Пример #1
0
def test_predictions_with_additional_regressors(sample_data):
    '''
        TODO: update
    '''

    my_chronos = Chronos(n_changepoints=0, max_iter=100)
    my_chronos.add_regressors("reg1", "mul")
    my_chronos.add_regressors("reg2", "mul")

    # Check not including the regressor throws an error
    with pytest.raises(KeyError):
        my_chronos.fit(sample_data)

    # Now check with the regressor
    sample_data['reg1'] = [1] * sample_data.shape[0]
    sample_data['reg2'] = [1] * sample_data.shape[0]
    my_chronos.fit(sample_data)

    future_df = my_chronos.make_future_dataframe(include_history=False)

    # Check not including the regressor throws an error
    with pytest.raises(KeyError):
        predictions = my_chronos.predict(future_df)

    # Now check with the regressor
    future_df['reg1'] = [1] * future_df.shape[0]
    future_df['reg2'] = [1] * future_df.shape[0]
    predictions = my_chronos.predict(future_df)

    predictions.drop('y', axis=1, inplace=True)

    assert (predictions.isna().sum().sum() == 0)
Пример #2
0
def test_error_for_nan_values(sample_data):
    '''
        Tests that Chronos complains when given
        nan values to fit on, but not to predict on
    '''
    def add_dummy_regressors(data):

        z = data.index.values
        y = 0.01 * z + np.sin(z / 30)
        data['y'] = y

        # should be easy since the target is just dummy1 + dummy2
        dummy1 = 0.01 * z
        dummy2 = np.sin(z / 30)
        data['dummy1'] = dummy1
        data['dummy2'] = dummy2

        return data

    sample_data = add_dummy_regressors(sample_data)

    my_chronos = Chronos(max_iter=200)

    # add dummies
    my_chronos.add_regressors("dummy1")
    my_chronos.add_regressors("dummy2")

    # check nan values fail for all columns
    for col in ['ds', 'y', 'dummy1', 'dummy2']:
        sample_data_with_nans = sample_data.copy()
        sample_data_with_nans.loc[0, col] = np.nan

        with pytest.raises(ValueError):
            my_chronos.fit(sample_data_with_nans)

    # check original data works
    my_chronos.fit(sample_data)

    future_df = my_chronos.make_future_dataframe()
    future_df = add_dummy_regressors(future_df)

    # check nan values fail for all columns EXCEPT
    # the target column when making predictions
    for col in ['ds', 'y', 'dummy1', 'dummy2']:
        future_df_with_nans = future_df.copy()
        future_df_with_nans.loc[0, col] = np.nan
        if (col == 'y'):
            predictions = my_chronos.predict(future_df_with_nans)
        else:
            with pytest.raises(ValueError):
                predictions = my_chronos.predict(future_df_with_nans)
Пример #3
0
def test_prediction_with_easy_extra_regressors(sample_data):
    '''
        Test that when the size of the data is too small, the
        number of changepoints gets adjusted
    '''

    z = sample_data.index.values
    y = 0.01 * z + np.sin(z / 30)
    sample_data['y'] = y

    # should be easy since the target is just dummy1 + dummy2
    dummy1 = 0.01 * z
    dummy2 = np.sin(z / 30)
    sample_data['dummy1'] = dummy1
    sample_data['dummy2'] = dummy2

    for distribution in chronos_utils.SUPPORTED_DISTRIBUTIONS:

        # Student t distribution has issues with the long tails
        if (distribution != chronos_utils.StudentT_dist_code):
            my_chronos = Chronos(max_iter=200, distribution=distribution)

            # add dummies
            my_chronos.add_regressors("dummy1")
            my_chronos.add_regressors("dummy2")

            my_chronos.fit(sample_data)

            future_df = my_chronos.make_future_dataframe()

            # Add dummies to future df
            z = future_df.index.values

            y = 0.01 * z + np.sin(z / 30)
            future_df['y'] = y

            dummy1 = 0.01 * z
            dummy2 = np.sin(z / 30)
            future_df['dummy1'] = dummy1
            future_df['dummy2'] = dummy2

            # Make predictions
            predictions = my_chronos.predict(future_df)

            # The predictions should be almost the same as the target
            assert (np.mean(np.abs(predictions['y'] - predictions['yhat'])) <
                    0.1)