Пример #1
0
    def check_forward(self, x_data):
        xp = cuda.get_array_module(x_data)
        y = maximum_entropy_mellowmax(x_data)
        self.assertEqual(y.data.dtype, self.dtype)

        print('y', y.data)

        # Outputs must be positive
        xp.testing.assert_array_less(xp.zeros_like(y.data), y.data)

        # Sums must be ones
        sums = xp.sum(y.data, axis=1)
        testing.assert_allclose(sums, xp.ones_like(sums))

        # Expectations must be equal to memllowmax's outputs
        testing.assert_allclose(xp.sum(y.data * x_data, axis=1),
                                mellowmax(x_data, axis=1).data)
Пример #2
0
    def check_forward(self, x_data):
        xp = cuda.get_array_module(x_data)
        y = mellowmax(x_data, axis=self.axis, omega=self.omega)
        self.assertEqual(y.data.dtype, self.dtype)

        x_min = xp.min(x_data, axis=self.axis)
        x_max = xp.max(x_data, axis=self.axis)
        x_mean = xp.mean(x_data, axis=self.axis)
        print('x_min', x_min)
        print('y.data', y.data)

        # min <= mellowmax <= max
        eps = 1e-5
        self.assertTrue(xp.all(x_min <= y.data + eps))
        self.assertTrue(xp.all(x_max >= y.data - eps))

        # omega > 0 -> mellowmax is more like max
        if self.omega > 0:
            self.assertTrue(xp.all(x_mean <= y.data + eps))
        # omega < 0 -> mellowmax is more like min
        if self.omega < 0:
            self.assertTrue(xp.all(x_mean >= y.data - eps))