def __init__(self, dist, trans): """ Args: dist (Dist) : Distribution to wrap the copula around. trans (Dist) : The copula wrapper `[0,1]^D \into [0,1]^D`. """ Dist.__init__(self, dist=dist, trans=trans, _advance=True, _length=len(trans))
def __init__(self, dist, N): """ Parameters: dist : Dist Input variable. Must have `len(dist)==1`. N : int Number of variable in the output. """ assert len(dist)==1 and N>1 Dist.__init__(self, dist=dist, _length=N)
def __init__(self, loc=[0,0], scale=[[1,.5],[.5,1]]): loc, scale = np.asfarray(loc), np.asfarray(scale) assert len(loc)==len(scale) dist = chaospy.dist.joint.Iid(normal(), len(loc)) C = np.linalg.cholesky(scale) Ci = np.linalg.inv(C) Dist.__init__(self, dist=dist, loc=loc, C=C, Ci=Ci, scale=scale, _length=len(scale), _advance=True)
def __init__(self, dist, N): """ Parameters ---------- dist : Dist Input variable. Must have `len(dist)==1`. N : int Number of variable in the output. """ assert len(dist)==1 and N>1 Dist.__init__(self, dist=dist, _length=N)
def __init__(self, R, ordering=None): "R symmetric & positive definite matrix" if ordering is None: ordering = range(len(R)) ordering = np.array(ordering) P = np.eye(len(R))[ordering] R = np.dot(P, np.dot(R, P.T)) R = np.linalg.cholesky(R) R = np.dot(P.T, np.dot(R, P)) Ci = np.linalg.inv(R) Dist.__init__(self, C=R, Ci=Ci, _length=len(R))
def __init__(self, *args): """ Parameters ---------- *args : [Dist, ..., Dist] Set of univariate distributions to join into joint. """ assert np.all([isinstance(_, Dist) for _ in args]) prm = {"_%03d" % i: args[i] for i in range(len(args))} Dist.__init__(self, _advance=True, _length=len(args), **prm) self.sorting = [] for dist in self.graph: if dist in args: self.sorting.append(args.index(dist))
def __init__(self, *args): """ Parameters ---------- *args : [Dist, ..., Dist] Set of univariate distributions to join into joint. """ assert np.all([isinstance(_, Dist) for _ in args]) prm = {"_%03d" % i:args[i] for i in range(len(args))} Dist.__init__(self, _advance=True, _length=len(args), **prm) self.sorting = [] for dist in self.graph: if dist in args: self.sorting.append(args.index(dist))
def __init__(self, loc=[0, 0], scale=[[1, .5], [.5, 1]]): loc, scale = np.asfarray(loc), np.asfarray(scale) assert len(loc) == len(scale) dist = chaospy.dist.joint.Iid(normal(), len(loc)) C = np.linalg.cholesky(scale) Ci = np.linalg.inv(C) Dist.__init__(self, dist=dist, loc=loc, C=C, Ci=Ci, scale=scale, _length=len(scale), _advance=True)
def __init__(self, a=1, loc=[0, 0], scale=[[1, .5], [.5, 1]]): loc, scale = np.asfarray(loc), np.asfarray(scale) C = np.linalg.cholesky(scale) Ci = np.linalg.inv(C) Dist.__init__(self, a=a, C=C, Ci=Ci, loc=loc, _length=len(C))
def __init__(self, df, nc): Dist.__init__(self, df=df, nc=nc)
def __init__(self, mu): Dist.__init__(self, mu=mu)
def __init__(self, N, theta, eps=1e-6): "theta!=0" theta = float(theta) assert theta != 0 Dist.__init__(self, th=theta, _length=N, eps=eps)
def __init__(self, nu): Dist.__init__(self, nu=nu)
def __init__(self, df=1): Dist.__init__(self, df=df)
def __init__(self, c=1.): Dist.__init__(self, c=c)
def __init__(self, c=0): Dist.__init__(self, c=c)
def __init__(self, a=.5): assert np.all(a >= 0) and np.all(a <= 1) Dist.__init__(self, a=a)
def __init__(self, a=1, c=1): Dist.__init__(self, a=a, c=c)
def __init__(self, b=1): Dist.__init__(self, b=b)
def __init__(self, a=1): Dist.__init__(self, a=a)
def __init__(self): Dist.__init__(self)
def __init__(self, lo=0, up=1): Dist.__init__(self, lo=lo, up=up)
def __init__(self, x, a, c): Dist.__init__(self, a=a, c=c)
def __init__(self, a=1, loc=[0,0], scale=[[1,.5],[.5,1]]): loc, scale = np.asfarray(loc), np.asfarray(scale) C = np.linalg.cholesky(scale) Ci = np.linalg.inv(C) Dist.__init__(self, a=a, C=C, Ci=Ci, loc=loc, _length=len(C))
def __init__(self, dist): Dist.__init__(self, dist=dist, _length=len(dist), _advance=True)
def __init__(self, c=1., d=1.): Dist.__init__(self, c=c, d=d)
def __init__(self, a=1, b=1): Dist.__init__(self, a=a, b=b)
def __init__(self, a): Dist.__init__(a=a)
def __init__(self, k, s): Dist.__init__(self, k=k, s=s)
def __init__(self, N, theta, eps=1e-6): "theta in [1,inf)" theta = float(theta) assert theta >= 1 Dist.__init__(self, th=theta, _length=N, eps=eps)
def __init__(self, dfn, dfd, nc): Dist.__init__(self, dfn=dfn, dfd=dfd, nc=nc)
def __init__(self, N, theta=1., eps=1e-6): theta = float(theta) Dist.__init__(self, th=theta, eps=eps, _length=N)
def __init__(self, c, s): Dist.__init__(self, c=c, s=s)
def __init__(self, lam): Dist.__init__(self, lam=lam)
def __init__(self, a, b, mu, sigma): Dist.__init__(self, a=a, b=b) self.norm = normal()*sigma+mu self.fa = self.norm.fwd(a) self.fb = self.norm.fwd(b)
def __init__(self, a=.5): assert np.all(a>=0) and np.all(a<=1) Dist.__init__(self, a=a)
def __init__(self, a, R): self.MV = chaospy.dist.mvstudentt(a, np.zeros(len(R)), R) self.UV = chaospy.dist.student_t(a) Dist.__init__(self, _length=len(R))
def __init__(self, a=1, b=1): assert np.all(a>0) and np.all(b>0) Dist.__init__(self, a=a, b=b)
def __init__(self, N, theta=1., eps=1e-6): Dist.__init__(self, th=float(theta), _length=N, eps=eps)
def __init__(self, N, theta=.5, eps=1e-6): theta = float(theta) assert -1 <= theta < 1 Dist.__init__(self, th=theta, _length=N, eps=eps)
def __init__(self, a, b, mu, sigma): Dist.__init__(self, a=a, b=b) self.norm = normal() * sigma + mu self.fa = self.norm.fwd(a) self.fb = self.norm.fwd(b)
def __init__(self, a=1, b=1, c=1): Dist.__init__(self, a=a, b=b, c=c)
def __init__(self, c=1): Dist.__init__(self, c=c)
def __init__(self, N, theta=1.0, eps=1e-6): Dist.__init__(self, th=float(theta), _length=N, eps=eps)
def __init__(self, dist): lo, up = dist.range() assert np.all(lo >= -1) and np.all(up <= 1) Dist.__init__(self, dist=dist, _length=len(dist), _advance=True)
def __init__(self, N, theta=0.5, eps=1e-6): theta = float(theta) assert -1 <= theta < 1 Dist.__init__(self, th=theta, _length=N, eps=eps)
def __init__(self, dist): assert np.all(dist.range() >= 1) Dist.__init__(self, dist=dist, _length=len(dist), _advance=True)
def __init__(self, a=1, b=1): assert np.all(a > 0) and np.all(b > 0) Dist.__init__(self, a=a, b=b)