input_size)
    elif model_name == 'segnet':
        model = SegNetBasic(n_class=n_class, pretrained_model=pretrained_model)
    return dataset, label_names, model
Пример #8
0
class TestSegNetBasic(unittest.TestCase):
    def setUp(self):
        self.n_class = 10
        self.link = SegNetBasic(n_class=self.n_class)

    def check_call(self):
        xp = self.link.xp
        x = chainer.Variable(
            xp.random.uniform(low=-1, high=1,
                              size=(2, 3, 128, 160)).astype(np.float32))
        y = self.link(x)

        self.assertIsInstance(y, chainer.Variable)
        self.assertIsInstance(y.data, xp.ndarray)
        self.assertEqual(y.shape, (2, self.n_class, 128, 160))

    def test_call_cpu(self):
        self.check_call()

    @attr.gpu
    def test_call_gpu(self):
        self.link.to_gpu()
        self.check_call()

    def check_predict(self):
        hs = np.random.randint(128, 160, size=(2, ))
        ws = np.random.randint(128, 160, size=(2, ))
        imgs = [
            np.random.uniform(size=(3, hs[0], ws[0])).astype(np.float32),
            np.random.uniform(size=(3, hs[1], ws[1])).astype(np.float32),
        ]

        labels = self.link.predict(imgs)

        self.assertEqual(len(labels), 2)
        for i in range(2):
            self.assertIsInstance(labels[i], np.ndarray)
            self.assertEqual(labels[i].shape, (hs[i], ws[i]))
            self.assertEqual(labels[i].dtype, np.int64)

    def test_predict_cpu(self):
        self.check_predict()

    @attr.gpu
    def test_predict_gpu(self):
        self.link.to_gpu()
        self.check_predict()
Пример #9
0
def get_segnet(batchsize):
    model = SegNetBasic(n_class=17)
    model = PixelwiseSoftmaxClassifier(model, class_weight=np.ones(17))
    x = np.random.uniform(size=(batchsize, 3, 1024, 1024)).astype('f')
    x = chainer.as_variable(x)
    t = np.random.randint(size=(batchsize, 1024, 1024), low=0, high=10)\
        .astype(np.int32)
    t = chainer.as_variable(t)
    return [x, t], model
Пример #10
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained_model', type=str, default='camvid')
    parser.add_argument('--batchsize', type=int, default=24)
    args = parser.parse_args()

    model = SegNetBasic(n_class=len(camvid_label_names),
                        pretrained_model=args.pretrained_model)
    if args.gpu >= 0:
        model.to_gpu(args.gpu)

    model = calc_bn_statistics(model, args.batchsize)

    chainer.config.train = False

    test = CamVidDataset(split='test')
    it = chainer.iterators.SerialIterator(test,
                                          batch_size=args.batchsize,
                                          repeat=False,
                                          shuffle=False)

    imgs, pred_values, gt_values = apply_prediction_to_iterator(
        model.predict, it)
    # Delete an iterator of images to save memory usage.
    del imgs
    pred_labels, = pred_values
    gt_labels, = gt_values

    confusion = calc_semantic_segmentation_confusion(pred_labels, gt_labels)
    ious = calc_semantic_segmentation_iou(confusion)

    pixel_accuracy = np.diag(confusion).sum() / confusion.sum()
    mean_pixel_accuracy = np.mean(
        np.diag(confusion) / np.sum(confusion, axis=1))

    for iou, label_name in zip(ious, camvid_label_names):
        print('{:>23} : {:.4f}'.format(label_name, iou))
    print('=' * 34)
    print('{:>23} : {:.4f}'.format('mean IoU', np.nanmean(ious)))
    print('{:>23} : {:.4f}'.format('Class average accuracy',
                                   mean_pixel_accuracy))
    print('{:>23} : {:.4f}'.format('Global average accuracy', pixel_accuracy))
Пример #11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained_model', type=str, default='camvid')
    parser.add_argument('--batchsize', type=int, default=24)
    args = parser.parse_args()

    model = SegNetBasic(n_class=len(camvid_label_names),
                        pretrained_model=args.pretrained_model)
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    model = calc_bn_statistics(model, args.batchsize)

    chainer.config.train = False

    test = CamVidDataset(split='test')
    it = chainer.iterators.SerialIterator(test,
                                          batch_size=args.batchsize,
                                          repeat=False,
                                          shuffle=False)

    imgs, pred_values, gt_values = apply_prediction_to_iterator(
        model.predict, it)
    # Delete an iterator of images to save memory usage.
    del imgs
    pred_labels, = pred_values
    gt_labels, = gt_values

    result = eval_semantic_segmentation(pred_labels, gt_labels)

    for iu, label_name in zip(result['iou'], camvid_label_names):
        print('{:>23} : {:.4f}'.format(label_name, iu))
    print('=' * 34)
    print('{:>23} : {:.4f}'.format('mean IoU', result['miou']))
    print('{:>23} : {:.4f}'.format('Class average accuracy',
                                   result['mean_class_accuracy']))
    print('{:>23} : {:.4f}'.format('Global average accuracy',
                                   result['pixel_accuracy']))
Пример #12
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--batchsize', type=int, default=12)
    parser.add_argument('--class_weight', type=str, default='class_weight.npy')
    parser.add_argument('--out', type=str, default='result')
    args = parser.parse_args()

    # Triggers
    log_trigger = (50, 'iteration')
    validation_trigger = (2000, 'iteration')
    end_trigger = (16000, 'iteration')

    # Dataset
    train = CamVidDataset(split='train')
    train = TransformDataset(train, transform)
    val = CamVidDataset(split='val')

    # Iterator
    train_iter = iterators.MultiprocessIterator(train, args.batchsize)
    val_iter = iterators.MultiprocessIterator(
        val, args.batchsize, shuffle=False, repeat=False)

    # Model
    class_weight = np.load(args.class_weight)
    model = SegNetBasic(n_class=11)
    model = PixelwiseSoftmaxClassifier(
        model, class_weight=class_weight)
    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()  # Copy the model to the GPU

    # Optimizer
    optimizer = optimizers.MomentumSGD(lr=0.1, momentum=0.9)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005))

    # Updater
    updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)

    # Trainer
    trainer = training.Trainer(updater, end_trigger, out=args.out)

    trainer.extend(extensions.LogReport(trigger=log_trigger))
    trainer.extend(extensions.observe_lr(), trigger=log_trigger)
    trainer.extend(extensions.dump_graph('main/loss'))

    if extensions.PlotReport.available():
        trainer.extend(extensions.PlotReport(
            ['main/loss'], x_key='iteration',
            file_name='loss.png'))
        trainer.extend(extensions.PlotReport(
            ['validation/main/miou'], x_key='iteration',
            file_name='miou.png'))

    trainer.extend(extensions.snapshot_object(
        model.predictor, filename='model_iteration-{.updater.iteration}'),
        trigger=end_trigger)
    trainer.extend(extensions.PrintReport(
        ['epoch', 'iteration', 'elapsed_time', 'lr',
         'main/loss', 'validation/main/miou',
         'validation/main/mean_class_accuracy',
         'validation/main/pixel_accuracy']),
        trigger=log_trigger)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(
        SemanticSegmentationEvaluator(
            val_iter, model.predictor,
            camvid_label_names),
        trigger=validation_trigger)

    trainer.run()
Пример #13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--batchsize', type=int, default=12)
    parser.add_argument('--class_weight', type=str, default='class_weight.npy')
    parser.add_argument('--out', type=str, default='result')
    args = parser.parse_args()

    # Triggers
    log_trigger = (50, 'iteration')
    validation_trigger = (2000, 'iteration')
    end_trigger = (16000, 'iteration')

    # Dataset
    train = CamVidDataset(split='train')
    train = TransformDataset(train, transform)
    val = CamVidDataset(split='val')

    # Iterator
    train_iter = iterators.MultiprocessIterator(train, args.batchsize)
    val_iter = iterators.MultiprocessIterator(val,
                                              args.batchsize,
                                              shuffle=False,
                                              repeat=False)

    # Model
    class_weight = np.load(args.class_weight)
    model = SegNetBasic(n_class=len(camvid_label_names))
    model = PixelwiseSoftmaxClassifier(model, class_weight=class_weight)
    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()  # Copy the model to the GPU

    # Optimizer
    optimizer = optimizers.MomentumSGD(lr=0.1, momentum=0.9)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005))

    # Updater
    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=args.gpu)

    # Trainer
    trainer = training.Trainer(updater, end_trigger, out=args.out)

    trainer.extend(extensions.LogReport(trigger=log_trigger))
    trainer.extend(extensions.observe_lr(), trigger=log_trigger)
    trainer.extend(extensions.dump_graph('main/loss'))

    if extensions.PlotReport.available():
        trainer.extend(
            extensions.PlotReport(['main/loss'],
                                  x_key='iteration',
                                  file_name='loss.png'))
        trainer.extend(
            extensions.PlotReport(['validation/main/miou'],
                                  x_key='iteration',
                                  file_name='miou.png'))

    trainer.extend(extensions.snapshot_object(
        model.predictor, filename='model_iteration-{.updater.iteration}'),
                   trigger=end_trigger)
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'elapsed_time', 'lr', 'main/loss',
        'validation/main/miou', 'validation/main/mean_class_accuracy',
        'validation/main/pixel_accuracy'
    ]),
                   trigger=log_trigger)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(SemanticSegmentationEvaluator(val_iter, model.predictor,
                                                 camvid_label_names),
                   trigger=validation_trigger)

    trainer.run()
Пример #14
0
def main():
    # This follows evaluation code used in SegNet.
    # https://github.com/alexgkendall/SegNet-Tutorial/blob/master/
    # # Scripts/compute_test_results.m
    parser = argparse.ArgumentParser()
    parser.add_argument('gpu', type=int, default=-1)
    parser.add_argument('snapshot', type=str)
    parser.add_argument('--batchsize', type=int, default=24)
    args = parser.parse_args()

    n_class = 11
    ignore_labels = [-1]

    model = SegNetBasic(n_class=n_class)
    serializers.load_npz(args.snapshot, model)
    model = calc_bn_statistics(model, args.gpu)
    model.train = False
    if args.gpu >= 0:
        model.to_gpu(args.gpu)

    test = CamVidDataset(split='test')
    it = chainer.iterators.SerialIterator(test,
                                          batch_size=args.batchsize,
                                          repeat=False,
                                          shuffle=False)

    n_positive = [0 for _ in range(n_class)]
    n_true = [0 for _ in range(n_class)]
    n_true_positive = [0 for _ in range(n_class)]
    for batch in it:
        img, gt_label = concat_examples(batch, args.gpu)
        img = chainer.Variable(img, volatile=True)
        pred_label = F.argmax(F.softmax(model(img)), axis=1)
        pred_label = cuda.to_cpu(pred_label.data)
        gt_label = cuda.to_cpu(gt_label)
        for cls_i in range(n_class):
            if cls_i in ignore_labels:
                continue
            n_positive[cls_i] += np.sum(pred_label == cls_i)
            n_true[cls_i] += np.sum(gt_label == cls_i)
            n_true_positive[cls_i] += np.sum(
                (pred_label == cls_i) * (gt_label == cls_i))

    ious = []
    mean_accs = []
    pixel_accs = []
    for cls_i in range(n_class):
        if cls_i in ignore_labels:
            continue
        deno = n_positive[cls_i] + n_true[cls_i] - n_true_positive[cls_i]
        iou = n_true_positive[cls_i] / deno
        ious.append(iou)
        print('{:>23} : {:.4f}'.format(camvid_label_names[cls_i], iou))

        mean_accs.append(n_true_positive[cls_i] / n_true[cls_i])
        pixel_accs.append([n_true_positive[cls_i], n_true[cls_i]])

    print('=' * 34)
    print('{:>23} : {:.4f}'.format('mean IoU', np.mean(ious)))
    print('{:>23} : {:.4f}'.format('Class average accuracy',
                                   np.mean(mean_accs)))
    pixel_accs = np.asarray(pixel_accs)
    pixel_accs = pixel_accs[:, 0].sum() / pixel_accs[:, 1].sum()
    print('{:>23} : {:.4f}'.format('Global average accuracy', pixel_accs))
Пример #15
0
 def setUp(self):
     self.n_class = 10
     self.link = SegNetBasic(n_class=self.n_class)
Пример #16
0
 def setUp(self):
     self.n_class = 10
     self.link = SegNetBasic(n_class=self.n_class)
Пример #17
0
def handler(context):
    # Triggers
    log_trigger = (50, 'iteration')
    validation_trigger = (2000, 'iteration')
    end_trigger = (nb_iterations, 'iteration')

    # Dataset
    dataset_alias = context.datasets
    train_dataset_id = dataset_alias['train']
    val_dataset_id = dataset_alias['val']
    train = SegmentationDatasetFromAPI(train_dataset_id)
    val = SegmentationDatasetFromAPI(val_dataset_id)
    class_weight = calc_weight(train)

    print(class_weight)

    train = TransformDataset(train, transform)

    # Iterator
    train_iter = iterators.SerialIterator(train, BATCHSIZE)
    val_iter = iterators.SerialIterator(val,
                                        BATCHSIZE,
                                        shuffle=False,
                                        repeat=False)

    # Model
    model = SegNetBasic(n_class=len(camvid_label_names))
    model = PixelwiseSoftmaxClassifier(model, class_weight=class_weight)

    if USE_GPU >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(USE_GPU).use()
        model.to_gpu()  # Copy the model to the GPU

    # Optimizer
    optimizer = optimizers.MomentumSGD(lr=0.1, momentum=0.9)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005))

    # Updater
    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=USE_GPU)

    # Trainer
    trainer = training.Trainer(updater,
                               end_trigger,
                               out=ABEJA_TRAINING_RESULT_DIR)

    trainer.extend(extensions.LogReport(trigger=log_trigger))
    trainer.extend(extensions.observe_lr(), trigger=log_trigger)
    trainer.extend(extensions.dump_graph('main/loss'))

    trainer.extend(extensions.snapshot_object(
        model.predictor, filename='model_iteration-{.updater.iteration}'),
                   trigger=end_trigger)

    print_entries = [
        'iteration', 'main/loss', 'validation/main/miou',
        'validation/main/mean_class_accuracy', 'validation/main/pixel_accuracy'
    ]

    report_entries = [
        'epoch', 'iteration', 'lr', 'main/loss', 'validation/main/miou',
        'validation/main/mean_class_accuracy', 'validation/main/pixel_accuracy'
    ]

    trainer.extend(Statistics(report_entries,
                              nb_iterations,
                              obs_key='iteration'),
                   trigger=log_trigger)
    trainer.extend(Tensorboard(report_entries, out_dir=log_path))
    trainer.extend(extensions.PrintReport(print_entries), trigger=log_trigger)

    trainer.extend(SemanticSegmentationEvaluator(val_iter, model.predictor,
                                                 camvid_label_names),
                   trigger=validation_trigger)

    trainer.run()