Пример #1
0
    def test_conversion(self):
        # Make an FCC cell.
        cell = Cell()
        cell.set_basis(lengths=[3.5, 3.6, 3.4], angles=[89, 90, 91])
        cell.add_atom(Atom([0, 0, 0], 0))
        cell.add_atom(Atom([0.5, 0.5, 0], 1))
        cell.add_atom(Atom([0.5, 0, 0.5], 1))
        cell.add_atom(Atom([0, 0.5, 0.5], 1))
        cell.set_type_name(0, "Al")
        cell.set_type_name(1, "Ni")

        # Convert it to string.
        vio = VASP5IO()
        temp = vio.convert_structure_to_string(cell)

        # Convert it back.
        new_cell = vio.parse_file(list_of_lines=temp)

        # Check to make sure everything is good.
        self.assertAlmostEqual(cell.volume(), new_cell.volume(), delta=1e-4)
        self.assertEqual(cell.n_types(), new_cell.n_types())
        np_tst.assert_array_almost_equal(cell.get_lattice_vectors()[1],
                                         new_cell.get_lattice_vectors()[1],
                                         decimal=4)
        new_temp = vio.convert_structure_to_string(new_cell)
        np_tst.assert_equal(temp, new_temp)
    def test_matrix(self):
        # Make a simple structure.
        structure = Cell()
        structure.add_atom(Atom([0, 0, 0], 0))
        structure.set_type_name(0, "Al")

        # Compute the sine matrix.
        mat = self.r.compute_coulomb_matrix(structure)
        self.assertEqual(1, mat.shape[0])
        self.assertEqual(1, mat.shape[1])
        self.assertAlmostEqual(0.5 * 13 ** 2.4, mat[0, 0],delta=1e-6)

        # Add another atom and repeat.
        structure.add_atom(Atom([0.5, 0.5, 0.5], 0))
        mat = self.r.compute_coulomb_matrix(structure)
        self.assertEqual(2, mat.shape[0])
        self.assertEqual(2, mat.shape[1])

        # Test: Is it insensitive to basis changes.
        new_basis = structure.get_basis()
        new_basis[1, 0] = 12
        structure.set_basis(basis=new_basis)
        self.assertAlmostEqual(1.0, structure.volume(), delta=1e-6)
        mat2 = self.r.compute_coulomb_matrix(structure)
        if np.linalg.norm(mat - mat2) > 1e-6:
            sys.stderr.write("WARNING: Not insensitive to basis changes\n")
Пример #3
0
    def test_unit_cell_choice(self):
        # Create a B2 structure with lattice parameter of 1.
        structure = Cell()
        structure.add_atom(Atom([0, 0, 0], 0))
        structure.add_atom(Atom([0.5, 0.5, 0.5], 1))

        # Create a 2x1x1 supercell.
        supercell = Cell()
        supercell.set_basis(lengths=[2, 1, 1], angles=[90, 90, 90])
        supercell.add_atom(Atom([0, 0, 0], 0))
        supercell.add_atom(Atom([0.5, 0, 0], 0))
        supercell.add_atom(Atom([0.25, 0.5, 0.5], 1))
        supercell.add_atom(Atom([0.75, 0.5, 0.5], 1))

        self.tool.set_cut_off_distance(3.0)
        self.tool.set_n_windows(10)
        self.tool.set_smoothing_factor(4)

        # Compute the primitive cell AP-RDF.
        self.tool.analyze_structure(structure)
        p_ap_rdf = self.tool.compute_APRDF([1, 2])

        # Compute the supercell AP-RDF.
        self.tool.analyze_structure(supercell)
        sc_ap_rdf = self.tool.compute_APRDF([1, 2])

        # Compare results.
        np_tst.assert_array_almost_equal(p_ap_rdf, sc_ap_rdf)
    def test_big(self):
        # Number of atoms in each direction.
        n_atom = 4
        structure = Cell()
        structure.set_basis(lengths=[2 * n_atom, 2 * n_atom, 2 * n_atom],
                            angles=[90, 90, 90])

        # Add a bunch of atoms.
        step_size = 1.0 / n_atom
        for x in range(n_atom):
            for y in range(n_atom):
                for z in range(n_atom):
                    new_pos = np.array([x, y, z], dtype=float) + \
                              np.random.random(3) / n_atom
                    new_pos *= step_size
                    structure.add_atom(Atom(new_pos, 0))

        # Compute the cells.
        cells = VoronoiTessellationCalculator.compute(structure, radical=True)
        total_vol = 0.0
        for cell in cells:
            total_vol += cell.get_volume()
            self.assertTrue(cell.geometry_is_valid())

        vol_error = (total_vol - structure.volume()) / structure.volume()
        self.assertAlmostEqual(0.0, vol_error, delta=1e-2)
    def test_results2(self):
        # Create a B1-HHe structure.
        structure = Cell()
        basis = np.zeros((3, 3))
        basis[0] = np.array([0, 0.5, 0.5])
        basis[1] = np.array([0.5, 0, 0.5])
        basis[2] = np.array([0.5, 0.5, 0])
        structure.set_basis(basis=basis)
        structure.add_atom(Atom([0, 0, 0], 0))
        structure.add_atom(Atom([0.5, 0.5, 0.5], 1))
        structure.set_type_name(0, "H")
        structure.set_type_name(1, "He")

        entries = [CrystalStructureEntry(structure, name="B1-HHe", radii=None)]

        # Get the feature generator.
        gen = self.get_generator()
        gen.clear_elemental_properties()
        gen.add_elemental_property("Number")

        # Generate features.
        features = gen.generate_features(entries)

        # Test the results.
        self.assertEqual(self.expected_count(), features.shape[1])
        np_tst.assert_array_almost_equal([1, 0, 1, 1, 0, 0, 0, 0, 0, 0],
                                         features.values[0])
    def test_FCC_primitive(self):
        # Create the simulation cell.
        structure = Cell()
        structure.set_basis(lengths=[0.70710678118655, 0.70710678118655,
                                     1.0], angles=[45, 90, 60])
        structure.add_atom(Atom([0, 0, 0], 0))

        # Run tessellation.
        result = VoronoiTessellationCalculator.compute(structure,
                                                       radical=False)

        # Test results.
        self.assertEqual(structure.n_atoms(), len(result))
        self.assertTrue(result[0].geometry_is_valid())
        self.assertEqual(12, len(result[0].get_faces()))
        poly_index = result[0].get_polyhedron_shape()
        self.assertEqual(12, poly_index[4])
        poly_index = result[0].get_coordination_shell_shape(result)
        self.assertEqual(12, poly_index[4])
Пример #7
0
    def test_equals(self):
        # Make other cell
        other = Cell()

        # First check.
        self.assertTrue(self.cell.__eq__(other))

        # Adjust basis.
        self.cell.set_basis(lengths=[1, 2, 3], angles=[70, 80, 90])
        self.assertFalse(self.cell.__eq__(other))
        other.set_basis(lengths=[1, 2, 3], angles=[70, 80, 90])
        self.assertTrue(self.cell.__eq__(other))

        # Add an atom to 0,0,0
        self.cell.add_atom(Atom([0, 0, 0], 0))
        self.assertFalse(self.cell.__eq__(other))
        other.add_atom(Atom([0, 0, 0], 0))
        self.assertTrue(self.cell.__eq__(other))

        # Changing names.
        self.cell.set_type_name(0, "Al")
        self.assertFalse(self.cell.__eq__(other))
        other.set_type_name(0, "Al")
        self.assertTrue(self.cell.__eq__(other))

        # Adding more atoms of different type.
        self.cell.add_atom(Atom([0.5, 0.5, 0], 1))
        other.add_atom(Atom([0.5, 0.5, 0], 0))
        self.assertFalse(self.cell.__eq__(other))
        other.get_atom(1).set_type(1)
        self.assertTrue(self.cell.__eq__(other))

        # Adding atoms with different positions.
        self.cell.add_atom(Atom([0.5, 0, 0.5], 1))
        other.add_atom(Atom([0, 0.5, 0.5], 1))
        self.assertFalse(self.cell.__eq__(other))

        # Adding atoms out of sequence.
        other.add_atom(Atom([0.5, 0, 0.5], 1))
        self.cell.add_atom(Atom([0, 0.5, 0.5], 1))
        self.assertTrue(self.cell.__eq__(other))
Пример #8
0
    def test(self):
        structure = Cell()
        structure.set_basis(lengths=[3.2, 3.2, 3.2], angles=[90, 90, 90])
        structure.add_atom(Atom([0, 0, 0], 0))
        structure.add_atom(Atom([0.5, 0.5, 0.5], 1))
        structure.set_type_name(0, "Ni")
        structure.set_type_name(1, "Al")

        entry = CrystalStructureEntry(structure, name="B2-NiAl", radii=None)
        entries = [entry]

        # Create feature generator.
        gen = APRDFAttributeGenerator()
        gen.set_cut_off_distance(3.2)
        gen.set_num_points(2)
        gen.set_smoothing_parameter(100)
        gen.add_elemental_property("Number")

        # Generate features.
        features = gen.generate_features(entries)
        self.assertEqual(2, len(features.columns))

        ap_rdf = features.values

        # Assemble known contributors.
        # [0] -> Number of neighbors * P_i * P_j
        # [1] -> Bond distance
        contributors = []
        contributors.append([2 * 8 * 13 * 28, 3.2 * math.sqrt(3) / 2])  # A-B
        #  1st NN.
        contributors.append([6 * 13 * 13, 3.2 * 1])  # A-A 2nd NN.
        contributors.append([6 * 28 * 28, 3.2 * 1])  # B-B 2nd NN.
        contributors.append([8 * 13 * 13, 3.2 * math.sqrt(3)])  # A-A 3rd NN.
        contributors.append([8 * 28 * 28, 3.2 * math.sqrt(3)])  # B-B 3rd NN.

        eval_dist = [1.6, 3.2]
        expected_ap_rdf = [
            sum([c[0] * math.exp(-100 * (c[1] - r)**2)
                 for c in contributors]) / 2 for r in eval_dist
        ]
        np_tst.assert_array_almost_equal(expected_ap_rdf, ap_rdf[0])
    def test_random_packing(self):
        # Number of atoms in each direction.
        n_atom = 4
        structure = Cell()
        structure.set_basis(lengths=[2 * n_atom, 2 * n_atom, 2 * n_atom],
                            angles=[90, 90, 90])

        # Add a bunch of atoms.
        for x in range(n_atom):
            for y in range(n_atom):
                for z in range(n_atom):
                    structure.add_atom(Atom(np.random.random(3), 0))

        # Compute the cells.
        cells = VoronoiTessellationCalculator.compute(structure, radical=True)
        total_vol = 0.0
        for cell in cells:
            total_vol += cell.get_volume()
            self.assertTrue(cell.geometry_is_valid())

        vol_error = (total_vol - structure.volume()) / structure.volume()
        self.assertAlmostEqual(0.0, vol_error, delta=1e-2)
    def test_B1(self):
        # Structure of rocksalt.
        structure = Cell()
        basis = np.zeros((3, 3))
        basis[0] = np.array([0, 0.5, 0.5])
        basis[1] = np.array([0.5, 0, 0.5])
        basis[2] = np.array([0.5, 0.5, 0])
        structure.set_basis(basis=basis)
        atom = Atom([0, 0, 0], 0)
        structure.add_atom(atom)
        atom = Atom([0.5, 0.5, 0.5], 1)
        structure.add_atom(atom)

        # Prepare.
        tool = VoronoiCellBasedAnalysis(radical=True)
        tool.analyze_structure(structure)

        # Check results.
        n_eff = 6
        np_tst.assert_array_almost_equal(
            [n_eff, n_eff], tool.get_effective_coordination_numbers())
        self.assertAlmostEqual(6.0, tool.face_count_average(), delta=1e-2)
        self.assertAlmostEqual(0.0, tool.face_count_variance(), delta=1e-2)
        self.assertAlmostEqual(6.0, tool.face_count_minimum(), delta=1e-2)
        self.assertAlmostEqual(6.0, tool.face_count_maximum(), delta=1e-2)
        self.assertAlmostEqual(1,
                               len(tool.get_unique_polyhedron_shapes()),
                               delta=1e-2)
        self.assertAlmostEqual(0.0, tool.volume_variance(), delta=1e-2)
        self.assertAlmostEqual(0.5, tool.volume_fraction_minimum(), delta=1e-2)
        self.assertAlmostEqual(0.5, tool.volume_fraction_maximum(), delta=1e-2)
        np_tst.assert_array_almost_equal([1, -1],
                                         tool.get_neighbor_ordering_parameters(
                                             1, False)[0],
                                         decimal=2)
        np_tst.assert_array_almost_equal([-1, 1],
                                         tool.get_neighbor_ordering_parameters(
                                             2, False)[0],
                                         decimal=2)
        np_tst.assert_array_almost_equal([1, -1],
                                         tool.get_neighbor_ordering_parameters(
                                             3, False)[0],
                                         decimal=2)
        np_tst.assert_array_almost_equal([-1, 1],
                                         tool.get_neighbor_ordering_parameters(
                                             2, True)[0],
                                         decimal=2)
        np_tst.assert_array_almost_equal([1, -1],
                                         tool.get_neighbor_ordering_parameters(
                                             3, True)[0],
                                         decimal=2)
        np_tst.assert_array_almost_equal([1, -1],
                                         tool.get_neighbor_ordering_parameters(
                                             3, True)[0],
                                         decimal=2)
        self.assertAlmostEqual(1,
                               tool.warren_cowley_ordering_magnitude(1, False),
                               delta=1e-2)
        self.assertAlmostEqual(1,
                               tool.warren_cowley_ordering_magnitude(2, False),
                               delta=1e-2)
        self.assertAlmostEqual(1,
                               tool.warren_cowley_ordering_magnitude(1, True),
                               delta=1e-2)
        self.assertAlmostEqual(1,
                               tool.warren_cowley_ordering_magnitude(2, True),
                               delta=1e-2)
        bond_lengths = tool.bond_lengths()
        self.assertEqual(2, len(bond_lengths))
        self.assertEqual(6, len(bond_lengths[0]))
        self.assertAlmostEqual(0.5, bond_lengths[0][0], delta=1e-6)
        mean_bond_lengths = tool.mean_bond_lengths()
        self.assertEqual(2, len(mean_bond_lengths))
        self.assertAlmostEqual(0.5, mean_bond_lengths[0], delta=1e-6)
        var_bond_lengths = tool.bond_length_variance(mean_bond_lengths)
        self.assertAlmostEqual(0, var_bond_lengths[0], delta=1e-6)

        # Neighbor property attributes.
        np_tst.assert_array_almost_equal([1, 1],
                                         tool.neighbor_property_differences(
                                             [0, 1], 1))
        np_tst.assert_array_almost_equal([0, 0],
                                         tool.neighbor_property_differences(
                                             [0, 1], 2))
        np_tst.assert_array_almost_equal([0, 0],
                                         tool.neighbor_property_variances(
                                             [0, 1], 1))
        np_tst.assert_array_almost_equal([0, 0],
                                         tool.neighbor_property_variances(
                                             [0, 1], 2))
Пример #11
0
class testCell(unittest.TestCase):
    cell = None

    # Create one instance per test.
    def setUp(self):
        self.cell = Cell()

    # Destroy instance as soon as test is over.
    def tearDown(self):
        self.cell = None

    def test_set_basis(self):
        # Test using angles and lattice parameters as input.
        self.cell.set_basis(lengths=[5.643, 6.621,4.885], angles=[91.83,
                            93.58, 107.69])
        self.assertAlmostEqual(173.30, self.cell.volume(), delta=1e-2)
        np_tst.assert_array_almost_equal([5.643, 6.621,4.885],
                                         self.cell.get_lattice_parameters())
        np_tst.assert_array_almost_equal([91.83, 93.58, 107.69],
                    self.cell.get_lattice_angles_radians(radians=False))

        # Simple test with a primitive cell.
        basis = np.zeros((3, 3))
        basis[0] = np.array([0, 2.986, 2.986])
        basis[1] = np.array([2.986, 0, 2.986])
        basis[2] = np.array([2.986, 2.986, 0])

        self.cell.set_basis(basis=basis)
        self.assertAlmostEqual(13.312*4, self.cell.volume(), delta=1e-3)
        np_tst.assert_array_almost_equal([4.223, 4.223, 4.223],
                                         self.cell.get_lattice_parameters(),
                                         decimal=3)
        np_tst.assert_array_almost_equal([60, 60, 60],
                    self.cell.get_lattice_angles_radians(radians=False))

    def test_aligned_basis(self):
        # Simple test with a primitive cell.
        basis = np.zeros((3, 3))
        basis[0] = np.array([0, 2.986, 2.986])
        basis[1] = np.array([2.986, 0, 2.986])
        basis[2] = np.array([2.986, 2.986, 0])

        self.cell.set_basis(basis=basis)

        # Compute the aligned basis.
        aligned_basis = self.cell.get_aligned_basis()
        self.assertAlmostEqual(0, aligned_basis[1][0], delta=1e-6)
        self.assertAlmostEqual(0, aligned_basis[2][0], delta=1e-6)
        self.assertAlmostEqual(0, aligned_basis[2][1], delta=1e-6)

    def test_clone(self):
        self.cell.add_atom(Atom([0, 0, 0], 0))
        self.cell.set_type_name(0, "A")

        # Test adding atoms.
        clone = self.cell.__copy__()
        self.assertEqual(clone, self.cell)
        clone.add_atom(Atom([0, 0.5, 0], 0))
        self.assertFalse(clone.__eq__(self.cell))

        # Test changing atom.
        clone = self.cell.__copy__()
        clone.get_atom(0).set_type(1)
        self.assertFalse(clone.__eq__(self.cell))

        # Test changing basis.
        clone = self.cell.__copy__()
        clone.set_basis(lengths=[2, 1, 1], angles=[90, 90, 90])
        self.assertFalse(clone.__eq__(self.cell))

    def test_lattice_vectors(self):
       self.cell.set_basis(lengths=[1, 2, 3], angles=[80, 90, 70])
       l_vec = self.cell.get_lattice_vectors()
       np_tst.assert_array_almost_equal([[1.0, 0.0, 0.0], [0.684, 1.879,
                0.0], [0.0, 0.554, 2.948]], l_vec, decimal=3)

       # FCC primitive cell.
       self.cell.set_basis(lengths=[0.70710678118655, 0.70710678118655,
                                    0.70710678118655], angles=[60, 60, 60])
       self.assertAlmostEqual(0.25, self.cell.volume(), delta=1e-6)
       l_vec = self.cell.get_lattice_vectors()
       self.assertAlmostEqual(0.70710678118655, norm(l_vec[0]),
                               delta=1e-2)

    def test_fractional_to_cartesian(self):
        self.cell.set_basis(lengths=[1, 2, 3], angles=[80, 90, 70])
        np_tst.assert_array_almost_equal([0.2368, 0.5421, 0.8844],
                self.cell.convert_fractional_to_cartesian([0.1, 0.2, 0.3]),
                                         decimal=3)

    def test_cartesian_to_fractional(self):
        self.cell.set_basis(lengths=[1, 2, 3], angles=[80, 90, 70])
        np_tst.assert_array_almost_equal([0.1, 0.2, 0.3],
            self.cell.convert_cartesian_to_fractional([0.2368, 0.5421, 0.8844]),
                                         decimal=3)

    def test_supercell_translation(self):
        self.cell.set_basis(lengths=[0.70710678118655, 0.70710678118655,
                                     0.70710678118655], angles=[60, 60, 60])
        self.assertAlmostEqual(0.25, self.cell.volume(), delta=1e-6)
        l_vec = self.cell.get_lattice_vectors()

        # Check a few.
        pos = self.cell.get_periodic_image([0, 0, 0], 1, 0, 0)
        np_tst.assert_array_almost_equal([0.70710678000000, 0, 0], pos,
                                         decimal=3)
        pos = self.cell.get_periodic_image([0, 0, 0], 1, 1, 0)
        np_tst.assert_array_almost_equal([1.06066017000000, 0.61237243466821,
                                0], pos, decimal=3)
        pos = self.cell.get_periodic_image([0, 0, 0], 1, 1, 1)
        np_tst.assert_array_almost_equal([1.41421356000000, 0.81649657955762,
                                0.57735026918963], pos, decimal=3)

    def test_equals(self):
        # Make other cell
        other = Cell()

        # First check.
        self.assertTrue(self.cell.__eq__(other))

        # Adjust basis.
        self.cell.set_basis(lengths=[1, 2, 3], angles=[70, 80, 90])
        self.assertFalse(self.cell.__eq__(other))
        other.set_basis(lengths=[1, 2, 3], angles=[70, 80, 90])
        self.assertTrue(self.cell.__eq__(other))

        # Add an atom to 0,0,0
        self.cell.add_atom(Atom([0, 0, 0], 0))
        self.assertFalse(self.cell.__eq__(other))
        other.add_atom(Atom([0, 0, 0], 0))
        self.assertTrue(self.cell.__eq__(other))

        # Changing names.
        self.cell.set_type_name(0, "Al")
        self.assertFalse(self.cell.__eq__(other))
        other.set_type_name(0, "Al")
        self.assertTrue(self.cell.__eq__(other))

        # Adding more atoms of different type.
        self.cell.add_atom(Atom([0.5, 0.5, 0], 1))
        other.add_atom(Atom([0.5, 0.5, 0], 0))
        self.assertFalse(self.cell.__eq__(other))
        other.get_atom(1).set_type(1)
        self.assertTrue(self.cell.__eq__(other))

        # Adding atoms with different positions.
        self.cell.add_atom(Atom([0.5, 0, 0.5], 1))
        other.add_atom(Atom([0, 0.5, 0.5], 1))
        self.assertFalse(self.cell.__eq__(other))

        # Adding atoms out of sequence.
        other.add_atom(Atom([0.5, 0, 0.5], 1))
        self.cell.add_atom(Atom([0, 0.5, 0.5], 1))
        self.assertTrue(self.cell.__eq__(other))

    def test_minimum_distance(self):
        # Simple case: orthogonal axes.

        # Origin.
        self.cell.add_atom(Atom([0, 0, 0], 1))
        # C face center.
        self.cell.add_atom(Atom([0.5, 0.5, 0], 1))

        dist = self.cell.get_minimum_distance(point1=[0, 0, 0], point2=[0.5,
                                                            0.5, 0])
        self.assertAlmostEqual(math.sqrt(0.5), dist, delta=1e-6)
        dist = self.cell.get_minimum_distance(point1=[0, 0, 0], point2=[2.5,
                                                            0.5, -10])
        self.assertAlmostEqual(math.sqrt(0.5), dist, delta=1e-6)

        # Difficult case: Non-conventional unit cell.
        basis = self.cell.get_basis()
        basis[1][0] = 108
        self.cell.set_basis(basis=basis)
        dist = self.cell.get_minimum_distance(point1=[0, 0, 0], point2=[0.5,
                                                            0.5, 0])
        self.assertAlmostEqual(math.sqrt(0.5), dist, delta=1e-6)
        dist = self.cell.get_minimum_distance(point1=[0, 0, 0], point2=[5.5,
                                                            0.5, 0])
        self.assertAlmostEqual(math.sqrt(0.5), dist, delta=1e-6)
        dist = self.cell.get_minimum_distance(point1=[0, 0, 0], point2=[5.5,
                                                            -10.5, 0])
        self.assertAlmostEqual(math.sqrt(0.5), dist, delta=1e-6)

    def test_get_closest_image_simple(self):
        # Simple case: orthogonal axes.

        # Origin.
        self.cell.add_atom(Atom([0, 0, 0], 1))
        # C face center.
        self.cell.add_atom(Atom([0.75, 0.75, 0.75], 1))
        image = self.cell.get_minimum_distance(center=0, neighbor=1)
        np_tst.assert_array_almost_equal([-0.25, -0.25, -0.25],
                                         image.get_position(), decimal=6)
        np_tst.assert_array_equal([-1, -1, -1], image.get_supercell())

    def test_get_closest_image_difficult(self):
        # Difficult case: Non-conventional unit cell.
        # Origin.
        self.cell.add_atom(Atom([0, 0, 0], 1))
        # Body face center.
        self.cell.add_atom(Atom([0.5, 0.5, 0.5], 1))
        basis = self.cell.get_basis()
        basis[1][0] = 108
        self.cell.set_basis(basis=basis)
        image = self.cell.get_minimum_distance(center=0, neighbor=1)
        np_tst.assert_array_almost_equal([-0.5, -0.5, 0.5],
                                         image.get_position(), decimal=6)
        np_tst.assert_array_equal([-1, 53, 0], image.get_supercell())

    def test_replacement(self):
        # Make the original cell B2-CuZr
        self.cell.add_atom(Atom([0, 0, 0], 0))
        self.cell.add_atom(Atom([0.5, 0.5, 0.5], 1))
        self.cell.set_type_name(0, "Cu")
        self.cell.set_type_name(1, "Zr")

        # Replace Cu with Ni.
        to_change = {"Cu":"Ni"}
        self.cell.replace_type_names(to_change)
        self.assertEqual("Ni", self.cell.get_type_name(0))
        self.assertEqual("Zr", self.cell.get_type_name(1))

        # Replace Ni with Cu and Zr with Ti.
        to_change = {"Ni": "Cu", "Zr":"Ti"}
        self.cell.replace_type_names(to_change)
        self.assertEqual("Cu", self.cell.get_type_name(0))
        self.assertEqual("Ti", self.cell.get_type_name(1))

        # Exchange Cu and Ti.
        to_change = {"Ti": "Cu", "Cu": "Ti"}
        self.cell.replace_type_names(to_change)
        self.assertEqual("Ti", self.cell.get_type_name(0))
        self.assertEqual("Cu", self.cell.get_type_name(1))

        # Make everything Cu.
        to_change = {"Ti": "Cu"}
        self.cell.replace_type_names(to_change)
        self.assertEqual("Cu", self.cell.get_type_name(0))
        self.assertEqual("Cu", self.cell.get_type_name(1))

        # Make everything W.
        to_change = {"Cu":"W"}
        self.cell.replace_type_names(to_change)
        self.assertEqual("W", self.cell.get_type_name(0))
        self.assertEqual("W", self.cell.get_type_name(1))

        # Merge types.
        self.cell.merge_like_types()
        self.assertEqual(1, self.cell.n_types())
Пример #12
0
    def test_results(self):
        # Create Dataset.
        dataset = []

        # Create primitive cell for B2-AlNi.
        structure1 = Cell()
        structure1.set_basis(lengths=[2.88, 2.88, 2.88], angles=[90, 90, 90])
        structure1.add_atom(Atom([0, 0, 0], 0))
        structure1.add_atom(Atom([0.5, 0.5, 0.5], 1))
        structure1.set_type_name(0, "Al")
        structure1.set_type_name(1, "Ni")
        entry1 = CrystalStructureEntry(structure1,
                                       name="Primitive",
                                       radii=None)
        dataset.append(entry1)

        # Create Scaled Cell.
        structure2 = Cell()
        structure2.set_basis(lengths=[3.0, 3.0, 3.0], angles=[90, 90, 90])
        structure2.add_atom(Atom([0, 0, 0], 0))
        structure2.add_atom(Atom([0.5, 0.5, 0.5], 1))
        structure2.set_type_name(0, "Al")
        structure2.set_type_name(1, "Ni")
        entry2 = CrystalStructureEntry(structure2, name="Scaled", radii=None)
        dataset.append(entry2)

        # Create a cell where A & B are swapped.
        structure3 = Cell()
        structure3.set_basis(lengths=[3.0, 3.0, 3.0], angles=[90, 90, 90])
        structure3.add_atom(Atom([0, 0, 0], 0))
        structure3.add_atom(Atom([0.5, 0.5, 0.5], 1))
        structure3.set_type_name(0, "Al")
        structure3.set_type_name(1, "Ni")
        entry3 = CrystalStructureEntry(structure3, name="Scaled", radii=None)
        dataset.append(entry3)

        # Create a 2x1x1 supercell.
        structure4 = Cell()
        structure4.set_basis(lengths=[6.0, 3.0, 3.0], angles=[90, 90, 90])
        structure4.add_atom(Atom([0, 0, 0], 0))
        structure4.add_atom(Atom([0.5, 0, 0], 0))
        structure4.add_atom(Atom([0.25, 0.5, 0.5], 1))
        structure4.add_atom(Atom([0.75, 0.5, 0.5], 1))
        structure4.set_type_name(0, "Ni")
        structure4.set_type_name(1, "Al")
        entry4 = CrystalStructureEntry(structure4,
                                       name="Primitive",
                                       radii=None)
        dataset.append(entry4)

        # Generate features.
        gen = self.get_generator()
        features = gen.generate_features(dataset)

        # Make sure the correct number were generated.
        ec = self.expected_count()
        self.assertEqual(ec, features.shape[1])
        for i in range(len(dataset)):
            self.assertEqual(ec, len(features.values[i]))

        # Make sure scaling doesn't effect it.
        for i in range(ec):
            self.assertAlmostEqual(features.values[0][i],
                                   features.values[1][i],
                                   delta=1e-6)

        # Make sure its permutationally-invariant.
        for i in range(ec):
            self.assertAlmostEqual(features.values[0][i],
                                   features.values[2][i],
                                   delta=1e-6)

        # Make sure it passes supercell.
        for i in range(ec):
            self.assertAlmostEqual(features.values[0][i],
                                   features.values[3][i],
                                   delta=1e-6)
Пример #13
0
class testPairDistanceAnalysis(unittest.TestCase):
    def setUp(self):
        self.structure = Cell()
        self.structure.set_basis(lengths=[1, 1, 1], angles=[90, 90, 90])
        self.structure.add_atom(Atom([0, 0, 0], 0))
        self.pda = PairDistanceAnalysis()
        self.pda.analyze_structure(self.structure)

    def tearDown(self):
        self.structure = None
        self.pda = None

    def test_get_all_neighbors_of_atom(self):
        # With orthorhombic basis.
        self.pda.set_cutoff_distance(1.1)
        output = self.pda.get_all_neighbors_of_atom(0)
        self.assertEqual(6, len(output))
        self.assertAlmostEqual(1.0, output[0][1], delta=1e-6)

        # Adding a second atom.
        self.structure.add_atom(Atom([0.5, 0.5, 0.5], 0))
        output = self.pda.get_all_neighbors_of_atom(0)
        self.assertEqual(14, len(output))

        # Altering the basis to something weird.
        new_basis = self.structure.get_basis()
        new_basis[1][0] = 14
        output = self.pda.get_all_neighbors_of_atom(0)
        self.assertEqual(14, len(output))

        # Check that images match up.
        center_pos = self.structure.get_atom(0).get_position_cartesian()
        for image in output:
            v = image[0].get_position() - center_pos
            self.assertAlmostEqual(image[1], norm(v), delta=1e-6)

    def test_PRDF(self):
        # With orthorhombic basis.
        self.pda.set_cutoff_distance(2.1)

        # Run code.
        prdf = self.pda.compute_PRDF(50)
        self.assertEqual(1, len(prdf))
        self.assertEqual(1, len(prdf[0]))
        self.assertEqual(50, len(prdf[0][0]))

        # Make sure that it finds 4 peaks.
        n_peaks = 0
        for val in prdf[0][0]:
            if val > 0:
                n_peaks += 1

        self.assertEqual(4, n_peaks)

        # Add another atom, repeat.
        self.structure.add_atom(Atom([0.5, 0.5, 0.5], 1))

        # Run again.
        prdf = self.pda.compute_PRDF(50)
        self.assertEqual(2, len(prdf))
        self.assertEqual(2, len(prdf[0]))
        self.assertEqual(50, len(prdf[0][0]))

        # Make sure A-B prdf has 2 peaks.
        n_peaks = 0
        for val in prdf[0][1]:
            if val > 0:
                n_peaks += 1

        self.assertEqual(2, n_peaks)

        # Increase basis.
        self.structure.set_basis(lengths=[2, 2, 2], angles=[90, 90, 90])
        self.pda.analyze_structure(self.structure)

        # Run again.
        prdf = self.pda.compute_PRDF(50)
        self.assertEqual(2, len(prdf))
        self.assertEqual(2, len(prdf[0]))
        self.assertEqual(50, len(prdf[0][0]))

        # Make sure A-B prdf has 1 peaks.
        n_peaks = 0
        for val in prdf[0][1]:
            if val > 0:
                n_peaks += 1

        self.assertEqual(1, n_peaks)