Пример #1
0
def backpropagate(network, input_vector, targets):

    hidden_outputs, outputs = feed_forward(network, input_vector)

    # the output * (1 - output) is from the derivative sigmoid
    output_deltas = [output * (1 - output) * (output - target)
                     for output, target in zip(outputs, targets)]

    # adjust weights for output layer, one neuron at a time
    for i, output_neuron in enumerate(network[-1]):
        # focus on the ith output layer neuron
        for j, hidden_output in enumerate(hidden_outputs + [1]):
            # adjust the jth weight based on both
            # this neuron's delta and its jth input
            output_neuron[j] -= output_deltas[i] * hidden_output

    # back-propagate errors to hidden layer
    hidden_deltas = [hidden_output * (1 - hidden_output) *
                      dot(output_deltas, [n[i] for n in network[-1]])
                     for i, hidden_output in enumerate(hidden_outputs)]

    # adjust weights for hidden layer, one neuron at a time
    for i, hidden_neuron in enumerate(network[0]):
        for j, input in enumerate(input_vector + [1]):
            hidden_neuron[j] -= hidden_deltas[i] * input
Пример #2
0
def perceptron_output(weights, bias, x):
    """returns 1 if the perceptron 'fires'' 0 if not"""
    calculation = dot(weights, x) + bias
    return step_function(calculation)
Пример #3
0
def neuron_output(weights, inputs):
    return sigmoid(dot(weights, inputs))
def project(v, w):
    """return the projection of v onto the direction of w"""
    projection_length = dot(v, w)
    return scalar_multiply(projection_length, w)
def transform_vector(v, components):
    return [dot(v, w) for w in components]
def directional_variance_i(x_i, w):
    """the variance of the row x_i in the direction determined by w"""
    return dot(x_i, direction(w))
def directional_variance_gradient_i(x_i, w):
    """the contribution of row x_i to the gradient of
    the direction-w variance"""
    projection_length = dot(x_i, direction(w))
    return [2 * projection_length * x_ij for x_ij in x_i]
Пример #8
0
def cosine_similarity(v, w):
    return dot(v, w) / math.sqrt(dot(v, v) * dot(w, w))
def matrix_product_entry(A, B, i, j):
    return dot(get_row(A, i), get_column(B, j))
Пример #10
0
def logistic_log_partial_ij(x_i, y_i, beta, j):
    """here i is the index of the data point,
    j is the index of the derivative"""

    return (y_i - logistic(dot(x_i, beta))) * x_i[j]
Пример #11
0
def logistic_log_likelihood_i(x_i, y_i, beta):
    if y_i == 1:
        return math.log(logistic(dot(x_i, beta)))
    else:
        return math.log(1 - logistic(dot(x_i, beta)))
def predict(x_i, beta):
    return dot(x_i, beta)
def ridge_penalty(beta, alpha):
    return alpha * dot(beta[1:], beta[1:])
    print()

    random.seed(0)  # so that you get the same results as me

    bootstrap_betas = bootstrap_statistic(list(zip(x, daily_minutes_good)),
                                          estimate_sample_beta, 100)

    bootstrap_standard_errors = [
        standard_deviation([beta[i] for beta in bootstrap_betas])
        for i in range(4)
    ]

    print("bootstrap standard errors", bootstrap_standard_errors)
    print()

    print("p_value(30.63, 1.174)", p_value(30.63, 1.174))
    print("p_value(0.972, 0.079)", p_value(0.972, 0.079))
    print("p_value(-1.868, 0.131)", p_value(-1.868, 0.131))
    print("p_value(0.911, 0.990)", p_value(0.911, 0.990))
    print()

    print("regularization")

    random.seed(0)
    for alpha in [0.0, 0.01, 0.1, 1, 10]:
        beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha)
        print("alpha", alpha)
        print("beta", beta)
        print("dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:]))
        print("r-squared", multiple_r_squared(x, daily_minutes_good, beta))
        print()