Пример #1
0
def test():

    chip = Chip("square_root")

    test_in = Stimulus(chip, "input", "float", [i * 0.1 for i in range(100)])
    test_out = Response(chip, "output", "float")

    #create a filter component using the C code
    sqrt = Component("sqrt.c")

    #add an instance to the chip
    sqrt(
        chip,
        inputs={
            "x": test_in,
        },
        outputs={
            "sqrt_x": test_out,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(test_out) < 100:
        chip.simulation_step()

    pyplot.plot(list(test_in), list(test_out))
    pyplot.xlim(0, 10.1)
    pyplot.title("Square Root of x")
    pyplot.xlabel("x")
    pyplot.ylabel("$\\sqrt{x}$")
    pyplot.savefig("../docs/source/examples/images/example_1.png")
    pyplot.show()
Пример #2
0
def test():

    chip = Chip("square_root")

    test_in = Stimulus(chip, "input", "float", [i*0.1 for i in range(100)])
    test_out = Response(chip, "output", "float")
    
    #create a filter component using the C code
    sqrt = Component("sqrt.c")

    #add an instance to the chip
    sqrt(
        chip, 
        inputs = {
            "x":test_in,
        },
        outputs = {
            "sqrt_x":test_out,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(test_out) < 100:
        chip.simulation_step()

    pyplot.plot(list(test_in), list(test_out))
    pyplot.xlim(0, 10.1)
    pyplot.title("Square Root of x")
    pyplot.xlabel("x")
    pyplot.ylabel("$\\sqrt{x}$")
    pyplot.savefig("../docs/source/examples/images/example_1.png")
    pyplot.show()
Пример #3
0
def test():

    from math import pi
    from numpy import abs
    from scipy import fft
    from scipy.signal import firwin
    from matplotlib import pyplot
    from chips.api.api import Chip, Stimulus, Response, Wire, Component

    #create a chip
    chip = Chip("filter_example")

    #low pass filter half nyquist 50 tap
    kernel = Stimulus(chip, "kernel", "float",
                      firwin(50, 0.5, window="blackman"))

    #impulse response
    input_ = Stimulus(chip, "input", "float",
                      [1.0] + [0.0 for i in range(1024)])
    output = Response(chip, "output", "float")

    #create a filter component using the C code
    fir_comp = Component("fir.c")

    #add an instance to the chip
    fir_inst_1 = fir_comp(
        chip,
        inputs={
            "a": input_,
            "k": kernel,
        },
        outputs={
            "z": output,
        },
        parameters={
            "N": len(kernel) - 1,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(output) < 1024:
        chip.simulation_step()

    #plot the result
    pyplot.semilogy(abs(fft(list(output)))[0:len(output) / 2])
    pyplot.title("Magnitude of Impulse Response")
    pyplot.xlim(0, 512)
    pyplot.xlabel("X Sample")
    pyplot.savefig("../docs/source/examples/images/example_6.png")
    pyplot.show()
Пример #4
0
def test():

    from math import pi
    from numpy import abs
    from scipy import fft
    from scipy.signal import firwin
    from matplotlib import pyplot
    from chips.api.api import Chip, Stimulus, Response, Wire, Component

    #create a chip
    chip = Chip("filter_example")

    #low pass filter half nyquist 50 tap
    kernel = Stimulus(chip, "kernel", "float", firwin(50, 0.5, window="blackman"))

    #impulse response
    input_ = Stimulus(chip, "input", "float", [1.0] + [0.0 for i in range(1024)])
    output = Response(chip, "output", "float")
    
    #create a filter component using the C code
    fir_comp = Component("fir.c")

    #add an instance to the chip
    fir_inst_1 = fir_comp(
        chip, 
        inputs = {
            "a":input_,
            "k":kernel,
        },
        outputs = {
            "z":output,
        },
        parameters = {
            "N":len(kernel)-1,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(output) < 1024:
        chip.simulation_step()
        
    #plot the result
    pyplot.semilogy(abs(fft(list(output)))[0:len(output)/2])
    pyplot.title("Magnitude of Impulse Response")
    pyplot.xlim(0, 512)
    pyplot.xlabel("X Sample")
    pyplot.savefig("../docs/source/examples/images/example_6.png")
    pyplot.show()
Пример #5
0
def test():

    chip = Chip("taylor")

    stimulus = arange(-2*pi, 2.0*pi, pi/25)
    x = Stimulus(chip, "x", "double", stimulus)
    sin_x = Response(chip, "sin_x", "double")
    cos_x = Response(chip, "cos_x", "double")
    
    #create a filter component using the C code
    sqrt = Component("taylor.c")

    #add an instance to the chip
    sqrt(
        chip, 
        inputs = {
            "x":x,
        },
        outputs = {
            "sin_x":sin_x,
            "cos_x":cos_x,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(cos_x) < len(x):
        chip.simulation_step()

    x = list(x)
    sin_x = list(sin_x)[:100]
    cos_x = list(cos_x)[:100]

    pyplot.xticks(
        [-2.0*pi, -pi, 0, pi,  2.0*pi],
        [r'$-2\pi$', r"$-\pi$", r'$0$', r'$\pi$', r'$2\pi$'])
    pyplot.plot(x, sin_x, label="sin(x)")
    pyplot.plot(x, cos_x, label="cos(x)")
    pyplot.ylim(-1.1, 1.1)
    pyplot.xlim(-2.2 * pi, 2.2 * pi)
    pyplot.title("Trig Functions")
    pyplot.xlabel("x (radians)")
    pyplot.legend(loc="upper left")
    pyplot.savefig("../docs/source/examples/images/example_2.png")
    pyplot.show()
Пример #6
0
def test():

    chip = Chip("taylor")

    stimulus = arange(-2 * pi, 2.0 * pi, pi / 25)
    x = Stimulus(chip, "x", "double", stimulus)
    sin_x = Response(chip, "sin_x", "double")
    cos_x = Response(chip, "cos_x", "double")

    #create a filter component using the C code
    sqrt = Component("taylor.c")

    #add an instance to the chip
    sqrt(
        chip,
        inputs={
            "x": x,
        },
        outputs={
            "sin_x": sin_x,
            "cos_x": cos_x,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(cos_x) < len(x):
        chip.simulation_step()

    x = list(x)
    sin_x = list(sin_x)[:100]
    cos_x = list(cos_x)[:100]

    pyplot.xticks([-2.0 * pi, -pi, 0, pi, 2.0 * pi],
                  [r'$-2\pi$', r"$-\pi$", r'$0$', r'$\pi$', r'$2\pi$'])
    pyplot.plot(x, sin_x, label="sin(x)")
    pyplot.plot(x, cos_x, label="cos(x)")
    pyplot.ylim(-1.1, 1.1)
    pyplot.xlim(-2.2 * pi, 2.2 * pi)
    pyplot.title("Trig Functions")
    pyplot.xlabel("x (radians)")
    pyplot.legend(loc="upper left")
    pyplot.savefig("../docs/source/examples/images/example_2.png")
    pyplot.show()
Пример #7
0
def test():

    chip = Chip("fft")

    x_re = [0.0 for i in range(1024)]
    x_im = [0.0 for i in range(1024)]
    x_re[0:63] = [sin(2.0 * pi * (i/64.0)) for i in range(64)]

    x_re = Stimulus(chip, "x_re", "double", x_re)
    x_im = Stimulus(chip, "x_im", "double", x_im)
    fft_x_re = Response(chip, "fft_x_re", "double")
    fft_x_im = Response(chip, "fft_x_im", "double")
    
    #create a filter component using the C code
    fft = Component("fft.c")

    #add an instance to the chip
    fft(
        chip, 
        inputs = {
            "x_re":x_re,
            "x_im":x_im,
        },
        outputs = {
            "fft_x_re":fft_x_re,
            "fft_x_im":fft_x_im,
        },
    )

    #run the simulation
    chip.simulation_reset()
    while len(fft_x_im) < len(x_im):
        chip.simulation_step()

    x_re = list(x_re)
    x_im = list(x_im)
    fft_x_re = list(fft_x_re)[:len(x_re)]
    fft_x_im = list(fft_x_im)[:len(x_im)]

    time_complex = [i + (j*1.0) for i, j in zip(x_re, x_im)]
    numpy_complex = s.fft(time_complex)
    numpy_magnitude = n.abs(numpy_complex)

    chips_complex = [i + (j*1.0j) for i, j in zip(fft_x_re, fft_x_im)]
    chips_magnitude = n.abs(chips_complex)

    f, subplot = pyplot.subplots(3, sharex=True)

    pyplot.subplots_adjust(hspace=1.0)
    subplot[0].plot(x_re, 'g')
    subplot[1].plot(numpy_magnitude, 'r')
    subplot[2].plot(chips_magnitude, 'b')
    pyplot.xlim(0, 1023)
    subplot[0].set_title("Time Domain Signal (64 point sine)")
    subplot[1].set_title("Frequency Spectrum - Numpy")
    subplot[2].set_title("Frequency Spectrum - Chips")
    subplot[0].set_xlabel("Sample")
    subplot[1].set_xlabel("Sample")
    subplot[2].set_xlabel("Sample")
    pyplot.savefig("../docs/source/examples/images/example_5.png")
    pyplot.show()
Пример #8
0
    application = __import__("demo.examples.%s.application"%example, globals(), locals(), ["application"], -1)
    try:
        application.application(
            chip, 
            eth_stim,
            rs232_stim,
            switches_stim,
            buttons_stim,
            timer_stim,
            eth_response,
            rs232_response,
            led_response,
        )

        if "simulate" in sys.argv:
            chip.simulation_reset()
            chip.simulation_run()

        if "vsim" in sys.argv:
            chip.generate_verilog()
            chip.generate_testbench()
            chip.compile_iverilog(True)

        if "compile" in sys.argv:
            compile_user_design(chip)

        if "build" in sys.argv:

            build_xst(chip, os.path.join("bsp", board))

        if "download" in sys.argv:
Пример #9
0
                             globals(), locals(), ["application"], -1)
    try:
        application.application(
            chip,
            eth_stim,
            rs232_stim,
            switches_stim,
            buttons_stim,
            timer_stim,
            eth_response,
            rs232_response,
            led_response,
        )

        if "simulate" in sys.argv:
            chip.simulation_reset()
            chip.simulation_run()

        if "vsim" in sys.argv:
            chip.generate_verilog()
            chip.generate_testbench()
            chip.compile_iverilog(True)

        if "compile" in sys.argv:
            compile_user_design(chip)

        if "build" in sys.argv:

            build_xst(chip, os.path.join("bsp", board))

        if "download" in sys.argv: