Пример #1
0
def cross_validate(
    args: TrainArgs, train_func: Callable[[TrainArgs, MoleculeDataset, Logger],
                                          Dict[str, List[float]]]
) -> Tuple[float, float]:
    """
    Runs k-fold cross-validation.

    For each of k splits (folds) of the data, trains and tests a model on that split
    and aggregates the performance across folds.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param train_func: Function which runs training.
    :return: A tuple containing the mean and standard deviation performance across folds.
    """
    logger = create_logger(name=TRAIN_LOGGER_NAME,
                           save_dir=args.save_dir,
                           quiet=args.quiet)
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Initialize relevant variables
    init_seed = args.seed
    save_dir = args.save_dir
    args.task_names = get_task_names(path=args.data_path,
                                     smiles_columns=args.smiles_columns,
                                     target_columns=args.target_columns,
                                     ignore_columns=args.ignore_columns)

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    makedirs(args.save_dir)
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Get data
    debug('Loading data')
    data = get_data(path=args.data_path,
                    args=args,
                    logger=logger,
                    skip_none_targets=True)
    validate_dataset_type(data, dataset_type=args.dataset_type)
    args.features_size = data.features_size()

    if args.atom_descriptors == 'descriptor':
        args.atom_descriptors_size = data.atom_descriptors_size()
        args.ffn_hidden_size += args.atom_descriptors_size
    elif args.atom_descriptors == 'feature':
        args.atom_features_size = data.atom_features_size()
        set_extra_atom_fdim(args.atom_features_size)

    debug(f'Number of tasks = {args.num_tasks}')

    # Run training on different random seeds for each fold
    all_scores = defaultdict(list)
    for fold_num in range(args.num_folds):
        info(f'Fold {fold_num}')
        args.seed = init_seed + fold_num
        args.save_dir = os.path.join(save_dir, f'fold_{fold_num}')
        makedirs(args.save_dir)
        data.reset_features_and_targets()
        model_scores = train_func(args, data, logger)
        for metric, scores in model_scores.items():
            all_scores[metric].append(scores)
    all_scores = dict(all_scores)

    # Convert scores to numpy arrays
    for metric, scores in all_scores.items():
        all_scores[metric] = np.array(scores)

    # Report results
    info(f'{args.num_folds}-fold cross validation')

    # Report scores for each fold
    for fold_num in range(args.num_folds):
        for metric, scores in all_scores.items():
            info(
                f'\tSeed {init_seed + fold_num} ==> test {metric} = {np.nanmean(scores[fold_num]):.6f}'
            )

            if args.show_individual_scores:
                for task_name, score in zip(args.task_names, scores[fold_num]):
                    info(
                        f'\t\tSeed {init_seed + fold_num} ==> test {task_name} {metric} = {score:.6f}'
                    )

    # Report scores across folds
    for metric, scores in all_scores.items():
        avg_scores = np.nanmean(
            scores, axis=1)  # average score for each model across tasks
        mean_score, std_score = np.nanmean(avg_scores), np.nanstd(avg_scores)
        info(f'Overall test {metric} = {mean_score:.6f} +/- {std_score:.6f}')

        if args.show_individual_scores:
            for task_num, task_name in enumerate(args.task_names):
                info(
                    f'\tOverall test {task_name} {metric} = '
                    f'{np.nanmean(scores[:, task_num]):.6f} +/- {np.nanstd(scores[:, task_num]):.6f}'
                )

    # Save scores
    with open(os.path.join(save_dir, TEST_SCORES_FILE_NAME), 'w') as f:
        writer = csv.writer(f)

        header = ['Task']
        for metric in args.metrics:
            header += [f'Mean {metric}', f'Standard deviation {metric}'] + \
                      [f'Fold {i} {metric}' for i in range(args.num_folds)]
        writer.writerow(header)

        for task_num, task_name in enumerate(args.task_names):
            row = [task_name]
            for metric, scores in all_scores.items():
                task_scores = scores[:, task_num]
                mean, std = np.nanmean(task_scores), np.nanstd(task_scores)
                row += [mean, std] + task_scores.tolist()
            writer.writerow(row)

    # Determine mean and std score of main metric
    avg_scores = np.nanmean(all_scores[args.metric], axis=1)
    mean_score, std_score = np.nanmean(avg_scores), np.nanstd(avg_scores)

    # Optionally merge and save test preds
    if args.save_preds:
        all_preds = pd.concat([
            pd.read_csv(
                os.path.join(save_dir, f'fold_{fold_num}', 'test_preds.csv'))
            for fold_num in range(args.num_folds)
        ])
        all_preds.to_csv(os.path.join(save_dir, 'test_preds.csv'), index=False)

    return mean_score, std_score
Пример #2
0
def cross_validate(args: TrainArgs,
                   train_func: Callable[[TrainArgs, MoleculeDataset, Logger], Dict[str, List[float]]]
                   ) -> Tuple[float, float]:
    """
    Runs k-fold cross-validation.

    For each of k splits (folds) of the data, trains and tests a model on that split
    and aggregates the performance across folds.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param train_func: Function which runs training.
    :return: A tuple containing the mean and standard deviation performance across folds.
    """
    logger = create_logger(name=TRAIN_LOGGER_NAME, save_dir=args.save_dir, quiet=args.quiet)
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Initialize relevant variables
    init_seed = args.seed
    save_dir = args.save_dir
    args.task_names = get_task_names(path=args.data_path, smiles_columns=args.smiles_columns,
                                     target_columns=args.target_columns, ignore_columns=args.ignore_columns)

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    makedirs(args.save_dir)
    try:
        args.save(os.path.join(args.save_dir, 'args.json'))
    except subprocess.CalledProcessError:
        debug('Could not write the reproducibility section of the arguments to file, thus omitting this section.')
        args.save(os.path.join(args.save_dir, 'args.json'), with_reproducibility=False)

    # set explicit H option and reaction option
    reset_featurization_parameters(logger=logger)
    set_explicit_h(args.explicit_h)
    set_adding_hs(args.adding_h)
    if args.reaction:
        set_reaction(args.reaction, args.reaction_mode)
    elif args.reaction_solvent:
        set_reaction(True, args.reaction_mode)
    
    # Get data
    debug('Loading data')
    data = get_data(
        path=args.data_path,
        args=args,
        logger=logger,
        skip_none_targets=True,
        data_weights_path=args.data_weights_path
    )
    validate_dataset_type(data, dataset_type=args.dataset_type)
    args.features_size = data.features_size()

    if args.atom_descriptors == 'descriptor':
        args.atom_descriptors_size = data.atom_descriptors_size()
        args.ffn_hidden_size += args.atom_descriptors_size
    elif args.atom_descriptors == 'feature':
        args.atom_features_size = data.atom_features_size()
        set_extra_atom_fdim(args.atom_features_size)
    if args.bond_features_path is not None:
        args.bond_features_size = data.bond_features_size()
        set_extra_bond_fdim(args.bond_features_size)

    debug(f'Number of tasks = {args.num_tasks}')

    if args.target_weights is not None and len(args.target_weights) != args.num_tasks:
        raise ValueError('The number of provided target weights must match the number and order of the prediction tasks')

    # Run training on different random seeds for each fold
    all_scores = defaultdict(list)
    for fold_num in range(args.num_folds):
        info(f'Fold {fold_num}')
        args.seed = init_seed + fold_num
        args.save_dir = os.path.join(save_dir, f'fold_{fold_num}')
        makedirs(args.save_dir)
        data.reset_features_and_targets()

        # If resuming experiment, load results from trained models
        test_scores_path = os.path.join(args.save_dir, 'test_scores.json')
        if args.resume_experiment and os.path.exists(test_scores_path):
            print('Loading scores')
            with open(test_scores_path) as f:
                model_scores = json.load(f)
        # Otherwise, train the models
        else:
            model_scores = train_func(args, data, logger)

        for metric, scores in model_scores.items():
            all_scores[metric].append(scores)
    all_scores = dict(all_scores)

    # Convert scores to numpy arrays
    for metric, scores in all_scores.items():
        all_scores[metric] = np.array(scores)

    # Report results
    info(f'{args.num_folds}-fold cross validation')

    # Report scores for each fold
    contains_nan_scores = False
    for fold_num in range(args.num_folds):
        for metric, scores in all_scores.items():
            info(f'\tSeed {init_seed + fold_num} ==> test {metric} = {multitask_mean(scores[fold_num], metric):.6f}')

            if args.show_individual_scores:
                for task_name, score in zip(args.task_names, scores[fold_num]):
                    info(f'\t\tSeed {init_seed + fold_num} ==> test {task_name} {metric} = {score:.6f}')
                    if np.isnan(score):
                        contains_nan_scores = True

    # Report scores across folds
    for metric, scores in all_scores.items():
        avg_scores = multitask_mean(scores, axis=1, metric=metric)  # average score for each model across tasks
        mean_score, std_score = np.mean(avg_scores), np.std(avg_scores)
        info(f'Overall test {metric} = {mean_score:.6f} +/- {std_score:.6f}')

        if args.show_individual_scores:
            for task_num, task_name in enumerate(args.task_names):
                info(f'\tOverall test {task_name} {metric} = '
                     f'{np.mean(scores[:, task_num]):.6f} +/- {np.std(scores[:, task_num]):.6f}')

    if contains_nan_scores:
        info("The metric scores observed for some fold test splits contain 'nan' values. \
            This can occur when the test set does not meet the requirements \
            for a particular metric, such as having no valid instances of one \
            task in the test set or not having positive examples for some classification metrics. \
            Before v1.5.1, the default behavior was to ignore nan values in individual folds or tasks \
            and still return an overall average for the remaining folds or tasks. The behavior now \
            is to include them in the average, converting overall average metrics to 'nan' as well.")

    # Save scores
    with open(os.path.join(save_dir, TEST_SCORES_FILE_NAME), 'w') as f:
        writer = csv.writer(f)

        header = ['Task']
        for metric in args.metrics:
            header += [f'Mean {metric}', f'Standard deviation {metric}'] + \
                      [f'Fold {i} {metric}' for i in range(args.num_folds)]
        writer.writerow(header)

        if args.dataset_type == 'spectra': # spectra data type has only one score to report
            row = ['spectra']
            for metric, scores in all_scores.items():
                task_scores = scores[:,0]
                mean, std = np.mean(task_scores), np.std(task_scores)
                row += [mean, std] + task_scores.tolist()
            writer.writerow(row)
        else: # all other data types, separate scores by task
            for task_num, task_name in enumerate(args.task_names):
                row = [task_name]
                for metric, scores in all_scores.items():
                    task_scores = scores[:, task_num]
                    mean, std = np.mean(task_scores), np.std(task_scores)
                    row += [mean, std] + task_scores.tolist()
                writer.writerow(row)

    # Determine mean and std score of main metric
    avg_scores = multitask_mean(all_scores[args.metric], metric=args.metric, axis=1)
    mean_score, std_score = np.mean(avg_scores), np.std(avg_scores)

    # Optionally merge and save test preds
    if args.save_preds:
        all_preds = pd.concat([pd.read_csv(os.path.join(save_dir, f'fold_{fold_num}', 'test_preds.csv'))
                               for fold_num in range(args.num_folds)])
        all_preds.to_csv(os.path.join(save_dir, 'test_preds.csv'), index=False)

    return mean_score, std_score