Пример #1
0
 def __init__(self, cfg, dirname):
     self.parser = ChunkParser(cfg, dirname)
     self.cfg = cfg
     self.xsize = cfg.xsize
     self.ysize = cfg.ysize
     self.input_channels = cfg.input_channels
     self.input_features = cfg.input_features
     self.policy_map = cfg.policy_map
Пример #2
0
def main():
    if len(sys.argv) != 2:
        print("Usage: {} config.yaml".format(sys.argv[0]))
        return 1

    cfg = yaml.safe_load(open(sys.argv[1], 'r').read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    num_train = int(num_chunks*cfg['dataset']['train_ratio'])
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    #bench_parser = ChunkParser(FileDataSrc(chunks[:1000]), shuffle_size=1<<14, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    #benchmark(bench_parser)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    #benchmark(train_parser)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = int(round(((num_chunks-num_train) * (200 / SKIP)) / ChunkParser.BATCH_SIZE))
    print("Using {} evaluation batches".format(num_evals))

    # while True:
    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)
Пример #3
0
def extract_data(parser: ChunkParser, chunkdata):
    lst = []
    gen = parser.sample_record(chunkdata)
    for s in gen:
        (planes, probs,
         winner), (ver, probs2, planes, us_ooo, us_oo, them_ooo, them_oo, stm,
                   rule50_plane, move_count, winner,
                   planes1) = parser.convert_v3_to_tuple(s, return_planes=True)

        shape = {'planes': planes1, 'probs': probs, 'winner': winner}
        lst.append(shape)

    return lst
Пример #4
0
def main(args):
    train_data_prefix = args.pop(0)

    chunks = get_chunks(train_data_prefix)
    print("Found {0} chunks".format(len(chunks)))

    if not chunks:
        return

    # The following assumes positions from one game are not
    # spread through chunks.
    random.shuffle(chunks)
    training, test = split_chunks(chunks, 0.1)
    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(FileDataSrc(training),
                               shuffle_size=1 << 19,
                               sample=DOWN_SAMPLE,
                               batch_size=BATCH_SIZE)
    #benchmark(train_parser)
    dataset = tf.data.Dataset.from_generator(train_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(_parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1 << 19,
                              sample=DOWN_SAMPLE,
                              batch_size=BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(test_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(_parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess()
    tfprocess.init(dataset, train_iterator, test_iterator)

    #benchmark1(tfprocess)

    if args:
        restore_file = args.pop(0)
        tfprocess.restore(restore_file)
    while True:
        tfprocess.process(BATCH_SIZE)
Пример #5
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks * train_ratio)
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
                               shuffle_size=shuffle_size,
                               sample=SKIP,
                               batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(train_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]),
                              shuffle_size=shuffle_size,
                              sample=SKIP,
                              batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(test_parser.parse,
                                             output_types=(tf.string,
                                                           tf.string,
                                                           tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = (num_chunks - num_train) * 10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)

    tfprocess.save_leelaz_weights(cmd.output)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Пример #6
0
def chunk_parser(q_in, q_out, shuffle_size, chunk_size):
    """
        Parse input chunks from 'q_in', shuffle, and put
        chunks of moves in v2 format into 'q_out'

        Each output chunk contains 'chunk_size' moves.
        Moves are shuffled in a buffer of 'shuffle_size' moves.
        (A 2^20 items shuffle buffer is ~ 2.2GB of RAM).
    """
    workers = max(1, mp.cpu_count() - 2)
    parse = ChunkParser(QueueChunkSrc(q_in),
                        shuffle_size=shuffle_size,
                        workers=workers)
    gen = parse.v2_gen()
    while True:
        s = list(itertools.islice(gen, chunk_size))
        if not len(s):
            break
        s = b''.join(s)
        q_out.put(s)
    q_out.put('STOP')
Пример #7
0
def chunk_parser(q_in, q_out, shuffle_size, chunk_size):
    """
        Parse input chunks from 'q_in', shuffle, and put
        chunks of moves in v2 format into 'q_out'

        Each output chunk contains 'chunk_size' moves.
        Moves are shuffled in a buffer of 'shuffle_size' moves.
        (A 2^20 items shuffle buffer is ~ 2.2GB of RAM).
    """
    workers = max(1, mp.cpu_count() - 2)
    parse = ChunkParser(QueueChunkSrc(q_in),
                        shuffle_size=shuffle_size,
                        workers=workers)
    gen = parse.v2_gen()
    while True:
        s = list(itertools.islice(gen, chunk_size))
        if not len(s):
            break
        s = b''.join(s)
        q_out.put(s)
    q_out.put('STOP')
Пример #8
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), 
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = (num_chunks-num_train)*10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)

    tfprocess.save_leelaz_weights(cmd.output)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Пример #9
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'], num_train)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(train_chunks),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(test_chunks),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = tf.train.latest_checkpoint(root_dir)
        tfprocess.restore(cp)

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = cfg['training'].get('num_test_positions', num_test * 10)
    num_evals = max(1, num_evals // ChunkParser.BATCH_SIZE)
    print("Using {} evaluation batches".format(num_evals))

    tfprocess.process_loop(total_batch_size, num_evals, batch_splits=batch_splits)

    if cmd.output is not None:
        tfprocess.save_leelaz_weights(cmd.output)

    tfprocess.session.close()
    train_parser.shutdown()
    test_parser.shutdown()
Пример #10
0
def main():
    parser = argparse.ArgumentParser(
        description='Train network from game data.')
    parser.add_argument("blockspref",
                        help="Number of blocks",
                        nargs='?',
                        type=int)
    parser.add_argument("filterspref",
                        help="Number of filters",
                        nargs='?',
                        type=int)
    parser.add_argument("trainpref",
                        help='Training file prefix',
                        nargs='?',
                        type=str)
    parser.add_argument("restorepref",
                        help='Training snapshot prefix',
                        nargs='?',
                        type=str)
    parser.add_argument("--blocks", '-b', help="Number of blocks", type=int)
    parser.add_argument("--filters", '-f', help="Number of filters", type=int)
    parser.add_argument("--train", '-t', help="Training file prefix", type=str)
    parser.add_argument("--test", help="Test file prefix", type=str)
    parser.add_argument("--restore",
                        type=str,
                        help="Prefix of tensorflow snapshot to restore from")
    parser.add_argument(
        "--logbase",
        default='leelalogs',
        type=str,
        help="Log file prefix (for tensorboard) (default: %(default)s)")
    parser.add_argument(
        "--sample",
        default=DOWN_SAMPLE,
        type=int,
        help="Rate of data down-sampling to use (default: %(default)d)")
    args = parser.parse_args()

    blocks = args.blocks or args.blockspref
    filters = args.filters or args.filterspref
    train_data_prefix = args.train or args.trainpref
    restore_prefix = args.restore or args.restorepref

    if not blocks or not filters:
        print("Must supply number of blocks and filters")
        return

    training = get_chunks(train_data_prefix)
    if not args.test:
        # Generate test by taking 10% of the training chunks.
        random.shuffle(training)
        print("here1")
        training, test = split_chunks(training, 0.1)
    else:
        test = get_chunks(args.test)

    if not training:
        print("No data to train on!")
        return

    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(
        FileDataSrc(training),
        shuffle_size=1 << 20,  # 2.2GB of RAM.
        sample=args.sample,
        batch_size=RAM_BATCH_SIZE).parse()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1 << 19,
                              sample=args.sample,
                              batch_size=RAM_BATCH_SIZE).parse()

    tfprocess = TFProcess(blocks, filters)
    tfprocess.init(RAM_BATCH_SIZE,
                   logbase=args.logbase,
                   macrobatch=BATCH_SIZE // RAM_BATCH_SIZE)

    #benchmark1(tfprocess)

    if restore_prefix:
        tfprocess.restore(restore_prefix)
    tfprocess.process(train_parser, test_parser)
Пример #11
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    experimental_parser = cfg['dataset'].get('experimental_v5_only_dataset',
                                             False)
    # num_train = int(num_chunks * train_ratio)
    # we just need to use one data loader, just put everything into train
    num_train = int(num_chunks)
    num_test = num_chunks - num_train
    sort_type = cfg['dataset'].get('sort_type', 'mtime')
    if sort_type == 'mtime':
        sort_key_fn = os.path.getmtime
    elif sort_type == 'number':
        sort_key_fn = game_number_for_name
    elif sort_type == 'name':
        sort_key_fn = identity_function
    else:
        raise ValueError('Unknown dataset sort_type: {}'.format(sort_type))
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less, sort_key_fn)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less, sort_key_fn)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less, sort_key_fn)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    # shuffle_size = cfg['training']['shuffle_size']
    shuffle_size = 1
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    value_focus_min = cfg['training'].get('value_focus_min', 1)
    value_focus_slope = cfg['training'].get('value_focus_slope', 0)

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)
    tfprocess = TFProcess(cfg)
    experimental_reads = max(2, mp.cpu_count() - 2) // 2
    extractor = select_extractor(tfprocess.INPUT_MODE)

    if experimental_parser and (value_focus_min != 1
                                or value_focus_slope != 0):
        raise ValueError(
            'Experimental parser does not support non-default value \
                          focus parameters.')

    def read(x):
        return tf.data.FixedLengthRecordDataset(
            x,
            8308,
            compression_type='GZIP',
            num_parallel_reads=experimental_reads)

    if experimental_parser:
        # train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).shuffle(len(train_chunks)).repeat().batch(256)\
        train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=1)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .batch(split_batch_size).map(extractor)
        #  .shuffle(shuffle_size)\
        # .batch(split_batch_size).map(extractor)
    else:
        train_parser = ChunkParser(train_chunks,
                                   tfprocess.INPUT_MODE,
                                   shuffle_size=shuffle_size,
                                   sample=SKIP,
                                   batch_size=ChunkParser.BATCH_SIZE,
                                   value_focus_min=value_focus_min,
                                   value_focus_slope=value_focus_slope,
                                   workers=train_workers)
        train_dataset = tf.data.Dataset.from_generator(
            train_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        train_dataset = train_dataset.map(ChunkParser.parse_function)

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    if experimental_parser:
        # test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).shuffle(len(test_chunks)).repeat().batch(256)\
        test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .batch(split_batch_size).map(extractor)
        #  .shuffle(shuffle_size)\
        #  .batch(split_batch_size).map(extractor)

    else:
        # no value focus for test_parser
        test_parser = ChunkParser(test_chunks,
                                  tfprocess.INPUT_MODE,
                                  shuffle_size=shuffle_size,
                                  sample=SKIP,
                                  batch_size=ChunkParser.BATCH_SIZE,
                                  workers=test_workers)
        test_dataset = tf.data.Dataset.from_generator(
            test_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        test_dataset = test_dataset.map(ChunkParser.parse_function)
    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_dataset = tf.data.FixedLengthRecordDataset(valid_chunks, 8308, compression_type='GZIP', num_parallel_reads=experimental_reads)\
                               .batch(split_batch_size, drop_remainder=True).map(extractor)
    if tfprocess.strategy is None:  #Mirrored strategy appends prefetch itself with a value depending on number of replicas
        train_dataset = train_dataset.prefetch(4)
        test_dataset = test_dataset.prefetch(4)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.prefetch(4)
    else:
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        train_dataset = train_dataset.with_options(options)
        test_dataset = test_dataset.with_options(options)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.with_options(options)

    ##########################
    # Custom Additions #
    ##########################

    tfprocess.init_v2(train_dataset, test_dataset, validation_dataset)
    # load net from weights file given in yaml config
    tfprocess.replace_weights_v2(proto_filename=cmd.net, ignore_errors=False)
    tfprocess.model.summary()

    for layer_name, path in zip(cmd.layer, cmd.path):

        # sort data files
        train_chunks = sorted(train_chunks)

        # create predictor that gives access to specific intermediate layer
        layer = tfprocess.model.get_layer(layer_name)
        earlyPredictor = tf.keras.models.Model(
            tfprocess.model.inputs,
            [tfprocess.model.inputs, tfprocess.model.outputs, layer.output])

        # create custom iterator which doesn't shuffle the data etc
        custom_parse_gen = train_parser.custom_parse(train_chunks)
        turn_counter = 0
        custom_iter = iter(custom_parse_gen)

        # prepare dataframe
        df = pd.DataFrame()

        # iterate entire dataset generator / iterator
        for data in custom_iter:  #i in range(30):
            # data = next(custom_iter)
            planes, probs, winner, best_q = train_parser.custom_get_batch(data)
            x = planes
            print('predicting...')
            _, _, layer_results = earlyPredictor.predict(x)
            # append to dataframe
            # df = df.append(pd.DataFrame(activation_31.reshape(-1,128*8*8)))
            shape_tuple = (-1, np.prod(layer.output_shape[1:]))
            df = df.append(pd.DataFrame(layer_results.reshape(shape_tuple)))

            turn_counter += len(x)

        df.info()
        df.to_csv(path)

        print('done')

    train_parser.shutdown()
    test_parser.shutdown()
Пример #12
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)

    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks*train_ratio)
    shuffle_size = cfg['training']['shuffle_size']
    ChunkParser.BATCH_SIZE = cfg['training']['batch_size']

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(FileDataSrc(chunks[:num_train]),
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        train_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    train_iterator = dataset.make_one_shot_iterator()

    shuffle_size = int(shuffle_size*(1.0-train_ratio))
    test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), 
            shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE)
    dataset = tf.data.Dataset.from_generator(
        test_parser.parse, output_types=(tf.string, tf.string, tf.string))
    dataset = dataset.map(ChunkParser.parse_function)
    dataset = dataset.prefetch(4)
    test_iterator = dataset.make_one_shot_iterator()

    tfprocess = TFProcess(cfg)
    tfprocess.init(dataset, train_iterator, test_iterator)

    if os.path.exists(os.path.join(root_dir, 'checkpoint')):
        cp = get_checkpoint(root_dir)
        tfprocess.restore(cp)

    # Sweeps through all test chunks statistically
    num_evals = (num_chunks-num_train)*10 // ChunkParser.BATCH_SIZE
    print("Using {} evaluation batches".format(num_evals))

    for _ in range(cfg['training']['total_steps']):
        tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)

    tfprocess.save_leelaz_weights('/tmp/weights.txt')

    with open('/tmp/weights.txt', 'rb') as f:
        m = hashlib.sha256()
        w = f.read()
        m.update(w)
        digest = m.hexdigest()

    filename = '/tmp/{}.gz'.format(digest)
    with gzip.open(filename, 'wb') as f:
        f.write(w)

    if cmd.upload:
        metadata = {'training_id':'1', 'layers':cfg['model']['residual_blocks'],
                'filters':cfg['model']['filters']}
        print("\nUploading `{}'...".format(digest[:8]), end='')
        upload(cmd.upload, metadata, filename)
        print("[done]\n")
    else:
        print("\nStored `{}'\n".format(filename))
Пример #13
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks * train_ratio)
    num_test = num_chunks - num_train
    sort_type = cfg['dataset'].get('sort_type', 'mtime')
    if sort_type == 'mtime':
        sort_key_fn = os.path.getmtime
    elif sort_type == 'number':
        sort_key_fn = game_number_for_name
    elif sort_type == 'name':
        sort_key_fn = identity_function
    else:
        raise ValueError('Unknown dataset sort_type: {}'.format(sort_type))
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less, sort_key_fn)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less, sort_key_fn)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less, sort_key_fn)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits

    diff_focus_min = cfg['training'].get('diff_focus_min', 1)
    diff_focus_slope = cfg['training'].get('diff_focus_slope', 0)
    diff_focus_q_weight = cfg['training'].get('diff_focus_q_weight', 6.0)
    diff_focus_pol_scale = cfg['training'].get('diff_focus_pol_scale', 3.5)

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    train_parser = ChunkParser(train_chunks,
                               get_input_mode(cfg),
                               shuffle_size=shuffle_size,
                               sample=SKIP,
                               batch_size=split_batch_size,
                               diff_focus_min=diff_focus_min,
                               diff_focus_slope=diff_focus_slope,
                               diff_focus_q_weight=diff_focus_q_weight,
                               diff_focus_pol_scale=diff_focus_pol_scale,
                               workers=train_workers)
    test_shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    # no diff focus for test_parser
    test_parser = ChunkParser(test_chunks,
                              get_input_mode(cfg),
                              shuffle_size=test_shuffle_size,
                              sample=SKIP,
                              batch_size=split_batch_size,
                              workers=test_workers)
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_parser = ChunkParser(valid_chunks,
                                        get_input_mode(cfg),
                                        sample=1,
                                        batch_size=split_batch_size,
                                        workers=0)

    import tensorflow as tf
    from chunkparsefunc import parse_function
    from tfprocess import TFProcess
    tfprocess = TFProcess(cfg)
    train_dataset = tf.data.Dataset.from_generator(
        train_parser.parse,
        output_types=(tf.string, tf.string, tf.string, tf.string, tf.string))
    train_dataset = train_dataset.map(parse_function)
    test_dataset = tf.data.Dataset.from_generator(
        test_parser.parse,
        output_types=(tf.string, tf.string, tf.string, tf.string, tf.string))
    test_dataset = test_dataset.map(parse_function)

    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        validation_dataset = tf.data.Dataset.from_generator(
            validation_parser.sequential,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        validation_dataset = validation_dataset.map(parse_function)

    if tfprocess.strategy is None:  #Mirrored strategy appends prefetch itself with a value depending on number of replicas
        train_dataset = train_dataset.prefetch(4)
        test_dataset = test_dataset.prefetch(4)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.prefetch(4)
    else:
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        train_dataset = train_dataset.with_options(options)
        test_dataset = test_dataset.with_options(options)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.with_options(options)
    tfprocess.init(train_dataset, test_dataset, validation_dataset)

    tfprocess.restore()

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = cfg['training'].get('num_test_positions',
                                    len(test_chunks) * 10)
    num_evals = max(1, num_evals // split_batch_size)
    print("Using {} evaluation batches".format(num_evals))
    tfprocess.total_batch_size = total_batch_size
    tfprocess.process_loop(total_batch_size,
                           num_evals,
                           batch_splits=batch_splits)

    if cmd.output is not None:
        if cfg['training'].get('swa_output', False):
            tfprocess.save_swa_weights(cmd.output)
        else:
            tfprocess.save_leelaz_weights(cmd.output)

    train_parser.shutdown()
    test_parser.shutdown()
Пример #14
0
class DataSet():
    def __init__(self, cfg, dirname):
        self.parser = ChunkParser(cfg, dirname)
        self.cfg = cfg
        self.xsize = cfg.xsize
        self.ysize = cfg.ysize
        self.input_channels = cfg.input_channels
        self.input_features = cfg.input_features
        self.policy_map = cfg.policy_map

    def get_x(self, idx):
        return idx % self.xsize

    def get_y(self, idx):
        return idx // self.xsize

    def __getitem__(self, idx):
        b, s = self.parser[idx]
        data = self.parser.unpack_v1(b, s)

        input_planes = np.zeros((self.input_channels, self.ysize, self.xsize))
        input_features = np.zeros(self.input_features)

        pol = np.zeros(self.policy_map * self.ysize * self.xsize)
        wdl = np.zeros(3)
        stm = np.zeros(1)
        symmetry = bool(np.random.choice(2, 1)[0])

        # input planes
        for i in range(7):
            start = data.ACCUMULATE[i]
            num = data.PIECES_NUMBER[i]
            for n in range(num):
                cp_idx = data.current_pieces[start + n]
                if symmetry:
                    cp_idx = symmetry_index[cp_idx]
                if cp_idx != -1:
                    x = self.get_x(cp_idx)
                    y = self.get_y(cp_idx)
                    input_planes[i][y][x] = 1

                op_idx = data.other_pieces[start + n]
                if symmetry:
                    op_idx = symmetry_index[op_idx]
                if op_idx != -1:
                    x = self.get_x(op_idx)
                    y = self.get_y(op_idx)
                    input_planes[i + 7][y][x] = 1

        if data.tomove == 1:
            input_planes[14][:] = 1
        else:
            input_planes[15][:] = 1

        # input features
        input_features[0] = data.plies / 30
        input_features[1] = data.rule50_remaining / 30
        if data.repetitions >= 1:
            input_features[2] = 1
        if data.repetitions >= 2:
            input_features[3] = 1

        # probabilities
        for idx, p in zip(data.policyindex, data.probabilities):
            prob_idx = idx
            if symmetry:
                prob_idx = symmetry_maps[prob_idx]
                assert prob_idx != -1, "Invalid probabilities"
            pol[prob_idx] = p

        # winrate
        stm = data.result
        wdl[1 - data.result] = 1

        return (torch.tensor(input_planes).float(),
                torch.tensor(input_features).float(),
                torch.tensor(pol).float(), torch.tensor(wdl).float(),
                torch.tensor(stm).float())

    def __len__(self):
        return len(self.parser)
Пример #15
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    experimental_parser = cfg['dataset'].get('experimental_v5_only_dataset',
                                             False)
    # num_train = int(num_chunks * train_ratio)
    # we just need to use one data loader, just put everything into train
    num_train = int(num_chunks)
    num_test = num_chunks - num_train
    sort_type = cfg['dataset'].get('sort_type', 'mtime')
    if sort_type == 'mtime':
        sort_key_fn = os.path.getmtime
    elif sort_type == 'number':
        sort_key_fn = game_number_for_name
    elif sort_type == 'name':
        sort_key_fn = identity_function
    else:
        raise ValueError('Unknown dataset sort_type: {}'.format(sort_type))
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less, sort_key_fn)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less, sort_key_fn)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less, sort_key_fn)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    # shuffle_size = cfg['training']['shuffle_size']
    shuffle_size = 1
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    value_focus_min = cfg['training'].get('value_focus_min', 1)
    value_focus_slope = cfg['training'].get('value_focus_slope', 0)

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)
    tfprocess = TFProcess(cfg)
    experimental_reads = max(2, mp.cpu_count() - 2) // 2
    extractor = select_extractor(tfprocess.INPUT_MODE)

    if experimental_parser and (value_focus_min != 1
                                or value_focus_slope != 0):
        raise ValueError(
            'Experimental parser does not support non-default value \
                          focus parameters.')

    def read(x):
        return tf.data.FixedLengthRecordDataset(
            x,
            8308,
            compression_type='GZIP',
            num_parallel_reads=experimental_reads)

    if experimental_parser:
        # train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).shuffle(len(train_chunks)).repeat().batch(256)\
        train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=1)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .batch(split_batch_size).map(extractor)
                        #  .shuffle(shuffle_size)\
                        # .batch(split_batch_size).map(extractor)
    else:
        train_parser = ChunkParser(train_chunks,
                                   tfprocess.INPUT_MODE,
                                   shuffle_size=shuffle_size,
                                   sample=SKIP,
                                   batch_size=ChunkParser.BATCH_SIZE,
                                   value_focus_min=value_focus_min,
                                   value_focus_slope=value_focus_slope,
                                   workers=train_workers)
        train_dataset = tf.data.Dataset.from_generator(
            train_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        train_dataset = train_dataset.map(ChunkParser.parse_function)

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    if experimental_parser:
        # test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).shuffle(len(test_chunks)).repeat().batch(256)\
        test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .batch(split_batch_size).map(extractor)
                        #  .shuffle(shuffle_size)\
                        #  .batch(split_batch_size).map(extractor)
                         
    else:
        # no value focus for test_parser
        test_parser = ChunkParser(test_chunks,
                                  tfprocess.INPUT_MODE,
                                  shuffle_size=shuffle_size,
                                  sample=SKIP,
                                  batch_size=ChunkParser.BATCH_SIZE,
                                  workers=test_workers)
        test_dataset = tf.data.Dataset.from_generator(
            test_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        test_dataset = test_dataset.map(ChunkParser.parse_function)
    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_dataset = tf.data.FixedLengthRecordDataset(valid_chunks, 8308, compression_type='GZIP', num_parallel_reads=experimental_reads)\
                               .batch(split_batch_size, drop_remainder=True).map(extractor)
    if tfprocess.strategy is None:  #Mirrored strategy appends prefetch itself with a value depending on number of replicas
        train_dataset = train_dataset.prefetch(4)
        test_dataset = test_dataset.prefetch(4)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.prefetch(4)
    else:
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        train_dataset = train_dataset.with_options(options)
        test_dataset = test_dataset.with_options(options)
        if validation_dataset is not None:
            validation_dataset = validation_dataset.with_options(options)


    tfprocess.init_v2(train_dataset, test_dataset, validation_dataset)
    # load net from weights file given in yaml config
    tfprocess.replace_weights_v2(proto_filename=cmd.net, ignore_errors=False)

    train_chunks = sorted(train_chunks)

    custom_parse_gen = train_parser.custom_parse(train_chunks)
    print(train_chunks)
    counter = 0
    custom_iter = iter(custom_parse_gen)
    for data in custom_iter:#i in range(30):
        # data = next(custom_iter)
        planes, probs, winner, best_q = train_parser.custom_get_batch(data)
        print(planes.shape)
        x = planes

        # TODO make sure no shuffling happens. the following output should clearly show the first few moves of the game w.r.t. pawn placement
        for i in range(len(x)):
            counter += 1
            print('move no.:', counter)
            print(x[i, 0].reshape(8,8))
            print()
        print()

    # TODO
    # print(tfprocess.model.summary())
    # print(tfprocess.train_dataset)
    # data_iter = iter(tfprocess.train_dataset)
    # nxt = next(data_iter)
    # x, _, _, _, _ = nxt
    # x2_0_r = tf.reshape(x[0], [1, 112, 64])

    # pred = tfprocess.model.predict(x)

    earlyPredictor = tf.keras.models.Model(tfprocess.model.inputs, [tfprocess.model.inputs, tfprocess.model.outputs, tfprocess.model.get_layer('activation_31').output])
    early_pred_single = earlyPredictor.predict(x)
    # print(np.array(early_pred_single[0]).shape)
    input = np.array(early_pred_single[0])
    print(input.shape)

    

    # print(early_pred_single[0]) # input
    # print(early_pred_single[1]) # output
    # print(early_pred_single[2]) # intermediate layer

    # print(train_parser.sample_record())
    # print(next(tfprocess.train_iter))

    # tfprocess.restore_v2()

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    # num_evals = cfg['training'].get('num_test_positions',
    #                                 len(test_chunks) * 10)
    # num_evals = max(1, num_evals // ChunkParser.BATCH_SIZE)
    # print("Using {} evaluation batches".format(num_evals))
    # tfprocess.total_batch_size = total_batch_size
    # tfprocess.process_loop_v2(total_batch_size,
    #                           num_evals,
    #                           batch_splits=batch_splits)

    # if cmd.output is not None:
    #     if cfg['training'].get('swa_output', False):
    #         tfprocess.save_swa_weights_v2(cmd.output)
    #     else:
    #         tfprocess.save_leelaz_weights_v2(cmd.output)

    train_parser.shutdown()
    test_parser.shutdown()
Пример #16
0
def read_data_sets(filenames,
                   cfg=None,
                   fake_data=False,
                   one_hot=False,
                   dtype=tf.float32,
                   reshape=True,
                   validation_size=5000,
                   seed=None):

    if cfg is None:
        cfg = yaml.safe_load(FLAGS.cfg.read())
    tf.logging.info(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    train_ratio = cfg['dataset']['train_ratio']
    num_train = int(num_chunks * train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks)
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)

    t_chunks = FileDataSrc(train_chunks)
    train_parser = ChunkParser(t_chunks,
                               shuffle_size=shuffle_size,
                               sample=SKIP,
                               batch_size=ChunkParser.BATCH_SIZE,
                               auto_start_workers=False)
    final_train_data = []

    tf.logging.info('Loading training dataset')

    for chunkdata in t_chunks:
        if len(final_train_data) > FLAGS.record_count:
            break
        lst = extract_data(train_parser, chunkdata)
        for i in lst:
            tf.logging.debug('{}: {:4}'.format('train', len(final_train_data)))
            final_train_data.append(i)

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    tt_chunks = FileDataSrc(test_chunks)
    test_parser = ChunkParser(tt_chunks,
                              shuffle_size=shuffle_size,
                              sample=SKIP,
                              batch_size=ChunkParser.BATCH_SIZE,
                              auto_start_workers=False)
    final_test_data = []

    tf.logging.info('Loading testing dataset')

    for chunkdata in tt_chunks:
        if len(final_test_data) > FLAGS.record_count:
            break
        lst = extract_data(test_parser, chunkdata)
        for i in lst:
            tf.logging.debug('{}: {:4}'.format('test', len(final_test_data)))
            final_test_data.append(i)

    train_parser.shutdown()
    test_parser.shutdown()

    datasets = Dataset(train_data=final_train_data, test_data=final_test_data)
    return datasets
        8308,
        compression_type='GZIP',
        num_parallel_reads=experimental_reads)


if experimental_parser:
    train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).shuffle(len(train_chunks)).repeat().batch(256)\
                        .interleave(read, num_parallel_calls=2)\
                        .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                        .shuffle(shuffle_size)\
                        .batch(split_batch_size).map(extractor)
else:
    train_parser = ChunkParser(train_chunks,
                               tfprocess.INPUT_MODE,
                               shuffle_size=shuffle_size,
                               sample=SKIP,
                               batch_size=ChunkParser.BATCH_SIZE,
                               value_focus_min=value_focus_min,
                               value_focus_slope=value_focus_slope,
                               workers=train_workers)
    train_dataset = tf.data.Dataset.from_generator(
        train_parser.parse,
        output_types=(tf.string, tf.string, tf.string, tf.string, tf.string))
    train_dataset = train_dataset.map(ChunkParser.parse_function)

shuffle_size = int(shuffle_size * (1.0 - train_ratio))
if experimental_parser:
    test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).shuffle(len(test_chunks)).repeat().batch(256)\
                        .interleave(read, num_parallel_calls=2)\
                        .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                        .shuffle(shuffle_size)\
                        .batch(split_batch_size).map(extractor)
Пример #18
0
def main():
    parser = argparse.ArgumentParser(
        description='Train network from game data.')
    parser.add_argument("blockspref",
        help="Number of blocks", nargs='?', type=int)
    parser.add_argument("filterspref",
        help="Number of filters", nargs='?', type=int)
    parser.add_argument("trainpref",
        help='Training file prefix', nargs='?', type=str)
    parser.add_argument("restorepref",
        help='Training snapshot prefix', nargs='?', type=str)
    parser.add_argument("--blocks", '-b',
        help="Number of blocks", type=int)
    parser.add_argument("--filters", '-f',
        help="Number of filters", type=int)
    parser.add_argument("--train", '-t',
        help="Training file prefix", type=str)
    parser.add_argument("--test", help="Test file prefix", type=str)
    parser.add_argument("--restore", type=str,
        help="Prefix of tensorflow snapshot to restore from")
    parser.add_argument("--logbase", default='leelalogs', type=str,
        help="Log file prefix (for tensorboard) (default: %(default)s)")
    parser.add_argument("--sample", default=DOWN_SAMPLE, type=int,
        help="Rate of data down-sampling to use (default: %(default)d)")
    parser.add_argument("--bufferbits", default=TRAIN_SHUFFLE_BITS, type=int,
        help="Train shuffle-buffer size in bits (default: %(default)d)")
    parser.add_argument("--rate", default=LEARN_RATE, type=float,
                        help="Learning rate (default: %(default)f)")
    parser.add_argument("--steps", default=TRAINING_STEPS, type=int,
        help="Training step before writing a network (default: %(default)d)")
    parser.add_argument("--maxsteps", default=MAX_TRAINING_STEPS, type=int,
        help="Terminates after this many steps (default: %(default)d)")
    parser.add_argument("--maxkeep", default=MAX_SAVER_TO_KEEP, type=int,
        help="Keeps meta files for at most this many networks (default: %(default)d)")
    parser.add_argument("--policyloss", default=POLICY_LOSS_WT, type=float,
        help="Coefficient for policy term in loss function (default: %(default)f)")
    parser.add_argument("--mseloss", default=MSE_LOSS_WT, type=float,
        help="Coefficient for mse term in loss function (default: %(default)f)")
    parser.add_argument("--regloss", default=REG_LOSS_WT, type=float,
        help="Coefficient for regularizing term in loss function (default: %(default)f)")
    args = parser.parse_args()

    blocks = args.blocks or args.blockspref
    filters = args.filters or args.filterspref
    train_data_prefix = args.train or args.trainpref
    restore_prefix = args.restore or args.restorepref

    if not blocks or not filters:
        print("Must supply number of blocks and filters")
        return

    training = get_chunks(train_data_prefix)
    if not args.test:
        # Generate test by taking 10% of the training chunks.
        random.shuffle(training)
        training, test = split_chunks(training, 0.1)
    else:
        test = get_chunks(args.test)

    if not training:
        print("No data to train on!")
        return

    print("Training with {0} chunks, validating on {1} chunks".format(
        len(training), len(test)))

    train_parser = ChunkParser(FileDataSrc(training),
                               shuffle_size=1<<args.bufferbits, # was 20 -- 2.2GB of RAM.
                               sample=args.sample,
                               batch_size=RAM_BATCH_SIZE).parse()

    test_parser = ChunkParser(FileDataSrc(test),
                              shuffle_size=1<<(args.bufferbits-3),  # was 19
                              sample=args.sample,
                              batch_size=RAM_BATCH_SIZE).parse()

    tfprocess = TFProcess(blocks, filters,
                          args.rate, args.steps, args.maxsteps, args.maxkeep,
                          args.policyloss, args.mseloss, args.regloss)
    tfprocess.init(RAM_BATCH_SIZE,
                   logbase=args.logbase,
                   macrobatch=BATCH_SIZE // RAM_BATCH_SIZE)

    #benchmark1(tfprocess)

    if restore_prefix:
        tfprocess.restore(restore_prefix)
    tfprocess.process(train_parser, test_parser)
Пример #19
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    experimental_parser = cfg['dataset'].get('experimental_v5_only_dataset',
                                             False)
    num_train = int(num_chunks * train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    train_workers = cfg['dataset'].get('train_workers', None)
    test_workers = cfg['dataset'].get('test_workers', None)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    root_dir = os.path.join(cfg['training']['path'], cfg['name'])
    if not os.path.exists(root_dir):
        os.makedirs(root_dir)
    tfprocess = TFProcess(cfg)
    experimental_reads = max(2, mp.cpu_count() - 2) // 2
    extractor = select_extractor(tfprocess.INPUT_MODE)

    def read(x):
        return tf.data.FixedLengthRecordDataset(
            x,
            8308,
            compression_type='GZIP',
            num_parallel_reads=experimental_reads)

    if experimental_parser:
        train_dataset = tf.data.Dataset.from_tensor_slices(train_chunks).shuffle(len(train_chunks)).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .shuffle(shuffle_size)\
                         .batch(split_batch_size).map(extractor).prefetch(4)
    else:
        train_parser = ChunkParser(train_chunks,
                                   tfprocess.INPUT_MODE,
                                   shuffle_size=shuffle_size,
                                   sample=SKIP,
                                   batch_size=ChunkParser.BATCH_SIZE,
                                   workers=train_workers)
        train_dataset = tf.data.Dataset.from_generator(
            train_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        train_dataset = train_dataset.map(ChunkParser.parse_function)
        train_dataset = train_dataset.prefetch(4)

    shuffle_size = int(shuffle_size * (1.0 - train_ratio))
    if experimental_parser:
        test_dataset = tf.data.Dataset.from_tensor_slices(test_chunks).shuffle(len(test_chunks)).repeat().batch(256)\
                         .interleave(read, num_parallel_calls=2)\
                         .batch(SKIP_MULTIPLE*SKIP).map(semi_sample).unbatch()\
                         .shuffle(shuffle_size)\
                         .batch(split_batch_size).map(extractor).prefetch(4)
    else:
        test_parser = ChunkParser(test_chunks,
                                  tfprocess.INPUT_MODE,
                                  shuffle_size=shuffle_size,
                                  sample=SKIP,
                                  batch_size=ChunkParser.BATCH_SIZE,
                                  workers=test_workers)
        test_dataset = tf.data.Dataset.from_generator(
            test_parser.parse,
            output_types=(tf.string, tf.string, tf.string, tf.string,
                          tf.string))
        test_dataset = test_dataset.map(ChunkParser.parse_function)
        test_dataset = test_dataset.prefetch(4)

    validation_dataset = None
    if 'input_validation' in cfg['dataset']:
        valid_chunks = get_all_chunks(cfg['dataset']['input_validation'])
        validation_dataset = tf.data.FixedLengthRecordDataset(valid_chunks, 8308, compression_type='GZIP', num_parallel_reads=experimental_reads)\
                               .batch(split_batch_size, drop_remainder=True).map(extractor).prefetch(4)

    tfprocess.init_v2(train_dataset, test_dataset, validation_dataset)

    tfprocess.restore_v2()

    # If number of test positions is not given
    # sweeps through all test chunks statistically
    # Assumes average of 10 samples per test game.
    # For simplicity, testing can use the split batch size instead of total batch size.
    # This does not affect results, because test results are simple averages that are independent of batch size.
    num_evals = cfg['training'].get('num_test_positions',
                                    len(test_chunks) * 10)
    num_evals = max(1, num_evals // ChunkParser.BATCH_SIZE)
    print("Using {} evaluation batches".format(num_evals))

    tfprocess.process_loop_v2(total_batch_size,
                              num_evals,
                              batch_splits=batch_splits)

    if cmd.output is not None:
        if cfg['training'].get('swa_output', False):
            tfprocess.save_swa_weights_v2(cmd.output)
        else:
            tfprocess.save_leelaz_weights_v2(cmd.output)

    train_parser.shutdown()
    test_parser.shutdown()
Пример #20
0
def main(cmd):
    cfg = yaml.safe_load(cmd.cfg.read())
    print(yaml.dump(cfg, default_flow_style=False))

    num_chunks = cfg['dataset']['num_chunks']
    allow_less = cfg['dataset'].get('allow_less_chunks', False)
    train_ratio = cfg['dataset']['train_ratio']
    experimental_parser = cfg['dataset'].get('experimental_v5_only_dataset',
                                             False)
    num_train = int(num_chunks * train_ratio)
    num_test = num_chunks - num_train
    if 'input_test' in cfg['dataset']:
        train_chunks = get_latest_chunks(cfg['dataset']['input_train'],
                                         num_train, allow_less)
        test_chunks = get_latest_chunks(cfg['dataset']['input_test'], num_test,
                                        allow_less)
    else:
        chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks,
                                   allow_less)
        if allow_less:
            num_train = int(len(chunks) * train_ratio)
            num_test = len(chunks) - num_train
        train_chunks = chunks[:num_train]
        test_chunks = chunks[num_train:]

    shuffle_size = cfg['training']['shuffle_size']
    total_batch_size = cfg['training']['batch_size']
    batch_splits = cfg['training'].get('num_batch_splits', 1)
    if total_batch_size % batch_splits != 0:
        raise ValueError('num_batch_splits must divide batch_size evenly')
    split_batch_size = total_batch_size // batch_splits
    # Load data with split batch size, which will be combined to the total batch size in tfprocess.
    ChunkParser.BATCH_SIZE = split_batch_size

    tfprocess = TFProcess(cfg)

    train_parser = ChunkParser(train_chunks,
                               tfprocess.INPUT_MODE,
                               shuffle_size=10000,
                               sample=SKIP,
                               batch_size=ChunkParser.BATCH_SIZE,
                               workers=4)
    batch_gen = train_parser.parse()
    device = th.device('cuda:0' if th.cuda.is_available() else 'cpu')

    model = th.nn.Sequential(th.nn.Conv2d(112, 128, 3, padding=1, bias=False),
                             th.nn.ReLU(), ResidualBlock(), ResidualBlock(),
                             ResidualBlock(), ResidualBlock(), ResidualBlock(),
                             ResidualBlock(),
                             th.nn.Conv2d(128, 32, 1, bias=False),
                             th.nn.ReLU(), th.nn.Flatten(),
                             th.nn.Linear(2048, 1858, bias=False))
    model.train()
    model = model.to(device)
    optimizer = th.optim.SGD(model.parameters(), lr=0.01)
    train_batches = 100000
    for i in range(train_batches):
        # print(f'getting data {i} ...')
        x, y, z, q, m = next(batch_gen)
        x, y, z, q, m = ChunkParser.parse_function(x, y, z, q, m)
        x = x.numpy()
        x = th.Tensor(x)
        x = x.reshape((-1, 112, 8, 8))
        y = th.Tensor(y.numpy())
        x, y = x.to(device), y.to(device)
        optimizer.zero_grad()
        policy = model(x)
        loss = th.mean(
            th.sum(-th.log_softmax(policy, 1) * th.nn.functional.relu(y), 1))
        loss.backward()
        optimizer.step()
        if i % 10 == 0:
            print(f'step = {i}, loss = {loss.item()}')

    train_parser.shutdown()