Пример #1
0
def main(params, nb_cpu, nb_gpu, use_gpu):

    #################################################################
    # params = detect_memory(params)
    _ = init_logging(params.logfile)
    SHARED_MEMORY = get_shared_memory_flag(params)
    logger = logging.getLogger('circus.fitting')
    data_file = params.data_file
    n_e = params.getint('data', 'N_e')
    n_total = params.nb_channels
    n_t = params.getint('detection', 'N_t')
    template_shift = params.getint('detection', 'template_shift')
    # file_out = params.get('data', 'file_out')
    file_out_suff = params.get('data', 'file_out_suff')
    sign_peaks = params.get('detection', 'peaks')
    matched_filter = params.getboolean('detection', 'matched-filter')
    # spike_thresh = params.getfloat('detection', 'spike_thresh')
    ratio_thresh = params.getfloat('fitting', 'ratio_thresh')
    two_components = params.getboolean('fitting', 'two_components')
    # spike_width = params.getfloat('detection', 'spike_width')
    # dist_peaks = params.getint('detection', 'dist_peaks')
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening = params.getboolean('whitening', 'spatial')
    templates_normalization = params.getboolean('clustering', 'templates_normalization')  # TODO test, switch, test!
    chunk_size = detect_memory(params, fitting=True)
    gpu_only = params.getboolean('fitting', 'gpu_only')
    nodes, edges = get_nodes_and_edges(params)
    tmp_limits = params.get('fitting', 'amp_limits').replace('(', '').replace(')', '').split(',')
    tmp_limits = [float(v) for v in tmp_limits]
    amp_auto = params.getboolean('fitting', 'amp_auto')
    auto_nb_chances = params.getboolean('fitting', 'auto_nb_chances')
    if auto_nb_chances:
        nb_chances = io.load_data(params, 'nb_chances')
        max_nb_chances = params.getint('fitting', 'max_nb_chances')
        percent_nb_chances = params.getfloat('fitting', 'percent_nb_chances')
        total_nb_chances = max(1, numpy.nanpercentile(nb_chances, percent_nb_chances))
        total_nb_chances = min(total_nb_chances, max_nb_chances)
        if comm.rank == 0:
            print_and_log(['nb_chances set automatically to %g' %total_nb_chances], 'debug', logger)
    else:
        total_nb_chances = params.getfloat('fitting', 'nb_chances')
    max_chunk = params.getfloat('fitting', 'max_chunk')
    # noise_thr = params.getfloat('clustering', 'noise_thr')
    collect_all = params.getboolean('fitting', 'collect_all')
    min_second_component = params.getfloat('fitting', 'min_second_component')
    debug = params.getboolean('fitting', 'debug')
    ignore_dead_times = params.getboolean('triggers', 'ignore_times')
    inv_nodes = numpy.zeros(n_total, dtype=numpy.int32)
    inv_nodes[nodes] = numpy.arange(len(nodes))
    data_file.open()
    #################################################################

    if use_gpu:
        import cudamat as cmt
        # # Need to properly handle multi GPU per MPI nodes?
        if nb_gpu > nb_cpu:
            gpu_id = int(comm.rank // nb_cpu)
        else:
            gpu_id = 0
        cmt.cuda_set_device(gpu_id)
        cmt.init()
        cmt.cuda_sync_threads()

    if SHARED_MEMORY:
        templates, _ = io.load_data_memshared(params, 'templates', normalize=templates_normalization, transpose=True)
        N_tm, x = templates.shape
    else:
        templates = io.load_data(params, 'templates')
        x, N_tm = templates.shape

    temp_2_shift = 2 * template_shift
    temp_3_shift = 3 * template_shift
    full_gpu = use_gpu and gpu_only
    n_tm = N_tm // 2
    n_scalar = n_e * n_t

    temp_window = numpy.arange(-template_shift, template_shift + 1)
    size_window = n_e * (2 * template_shift + 1)

    if not amp_auto:
        amp_limits = numpy.zeros((n_tm, 2))
        amp_limits[:, 0] = tmp_limits[0]
        amp_limits[:, 1] = tmp_limits[1]
    else:
        amp_limits = io.load_data(params, 'limits')

    norm_templates = io.load_data(params, 'norm-templates')
    if not templates_normalization:
        norm_templates_2 = (norm_templates ** 2.0) * n_scalar

    if not SHARED_MEMORY:
        # Normalize templates (if necessary).
        if templates_normalization:
            for idx in range(templates.shape[1]):
                myslice = numpy.arange(templates.indptr[idx], templates.indptr[idx+1])
                templates.data[myslice] /= norm_templates[idx]
        # Transpose templates.
        templates = templates.T

    waveform_neg = numpy.empty(0)  # default assignment (for PyCharm code inspection)
    matched_thresholds_neg = None  # default assignment (for PyCharm code inspection)
    waveform_pos = numpy.empty(0)  # default assignment (for PyCharm code inspection)
    matched_thresholds_pos = None  # default assignment (for PyCharm code inspection)
    if matched_filter:
        if sign_peaks in ['negative', 'both']:
            waveform_neg = io.load_data(params, 'waveform')[::-1]
            waveform_neg /= (numpy.abs(numpy.sum(waveform_neg)) * len(waveform_neg))
            matched_thresholds_neg = io.load_data(params, 'matched-thresholds')
        if sign_peaks in ['positive', 'both']:
            waveform_pos = io.load_data(params, 'waveform-pos')[::-1]
            waveform_pos /= (numpy.abs(numpy.sum(waveform_pos)) * len(waveform_pos))
            matched_thresholds_pos = io.load_data(params, 'matched-thresholds-pos')

    if ignore_dead_times:
        all_dead_times = get_dead_times(params)
    else:
        all_dead_times = None  # default assignment (for PyCharm code inspection)

    thresholds = io.get_accurate_thresholds(params, ratio_thresh)

    neighbors = {}
    if collect_all:
        for i in range(0, n_tm):
            tmp = templates[i, :].toarray().reshape(n_e, n_t)
            if templates_normalization:
                tmp = tmp * norm_templates[i]
            neighbors[i] = numpy.where(numpy.sum(tmp, axis=1) != 0.0)[0]

    if use_gpu:
        templates = cmt.SparseCUDAMatrix(templates, copy_on_host=False)

    info_string = ''

    if comm.rank == 0:
        if use_gpu:
            info_string = "using %d GPUs" % comm.size
        else:
            info_string = "using %d CPUs" % comm.size

    comm.Barrier()

    c_overlap = io.get_overlaps(params, nb_cpu=nb_cpu, nb_gpu=nb_gpu, use_gpu=use_gpu)
    over_shape = c_overlap.get('over_shape')[:]
    n_over = int(numpy.sqrt(over_shape[0]))
    s_over = over_shape[1]
    # # If the number of overlaps is different from templates, we need to recompute them.
    if n_over != N_tm:
        if comm.rank == 0:
            print_and_log(['Templates have been modified, recomputing the overlaps...'], 'default', logger)
        c_overlap = io.get_overlaps(params, erase=True, nb_cpu=nb_cpu, nb_gpu=nb_gpu, use_gpu=use_gpu)
        over_shape = c_overlap.get('over_shape')[:]
        n_over = int(numpy.sqrt(over_shape[0]))
        s_over = over_shape[1]

    if SHARED_MEMORY:
        c_overs, _ = io.load_data_memshared(params, 'overlaps')
    else:
        c_overs = io.load_data(params, 'overlaps')

    comm.Barrier()

    if n_tm == 0:
        if comm.rank == 0:
            print_and_log(["No templates present. Redo clustering?"], 'default', logger)

        sys.exit(0)

    if comm.rank == 0:
        print_and_log(["Here comes the SpyKING CIRCUS %s and %d templates..." % (info_string, n_tm)], 'default', logger)
        purge(file_out_suff, '.data')

    if do_spatial_whitening:
        spatial_whitening = io.load_data(params, 'spatial_whitening')
    else:
        spatial_whitening = None  # default assignment (for PyCharm code inspection)
    if do_temporal_whitening:
        temporal_whitening = io.load_data(params, 'temporal_whitening')
    else:
        temporal_whitening = None  # default assignment (for PyCharm code inspection)

    if full_gpu:
        try:
            # If memory on the GPU is large enough, we load the overlaps onto it
            for i in range(n_over):
                c_overs[i] = cmt.SparseCUDAMatrix(c_overs[i], copy_on_host=False)
        except Exception:
            if comm.rank == 0:
                print_and_log(["Not enough memory on GPUs: GPUs are used for projection only"], 'info', logger)
            for i in range(n_over):
                if i in c_overs:
                    del c_overs[i]
            full_gpu = False

    nb_chunks, last_chunk_len = data_file.analyze(chunk_size)
    processed_chunks = int(min(nb_chunks, max_chunk))

    comm.Barrier()
    spiketimes_file = open(file_out_suff + '.spiketimes-%d.data' % comm.rank, 'wb')
    comm.Barrier()
    amplitudes_file = open(file_out_suff + '.amplitudes-%d.data' % comm.rank, 'wb')
    comm.Barrier()
    templates_file = open(file_out_suff + '.templates-%d.data' % comm.rank, 'wb')
    comm.Barrier()

    if collect_all:
        garbage_times_file = open(file_out_suff + '.gspiketimes-%d.data' % comm.rank, 'wb')
        comm.Barrier()
        garbage_temp_file = open(file_out_suff + '.gtemplates-%d.data' % comm.rank, 'wb')
        comm.Barrier()
    else:
        garbage_times_file = None  # default assignment (for PyCharm code inspection)
        garbage_temp_file = None  # default assignment (for PyCharm code inspection)

    if debug:
        # Open debug files.
        chunk_nbs_debug_file = open(file_out_suff + '.chunk_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        iteration_nbs_debug_file = open(file_out_suff + '.iteration_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        peak_nbs_debug_file = open(file_out_suff + '.peak_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        peak_local_time_steps_debug_file = open(
            file_out_suff + '.peak_local_time_steps_debug_%d.data' % comm.rank, mode='wb'
        )
        comm.Barrier()
        peak_time_steps_debug_file = open(file_out_suff + '.peak_time_steps_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        peak_scalar_products_debug_file = open(
            file_out_suff + '.peak_scalar_products_debug_%d.data' % comm.rank, mode='wb'
        )
        comm.Barrier()
        peak_solved_flags_debug_file = open(file_out_suff + '.peak_solved_flags_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        template_nbs_debug_file = open(file_out_suff + '.template_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        success_flags_debug_file = open(file_out_suff + '.success_flags_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
    else:
        chunk_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        iteration_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_local_time_steps_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_time_steps_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_scalar_products_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_solved_flags_debug_file = None  # default assignment (for PyCharm code inspection)
        template_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        success_flags_debug_file = None  # default assignment (for PyCharm code inspection)

    if use_gpu and do_spatial_whitening:
        spatial_whitening = cmt.CUDAMatrix(spatial_whitening, copy_on_host=False)

    last_chunk_size = 0
    slice_indices = numpy.zeros(0, dtype=numpy.int32)

    to_explore = range(comm.rank, processed_chunks, comm.size)

    if comm.rank == 0:
        to_explore = get_tqdm_progressbar(params, to_explore)

    for gcount, gidx in enumerate(to_explore):
        # print "Node", comm.rank, "is analyzing chunk", gidx, "/", nb_chunks, " ..."
        # # We need to deal with the borders by taking chunks of size [0, chunck_size + template_shift].

        is_first = data_file.is_first_chunk(gidx, nb_chunks)
        is_last = data_file.is_last_chunk(gidx, nb_chunks)

        if not (is_first and is_last):
            if is_last:
                padding = (-temp_3_shift, 0)
            elif is_first:
                padding = (0, temp_3_shift)
            else:
                padding = (-temp_3_shift, temp_3_shift)
        else:
            padding = (0, 0)

        result = {
            'spiketimes': [],
            'amplitudes': [],
            'templates': [],
        }
        result_debug = {
            'chunk_nbs': [],
            'iteration_nbs': [],
            'peak_nbs': [],
            'peak_local_time_steps': [],
            'peak_time_steps': [],
            'peak_scalar_products': [],
            'peak_solved_flags': [],
            'template_nbs': [],
            'success_flags': [],
        }

        local_chunk, t_offset = data_file.get_data(gidx, chunk_size, padding, nodes=nodes)           
        len_chunk = len(local_chunk)

        if do_spatial_whitening:
            if use_gpu:
                local_chunk = cmt.CUDAMatrix(local_chunk, copy_on_host=False)
                local_chunk = local_chunk.dot(spatial_whitening).asarray()
            else:
                local_chunk = numpy.dot(local_chunk, spatial_whitening)
        if do_temporal_whitening:
            local_chunk = scipy.ndimage.filters.convolve1d(local_chunk, temporal_whitening, axis=0, mode='constant')

        # Extracting peaks.

        all_found_spikes = {}
        if collect_all:
            for i in range(n_e):
                all_found_spikes[i] = []

        local_peaktimes = [numpy.empty(0, dtype=numpy.uint32)]

        if matched_filter:
            if sign_peaks in ['positive', 'both']:
                filter_chunk = scipy.ndimage.filters.convolve1d(local_chunk, waveform_pos, axis=0, mode='constant')
                for i in range(n_e):
                    peaktimes = scipy.signal.find_peaks(filter_chunk[:, i], height=matched_thresholds_pos[i])[0]
                    local_peaktimes.append(peaktimes)
                    if collect_all:
                        all_found_spikes[i] += peaktimes.tolist()
            if sign_peaks in ['negative', 'both']:
                filter_chunk = scipy.ndimage.filters.convolve1d(local_chunk, waveform_neg, axis=0, mode='constant')
                for i in range(n_e):
                    peaktimes = scipy.signal.find_peaks(filter_chunk[:, i], height=matched_thresholds_neg[i])[0]
                    local_peaktimes.append(peaktimes)
                    if collect_all:
                        all_found_spikes[i] += peaktimes.tolist()
            local_peaktimes = numpy.concatenate(local_peaktimes)
        else:
            for i in range(n_e):
                if sign_peaks == 'negative':
                    peaktimes = scipy.signal.find_peaks(-local_chunk[:, i], height=thresholds[i])[0]
                elif sign_peaks == 'positive':
                    peaktimes = scipy.signal.find_peaks(local_chunk[:, i], height=thresholds[i])[0]
                elif sign_peaks == 'both':
                    peaktimes = scipy.signal.find_peaks(numpy.abs(local_chunk[:, i]), height=thresholds[i])[0]
                else:
                    raise ValueError("Unexpected value %s" % sign_peaks)
                local_peaktimes.append(peaktimes)
                if collect_all:
                    all_found_spikes[i] += peaktimes.tolist()
            local_peaktimes = numpy.concatenate(local_peaktimes)

        local_peaktimes = numpy.unique(local_peaktimes)

        g_offset = t_offset + padding[0]

        if ignore_dead_times:
            dead_indices = numpy.searchsorted(all_dead_times, [t_offset, t_offset + chunk_size])
            if dead_indices[0] != dead_indices[1]:
                is_included = numpy.in1d(local_peaktimes + g_offset, all_dead_times[dead_indices[0]:dead_indices[1]])
                local_peaktimes = local_peaktimes[~is_included]
                local_peaktimes = numpy.sort(local_peaktimes)
        else:
            dead_indices = None  # default assignment (for PyCharm code inspection)

        # print "Removing the useless borders..."
        local_borders = (template_shift, len_chunk - template_shift)
        idx = (local_peaktimes >= local_borders[0]) & (local_peaktimes < local_borders[1])
        local_peaktimes = numpy.compress(idx, local_peaktimes)

        if collect_all:
            for i in range(n_e):
                all_found_spikes[i] = numpy.array(all_found_spikes[i], dtype=numpy.uint32)

                if ignore_dead_times:
                    if dead_indices[0] != dead_indices[1]:
                        is_included = numpy.in1d(
                            all_found_spikes[i] + g_offset, all_dead_times[dead_indices[0]:dead_indices[1]]
                        )
                        all_found_spikes[i] = all_found_spikes[i][~is_included]
                        all_found_spikes[i] = numpy.sort(all_found_spikes[i])

                idx = (all_found_spikes[i] >= local_borders[0]) & (all_found_spikes[i] < local_borders[1])
                all_found_spikes[i] = numpy.compress(idx, all_found_spikes[i])

        nb_local_peak_times = len(local_peaktimes)

        if full_gpu:
            # all_indices = cmt.CUDAMatrix(all_indices)
            # tmp_gpu = cmt.CUDAMatrix(local_peaktimes.reshape((1, nb_local_peak_times)), copy_on_host=False)
            _ = cmt.CUDAMatrix(local_peaktimes.reshape((1, nb_local_peak_times)), copy_on_host=False)

        if nb_local_peak_times > 0:
            # print "Computing the b (should full_gpu by putting all chunks on GPU if possible?)..."

            if collect_all:
                c_local_chunk = local_chunk.copy()
            else:
                c_local_chunk = None  # default assignment (for PyCharm code inspection)

            sub_mat = local_chunk[local_peaktimes[:, None] + temp_window]
            sub_mat = sub_mat.transpose(2, 1, 0).reshape(size_window, nb_local_peak_times)

            del local_chunk

            if use_gpu:
                sub_mat = cmt.CUDAMatrix(sub_mat, copy_on_host=False)
                b = cmt.sparse_dot(templates, sub_mat)
            else:
                b = templates.dot(sub_mat)

            del sub_mat

            local_restriction = (t_offset, t_offset + chunk_size)
            all_spikes = local_peaktimes + g_offset

            # Because for GPU, slicing by columns is more efficient, we need to transpose b
            # b = b.transpose()
            if use_gpu and not full_gpu:
                b = b.asarray()           

            failure = numpy.zeros(nb_local_peak_times, dtype=numpy.int32)

            if full_gpu:
                mask = numpy.zeros((2 * n_tm, nb_local_peak_times), dtype=numpy.float32)
                mask[:n_tm, :] = 1
                # data = cmt.empty(mask.shape)
                _ = cmt.empty(mask.shape)
                patch_gpu = b.shape[1] == 1
            else:
                patch_gpu = None

            if collect_all:
                c_all_times = numpy.zeros((len_chunk, n_e), dtype=numpy.bool)
                c_min_times = numpy.maximum(numpy.arange(len_chunk) - template_shift, 0)
                c_max_times = numpy.minimum(numpy.arange(len_chunk) + template_shift + 1, len_chunk)
                for i in range(n_e):
                    c_all_times[all_found_spikes[i], i] = True
            else:
                c_all_times = None  # default assignment (for PyCharm code inspection)
                c_min_times = None  # default assignment (for PyCharm code inspection)
                c_max_times = None  # default assignment (for PyCharm code inspection)

            iteration_nb = 0
            local_max = 0
            numerous_argmax = False
            nb_argmax = n_tm
            best_indices = numpy.zeros(0, dtype=numpy.int32)

            data = b[:n_tm, :]
            flatten_data = data.ravel()

            while numpy.mean(failure) < total_nb_chances:

                # Is there a way to update sub_b * mask at the same time?
                if full_gpu:
                    b_array = b.asarray()
                else:
                    b_array = None

                if numerous_argmax:
                    if len(best_indices) == 0:
                        best_indices = largest_indices(flatten_data, nb_argmax)
                    best_template_index, peak_index = numpy.unravel_index(best_indices[0], data.shape)
                else:
                    best_template_index, peak_index = numpy.unravel_index(data.argmax(), data.shape)

                peak_scalar_product = data[best_template_index, peak_index]
                best_template2_index = best_template_index + n_tm

                if templates_normalization:
                    if full_gpu:
                        best_amp = b_array[best_template_index, peak_index] / n_scalar
                        best_amp2 = b_array[best_template2_index, peak_index] / n_scalar
                    else:
                        best_amp = b[best_template_index, peak_index] / n_scalar
                        if two_components:
                            best_amp2 = b[best_template2_index, peak_index] / n_scalar
                        else:
                            best_amp2 = 0.0
                    best_amp_n = best_amp / norm_templates[best_template_index]
                    best_amp2_n = best_amp2 / norm_templates[best_template2_index]
                else:
                    if full_gpu:
                        best_amp = b_array[best_template_index, peak_index]
                        best_amp = best_amp / norm_templates_2[best_template_index]
                        # TODO is `best_amp` value correct?
                        best_amp2 = b_array[best_template2_index, peak_index]
                        best_amp2 = best_amp2 / norm_templates_2[best_template2_index]
                        # TODO is `best_amp2` value correct?
                    else:
                        best_amp = b[best_template_index, peak_index]
                        best_amp = best_amp / norm_templates_2[best_template_index]
                        # TODO is `best_amp` value correct?
                        if two_components:
                            best_amp2 = b[best_template2_index, peak_index]
                            best_amp2 = best_amp2 / norm_templates_2[best_template2_index]
                            # TODO is `best_amp2` value correct?
                        else:
                            best_amp2 = 0.0

                    best_amp_n = best_amp
                    best_amp2_n = best_amp2

                # Verify amplitude constraint.
                a_min, a_max = amp_limits[best_template_index, :]

                if (a_min <= best_amp_n) & (best_amp_n <= a_max):
                    # Keep the matching.
                    peak_time_step = local_peaktimes[peak_index]

                    peak_data = (local_peaktimes - peak_time_step).astype(np.int32)
                    is_neighbor = np.where(np.abs(peak_data) <= temp_2_shift)[0]
                    idx_neighbor = peak_data[is_neighbor] + temp_2_shift
                    nb_neighbors = len(is_neighbor)
                    indices = np.zeros((s_over, nb_neighbors), dtype=np.int32)
                    indices[idx_neighbor, np.arange(nb_neighbors)] = 1

                    if full_gpu:
                        indices = cmt.CUDAMatrix(indices, copy_on_host=False)
                        if patch_gpu:
                            b_lines = b.get_col_slice(0, b.shape[0])
                        else:
                            b_lines = b.get_col_slice(is_neighbor[0], is_neighbor[-1]+1)
                        tmp1 = cmt.sparse_dot(c_overs[best_template_index], indices, mult=-best_amp)
                        tmp2 = cmt.sparse_dot(c_overs[best_template2_index], indices, mult=-best_amp2)
                        b_lines.add(tmp1.add(tmp2))
                        del tmp1, tmp2
                    else:
                        tmp1 = c_overs[best_template_index].multiply(-best_amp)
                        if numpy.abs(best_amp2) > min_second_component:
                            tmp1 += c_overs[best_template2_index].multiply(-best_amp2)
                        b[:, is_neighbor] += tmp1.dot(indices)

                    numerous_argmax = False

                    # Add matching to the result.
                    t_spike = all_spikes[peak_index]

                    if (t_spike >= local_restriction[0]) and (t_spike < local_restriction[1]):
                        result['spiketimes'] += [t_spike]
                        result['amplitudes'] += [(best_amp_n, best_amp2_n)]
                        result['templates'] += [best_template_index]
                    # Mark current matching as tried.
                    b[best_template_index, peak_index] = -numpy.inf
                    # Save debug data.
                    if debug:
                        result_debug['chunk_nbs'] += [gidx]
                        result_debug['iteration_nbs'] += [iteration_nb]
                        result_debug['peak_nbs'] += [peak_index]
                        result_debug['peak_local_time_steps'] += [local_peaktimes[peak_index]]
                        result_debug['peak_time_steps'] += [all_spikes[peak_index]]
                        result_debug['peak_scalar_products'] += [peak_scalar_product]
                        result_debug['peak_solved_flags'] += [b[best_template_index, peak_index]]
                        result_debug['template_nbs'] += [best_template_index]
                        result_debug['success_flags'] += [True]
                else:
                    # Reject the matching.
                    numerous_argmax = True
                    # Update failure counter of the peak.
                    failure[peak_index] += 1
                    # If the maximal number of failures is reached then mark peak as solved (i.e. not fitted).
                    if failure[peak_index] >= total_nb_chances:
                        # Mark all the matching associated to the current peak as tried.
                        b[:, peak_index] = -numpy.inf
                        index = numpy.arange(n_tm) * nb_local_peak_times + peak_index
                    else:
                        # Mark current matching as tried.
                        b[best_template_index, peak_index] = -numpy.inf
                        index = best_template_index * nb_local_peak_times + peak_index

                    if numerous_argmax:
                        best_indices = best_indices[~numpy.in1d(best_indices, index)]

                    # Save debug data.
                    if debug:
                        result_debug['chunk_nbs'] += [gidx]
                        result_debug['iteration_nbs'] += [iteration_nb]
                        result_debug['peak_nbs'] += [peak_index]
                        result_debug['peak_local_time_steps'] += [local_peaktimes[peak_index]]
                        result_debug['peak_time_steps'] += [all_spikes[peak_index]]
                        result_debug['peak_scalar_products'] += [peak_scalar_product]
                        result_debug['peak_solved_flags'] += [b[best_template_index, peak_index]]
                        result_debug['template_nbs'] += [best_template_index]
                        result_debug['success_flags'] += [False]

                iteration_nb += 1

            spikes_to_write = numpy.array(result['spiketimes'], dtype=numpy.uint32)
            amplitudes_to_write = numpy.array(result['amplitudes'], dtype=numpy.float32)
            templates_to_write = numpy.array(result['templates'], dtype=numpy.uint32)

            spiketimes_file.write(spikes_to_write.tostring())
            amplitudes_file.write(amplitudes_to_write.tostring())
            templates_file.write(templates_to_write.tostring())

            if collect_all:

                for temp, spike in zip(templates_to_write, spikes_to_write - g_offset):
                    c_all_times[c_min_times[spike]:c_max_times[spike], neighbors[temp]] = False

                gspikes = numpy.where(numpy.sum(c_all_times, 1) > 0)[0]
                c_all_times = numpy.take(c_all_times, gspikes, axis=0)
                c_local_chunk = numpy.take(c_local_chunk, gspikes, axis=0) * c_all_times                

                if sign_peaks == 'negative':
                    bestlecs = numpy.argmin(c_local_chunk, 1)
                    if matched_filter:
                        threshs = -matched_thresholds_neg[bestlecs]
                    else:
                        threshs = -thresholds[bestlecs]
                    idx = numpy.where(numpy.min(c_local_chunk, 1) < threshs)[0]
                elif sign_peaks == 'positive':
                    bestlecs = numpy.argmax(c_local_chunk, 1)
                    if matched_filter:
                        threshs = matched_thresholds_pos[bestlecs]
                    else:
                        threshs = thresholds[bestlecs]
                    idx = numpy.where(numpy.max(c_local_chunk, 1) > threshs)[0]
                elif sign_peaks == 'both':
                    c_local_chunk = numpy.abs(c_local_chunk)
                    bestlecs = numpy.argmax(c_local_chunk, 1)
                    if matched_filter:
                        threshs = numpy.minimum(matched_thresholds_neg[bestlecs], matched_thresholds_pos[bestlecs])
                    else:
                        threshs = thresholds[bestlecs]
                    idx = numpy.where(numpy.max(c_local_chunk, 1) > threshs)[0]
                else:
                    raise ValueError("Unexpected value %s" % sign_peaks)

                gspikes = numpy.take(gspikes, idx)
                bestlecs = numpy.take(bestlecs, idx)
                gspikes_to_write = numpy.array(gspikes + g_offset, dtype=numpy.uint32)
                gtemplates_to_write = numpy.array(bestlecs, dtype=numpy.uint32)

                garbage_times_file.write(gspikes_to_write.tostring())
                garbage_temp_file.write(gtemplates_to_write.tostring())

            if debug:
                # Write debug data to debug files.
                for field_label, field_dtype, field_file in [
                    ('chunk_nbs', numpy.uint32, chunk_nbs_debug_file),
                    ('iteration_nbs', numpy.uint32, iteration_nbs_debug_file),
                    ('peak_nbs', numpy.uint32, peak_nbs_debug_file),
                    ('peak_local_time_steps', numpy.uint32, peak_local_time_steps_debug_file),
                    ('peak_time_steps', numpy.uint32, peak_time_steps_debug_file),
                    ('peak_scalar_products', numpy.float32, peak_scalar_products_debug_file),
                    ('peak_solved_flags', numpy.float32, peak_solved_flags_debug_file),
                    ('template_nbs', numpy.uint32, template_nbs_debug_file),
                    ('success_flags', numpy.bool, success_flags_debug_file),
                ]:
                    field_to_write = numpy.array(result_debug[field_label], dtype=field_dtype)
                    field_file.write(field_to_write.tostring())

            if full_gpu:
                del b, data

    sys.stderr.flush()

    spiketimes_file.flush()
    os.fsync(spiketimes_file.fileno())
    spiketimes_file.close()

    amplitudes_file.flush()
    os.fsync(amplitudes_file.fileno())
    amplitudes_file.close()

    templates_file.flush()
    os.fsync(templates_file.fileno())
    templates_file.close()

    if collect_all:

        garbage_temp_file.flush()
        os.fsync(garbage_temp_file.fileno())
        garbage_temp_file.close()
        
        garbage_times_file.flush()
        os.fsync(garbage_times_file.fileno())
        garbage_times_file.close()

    if debug:
        # Close debug files.
        for field_file in [
            chunk_nbs_debug_file,
            iteration_nbs_debug_file,
            peak_nbs_debug_file,
            peak_local_time_steps_debug_file,
            peak_time_steps_debug_file,
            peak_scalar_products_debug_file,
            peak_solved_flags_debug_file,
            template_nbs_debug_file,
            success_flags_debug_file,
        ]:
            field_file.flush()
            os.fsync(field_file.fileno())
            field_file.close()

    comm.Barrier()

    if comm.rank == 0:
        io.collect_data(comm.size, params, erase=True)

    data_file.close()
Пример #2
0
def main(params, nb_cpu, nb_gpu, use_gpu):
    # Part 1: Whitening
    numpy.random.seed(420)
    # params = detect_memory(params)
    _ = init_logging(params.logfile)
    logger = logging.getLogger('circus.whitening')
    #################################################################
    data_file = params.data_file
    N_e = params.getint('data', 'N_e')
    hdf5_compress = params.getboolean('data', 'hdf5_compress')
    N_total = params.nb_channels
    N_t = params.getint('detection', 'N_t')
    dist_peaks = params.getint('detection', 'dist_peaks')
    template_shift = params.getint('detection', 'template_shift')
    file_out_suff = params.get('data', 'file_out_suff')
    spike_thresh = params.getfloat('detection', 'spike_thresh')
    spike_width = params.getfloat('detection', 'spike_width')
    matched_filter = params.getboolean('detection', 'matched-filter')
    matched_thresh = params.getfloat('detection', 'matched_thresh')
    fudge = params.getfloat('whitening', 'fudge')
    sign_peaks = params.get('detection', 'peaks')
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening = params.getboolean('whitening', 'spatial')
    ignore_spikes = params.getboolean('whitening', 'ignore_spikes')
    chunk_size = detect_memory(params, whitening=True)
    plot_path = os.path.join(params.get('data', 'file_out_suff'), 'plots')
    nodes, edges = get_nodes_and_edges(params)
    safety_time = params.getint('whitening', 'safety_time')
    safety_space = params.getboolean('whitening', 'safety_space')
    sort_waveforms = params.getboolean('whitening', 'sort_waveforms')
    nb_temp_white = min(max(20, comm.size), N_e)
    max_silence_1 = int(20 * params.rate // comm.size)
    max_silence_2 = 5000
    inv_nodes = numpy.zeros(N_total, dtype=numpy.int32)
    inv_nodes[nodes] = numpy.arange(len(nodes))
    jitter_range = params.getint('detection', 'jitter_range')
    template_shift_2 = template_shift + jitter_range
    use_hanning = params.getboolean('detection', 'hanning')
    rejection_threshold = params.getfloat('detection', 'rejection_threshold')
    noise_window = params.getint('detection', 'noise_time')
    data_file.open()
    #################################################################

    if use_hanning:
        hanning_filter = numpy.hanning(N_t)

    if comm.rank == 0:
        print_and_log(
            ["Analyzing data to get whitening matrices and thresholds..."],
            'default', logger)

    nodes_indices = {}
    for elec in numpy.arange(N_e):
        nodes_indices[elec] = inv_nodes[edges[nodes[elec]]]

    if use_gpu:
        import cudamat as cmt
        # # Need to properly handle multi GPU per MPI nodes?
        if nb_gpu > nb_cpu:
            gpu_id = int(comm.rank // nb_cpu)
        else:
            gpu_id = 0
        cmt.cuda_set_device(gpu_id)
        cmt.init()
        cmt.cuda_sync_threads()

    nb_chunks, last_chunk_len = data_file.analyze(chunk_size)

    if nb_chunks < comm.size:

        res = io.data_stats(params, show=False)
        chunk_size = int(res * params.rate // comm.size)
        if comm.rank == 0:
            print_and_log(
                ["Too much cores, automatically resizing the data chunks"],
                'debug', logger)

        nb_chunks, last_chunk_len = data_file.analyze(chunk_size)

    # I guess this is more relevant, to take signals from all over the recordings.
    if nb_chunks > comm.size:
        all_chunks = numpy.random.permutation(
            numpy.arange(nb_chunks - 1, dtype=numpy.int32))
    else:
        all_chunks = numpy.random.permutation(
            numpy.arange(nb_chunks, dtype=numpy.int32))

    all_electrodes = numpy.random.permutation(N_e)

    numpy.random.seed(comm.rank)

    for gidx in [all_chunks[comm.rank]]:

        # print "Node", comm.rank, "is analyzing chunk", gidx,  "/", nb_chunks, " ..."
        local_chunk, t_offset = data_file.get_data(gidx,
                                                   chunk_size,
                                                   nodes=nodes)
        local_shape = len(local_chunk)

        # print "Node", comm.rank, "computes the median absolute deviations in a random chunk"
        thresholds = numpy.zeros(N_e, dtype=numpy.float32)
        for i in range(N_e):
            u = numpy.median(local_chunk[:, i], 0)
            thresholds[i] = numpy.median(numpy.abs(local_chunk[:, i] - u), 0)
        gdata = gather_array(thresholds, comm)
        if comm.rank == 0:
            gdata = gdata.reshape((comm.size, N_e))
            thresholds = numpy.mean(gdata, 0)
            bfile = h5py.File(file_out_suff + '.basis.hdf5',
                              'w',
                              libver='earliest')
            io.write_datasets(bfile, ['thresholds'],
                              {'thresholds': thresholds},
                              compression=hdf5_compress)
            bfile.close()
        comm.Barrier()
        thresholds = io.load_data(params, 'thresholds')

        local_borders = (template_shift, local_shape - template_shift)
        found_peaktimes = []

        if ignore_spikes:
            # Extracting the peaks.
            local_peaktimes = [np.empty(0, dtype=numpy.uint32)]
            for i in range(N_e):
                peaktimes = scipy.signal.find_peaks(numpy.abs(local_chunk[:,
                                                                          i]),
                                                    height=thresholds[i],
                                                    width=spike_width,
                                                    wlen=N_t)[0]
                peaktimes = peaktimes.astype(numpy.uint32)

                # print "Removing the useless borders..."
                idx = (peaktimes >= local_borders[0]) & (peaktimes <
                                                         local_borders[1])
                peaktimes = numpy.compress(idx, peaktimes)

                found_peaktimes.append(peaktimes)
        else:
            for i in range(N_e):
                found_peaktimes.append(numpy.zeros(0, dtype=numpy.uint32))

        all_peaktimes = numpy.concatenate(found_peaktimes)
        local_peaktimes = numpy.unique(all_peaktimes)

        if len(local_peaktimes) > 0:

            diff_times = local_peaktimes[-1] - local_peaktimes[0]
            all_times = numpy.zeros((N_e, diff_times + 1), dtype=numpy.bool)
            padded_peaks = (local_peaktimes - local_peaktimes[0]).astype(
                numpy.int32)
            min_times = numpy.maximum(padded_peaks - safety_time, 0)
            max_times = numpy.minimum(padded_peaks + safety_time + 1,
                                      diff_times + 1)

            test_extremas = numpy.zeros((N_e, diff_times + 1),
                                        dtype=numpy.bool)
            for i in range(N_e):
                test_extremas[i,
                              found_peaktimes[i] - local_peaktimes[0]] = True

            argmax_peak = numpy.random.permutation(
                numpy.arange(len(local_peaktimes)))
            all_idx = numpy.take(local_peaktimes, argmax_peak)

            # print "Selection of the peaks with spatio-temporal masks..."
            for idx, peak in zip(argmax_peak, all_idx):

                all_elecs = numpy.where(test_extremas[:, peak -
                                                      local_peaktimes[0]])[0]
                data = local_chunk[peak, all_elecs]
                elec = all_elecs[numpy.argmax(numpy.abs(data))]
                indices = nodes_indices[elec]
                if safety_space:
                    all_times[indices, min_times[idx]:max_times[idx]] = True
                else:
                    all_times[elec, min_times[idx]:max_times[idx]] = True
        else:
            all_times = numpy.zeros((N_e, len(local_chunk)), dtype=numpy.bool)

    if do_temporal_whitening:

        local_res_temp = []

        for elec in all_electrodes[numpy.arange(comm.rank, nb_temp_white,
                                                comm.size)]:
            res = numpy.zeros((0, N_t), dtype=numpy.float32)
            scount = 0
            indices = nodes_indices[elec]
            all_times_elec = numpy.any(numpy.take(all_times, indices, axis=0),
                                       0)
            esubset = numpy.where(all_times_elec == False)[0]
            bound = len(esubset) - N_t
            while (scount < bound) and (len(res) < max_silence_2):
                myslice = esubset[scount:scount + N_t]
                if numpy.all((myslice - esubset[scount]) == numpy.arange(N_t)):
                    scount += N_t
                    res = numpy.vstack((res, local_chunk[myslice, elec]))
                else:
                    scount += 1
            if len(res) > 5:
                local_res_temp += [numpy.cov(res.T)]

        nb_elecs = numpy.array([len(local_res_temp)], dtype=numpy.float32)
        local_res_temp = numpy.array(local_res_temp, dtype=numpy.float32)
        if len(local_res_temp) == 0:
            local_res_temp = numpy.zeros(0, dtype=numpy.float32)
        else:
            local_res_temp = numpy.sum(local_res_temp, 0)
        all_res_temp = gather_array(local_res_temp.ravel(), comm, 0, 1)
        all_elecs = gather_array(nb_elecs, comm, 0, 1)

    if do_spatial_whitening:

        local_res_spac = numpy.zeros((N_e, N_e), dtype=numpy.float32)
        local_silences = []

        for elec in numpy.arange(comm.rank, N_e, comm.size):
            indices = nodes_indices[elec]
            all_times_elec = numpy.any(numpy.take(all_times, indices, axis=0),
                                       0)
            esubset = numpy.where(all_times_elec == False)[0]
            local_data = local_chunk[esubset][:, indices]
            local_whitening = get_whitening_matrix(
                local_data, fudge=fudge).astype(numpy.float32)
            pos = numpy.where(elec == indices)[0]
            local_res_spac[elec, indices] = local_whitening[pos]
            local_silences += [len(esubset)]

        all_res_spac = gather_array(local_res_spac.ravel(), comm, 0, 1)
        all_silences = gather_array(
            numpy.array(local_silences, dtype=numpy.int32), comm, 0, 1,
            'uint32')

    if comm.rank == 0:

        to_write = {}

        if do_temporal_whitening:
            try:
                nb_silences = numpy.sum(all_elecs > 0)
                all_res_temp = all_res_temp.reshape((nb_silences, N_t**2))
            except Exception:
                print_and_log([
                    "No silent periods detected: something wrong with the parameters?"
                ], 'error', logger)
            all_res_temp = numpy.sum(all_res_temp, 0)
            all_res_temp = all_res_temp.reshape(
                (N_t, N_t)) / numpy.sum(all_elecs)
            temporal_whitening = get_whitening_matrix(
                all_res_temp.astype(numpy.double),
                fudge=1e-3)[template_shift].astype(numpy.float32)
            temporal_whitening /= temporal_whitening.sum()
            to_write['temporal'] = temporal_whitening
            have_nans = numpy.sum(numpy.isnan(temporal_whitening))

            if have_nans > 0:
                temporal_whitening = numpy.zeros(N_t, dtype=numpy.float32)
                temporal_whitening[N_t // 2] = 1
                to_write['temporal'] = temporal_whitening
                print_and_log(
                    ["Disabling temporal whitening because of NaNs found"],
                    'info', logger)

        if do_spatial_whitening:
            all_res_spac = all_res_spac.reshape(comm.size, N_e, N_e)
            spatial_whitening = numpy.sum(all_res_spac, 0)
            to_write['spatial'] = spatial_whitening

            if ignore_spikes:
                print_and_log([
                    "Found %gs without spikes to compute the whitening matrix..."
                    % (numpy.mean(all_silences) / params.rate)
                ], 'default', logger)
            else:
                print_and_log([
                    "Found %gs to compute the whitening matrix..." %
                    (numpy.mean(all_silences) / params.rate)
                ], 'default', logger)

            have_nans = numpy.sum(numpy.isnan(spatial_whitening))

            if have_nans > 0:
                spatial_whitening = numpy.eye(spatial_whitening.shape[0],
                                              dtype=numpy.float32)
                to_write['spatial'] = spatial_whitening
                print_and_log(
                    ["Disabling spatial whitening because of NaNs found"],
                    'info', logger)

        bfile = h5py.File(file_out_suff + '.basis.hdf5',
                          'r+',
                          libver='earliest')
        io.write_datasets(bfile,
                          list(to_write.keys()),
                          to_write,
                          compression=hdf5_compress)
        bfile.close()

    comm.Barrier()

    if do_spatial_whitening or do_temporal_whitening:

        if comm.rank == 0:
            print_and_log(
                ["Because of whitening, need to recompute the thresholds..."],
                'default', logger)

        if do_spatial_whitening:
            spatial_whitening = io.load_data(params, 'spatial_whitening')
            if use_gpu:
                spatial_whitening = cmt.CUDAMatrix(spatial_whitening,
                                                   copy_on_host=False)
        if do_temporal_whitening:
            temporal_whitening = io.load_data(params, 'temporal_whitening')

        for gidx in [all_chunks[comm.rank]]:
            local_chunk, t_offset = data_file.get_data(gidx,
                                                       chunk_size,
                                                       nodes=nodes)
            local_shape = len(local_chunk)

            if do_spatial_whitening:
                if use_gpu:
                    local_chunk = cmt.CUDAMatrix(local_chunk,
                                                 copy_on_host=False)
                    local_chunk = local_chunk.dot(spatial_whitening).asarray()
                else:
                    local_chunk = numpy.dot(local_chunk, spatial_whitening)
            if do_temporal_whitening:
                local_chunk = scipy.ndimage.filters.convolve1d(
                    local_chunk, temporal_whitening, axis=0, mode='constant')

            thresholds = numpy.zeros(N_e, dtype=numpy.float32)
            for i in range(N_e):
                u = numpy.median(local_chunk[:, i], 0)
                thresholds[i] = numpy.median(numpy.abs(local_chunk[:, i] - u),
                                             0)
            gdata = gather_array(thresholds, comm)
            if comm.rank == 0:
                gdata = gdata.reshape((comm.size, N_e))
                thresholds = numpy.mean(gdata, 0)
                bfile = h5py.File(file_out_suff + '.basis.hdf5',
                                  'r+',
                                  libver='earliest')
                bfile.pop('thresholds')
                io.write_datasets(bfile, ['thresholds'],
                                  {'thresholds': thresholds},
                                  compression=hdf5_compress)
                bfile.close()
            comm.Barrier()

    # if comm.rank == 0:
    #     if not os.path.exists(plot_path):
    #         os.makedirs(plot_path)
    #     N_elec = min(int(numpy.sqrt(data_file.N_e)), 5)
    #     plot.view_fit(filename, t_start=0, t_stop=1, fit_on=False, square=True,
    #                   n_elec=N_elec, save=[plot_path, 'electrodes'])

    # Part 2: Basis
    numpy.random.seed(422)

    SHARED_MEMORY = get_shared_memory_flag(params)
    #################################################################
    file_out = params.get('data', 'file_out')
    alignment = params.getboolean('detection', 'alignment')
    over_factor = params.getint('detection', 'oversampling_factor')
    nb_jitter = params.getint('detection', 'nb_jitter')
    spike_thresh = params.getfloat('detection', 'spike_thresh')
    nodes, edges = get_nodes_and_edges(params)
    _, positions = get_nodes_and_positions(params)
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening = params.getboolean('whitening', 'spatial')
    use_barycenter = params.getboolean('detection', 'use_barycenter')
    if matched_filter:
        chunk_size = detect_memory(params, whitening=True)
    else:
        chunk_size = detect_memory(params)
    safety_time = params.getint('whitening', 'safety_time')
    max_elts_elec = params.getint('whitening', 'max_elts')
    output_dim = params.getfloat('whitening', 'output_dim')
    inv_nodes = numpy.zeros(N_total, dtype=numpy.int32)
    inv_nodes[nodes] = numpy.arange(len(nodes))
    smoothing_factor = params.getfloat('detection', 'smoothing_factor')
    if sign_peaks == 'both':
        max_elts_elec *= 2
    nb_elts = int(
        params.getfloat('whitening', 'nb_elts') * N_e * max_elts_elec)

    weird_thresh = params.get('detection', 'weird_thresh')
    if weird_thresh != '':
        ignore_artefacts = True
        weird_thresh = io.load_data(params, 'weird-thresholds')
    else:
        ignore_artefacts = False

    ignore_dead_times = params.getboolean('triggers', 'ignore_times')
    if ignore_dead_times:
        if SHARED_MEMORY:
            all_dead_times, mpi_memory_3 = get_dead_times(params)
        else:
            all_dead_times = get_dead_times(params)
    data_file.open()
    #################################################################

    if comm.rank == 0:
        print_and_log(["Searching spikes to construct the PCA basis..."],
                      'default', logger)

    nb_chunks, last_chunk_len = data_file.analyze(chunk_size)

    if nb_chunks < comm.size:

        res = io.data_stats(params, show=False)
        chunk_size = int(res * params.rate // comm.size)
        if comm.rank == 0:
            print_and_log(
                ["Too much cores, automatically resizing the data chunks"],
                'debug', logger)

        nb_chunks, last_chunk_len = data_file.analyze(chunk_size)

    groups = {}
    for i in range(N_e):
        groups[i] = 0

    # I guess this is more relevant, to take signals from all over the recordings
    all_chunks = numpy.random.permutation(
        numpy.arange(nb_chunks, dtype=numpy.int32))
    max_elts_elec //= comm.size
    nb_elts //= comm.size

    elt_count_pos = 0
    elt_count_neg = 0

    if sign_peaks in ['positive', 'both']:
        times_pos = numpy.zeros(nb_elts, dtype=numpy.int32)
        electrodes_pos = numpy.zeros(nb_elts, dtype=numpy.int32)
        extremum_pos = numpy.zeros(nb_elts, dtype=numpy.float32)
        elts_pos = numpy.zeros((N_t, nb_elts), dtype=numpy.float32)
    if sign_peaks in ['negative', 'both']:
        times_neg = numpy.zeros(nb_elts, dtype=numpy.int32)
        electrodes_neg = numpy.zeros(nb_elts, dtype=numpy.int32)
        extremum_neg = numpy.zeros(nb_elts, dtype=numpy.float32)
        elts_neg = numpy.zeros((N_t, nb_elts), dtype=numpy.float32)

    thresholds = io.load_data(params, 'thresholds')
    mads = io.load_data(params, 'mads')
    stds = io.load_data(params, 'stds')

    if alignment:
        cdata = numpy.linspace(-jitter_range, +jitter_range, nb_jitter)
        xdata = numpy.arange(-template_shift_2, template_shift_2 + 1)
        xoff = len(cdata) / 2.0
        snippet_duration = template_shift_2
        m_size = 2 * template_shift_2 + 1
        align_factor = m_size
        local_factors = align_factor * ((smoothing_factor * mads)**2)
    else:
        snippet_duration = template_shift
        xdata = numpy.arange(-template_shift, template_shift + 1)

    if rejection_threshold > 0:
        reject_noise = True
        noise_levels = stds * (2 * noise_window + 1)
    else:
        reject_noise = False

    to_explore = all_chunks[comm.rank::comm.size]

    upper_bounds = max_elts_elec

    if comm.rank == 0:
        to_explore = get_tqdm_progressbar(params, to_explore)

    for gcount, gidx in enumerate(to_explore):

        if (elt_count_pos + elt_count_neg) < nb_elts:
            # print "Node", comm.rank, "is analyzing chunk", gidx, "/", nb_chunks, " ..."
            local_chunk, t_offset = data_file.get_data(gidx,
                                                       chunk_size,
                                                       nodes=nodes)
            local_shape = len(local_chunk)

            if do_spatial_whitening:
                if use_gpu:
                    local_chunk = cmt.CUDAMatrix(local_chunk,
                                                 copy_on_host=False)
                    local_chunk = local_chunk.dot(spatial_whitening).asarray()
                else:
                    local_chunk = numpy.dot(local_chunk, spatial_whitening)
            if do_temporal_whitening:
                local_chunk = scipy.ndimage.filters.convolve1d(
                    local_chunk, temporal_whitening, axis=0, mode='constant')

            local_borders = (snippet_duration, local_shape - snippet_duration)

            if ignore_dead_times:
                dead_indices = numpy.searchsorted(
                    all_dead_times, [t_offset, t_offset + local_shape])

            # Extracting the peaks.
            all_peaktimes = [numpy.empty(0, dtype=numpy.uint32)]

            found_peaktimes = []
            found_peak_amplitudes = []
            for i in range(N_e):
                height = thresholds[i]
                if sign_peaks == 'negative':
                    peaktimes = scipy.signal.find_peaks(-local_chunk[:, i],
                                                        height=height,
                                                        distance=dist_peaks)[0]
                elif sign_peaks == 'positive':
                    peaktimes = scipy.signal.find_peaks(local_chunk[:, i],
                                                        height=height,
                                                        distance=dist_peaks)[0]
                elif sign_peaks == 'both':
                    peaktimes = scipy.signal.find_peaks(numpy.abs(
                        local_chunk[:, i]),
                                                        height=height,
                                                        distance=dist_peaks)[0]
                else:
                    peaktimes = numpy.empty(0, dtype=numpy.uint32)

                if ignore_artefacts:
                    artetimes = scipy.signal.find_peaks(
                        numpy.abs(local_chunk[:,
                                              i]), height=weird_thresh[i])[0]
                    to_keep = numpy.logical_not(
                        numpy.in1d(peaktimes, artetimes))
                    peaktimes = peaktimes[to_keep]

                idx = (peaktimes >= local_borders[0]) & (peaktimes <
                                                         local_borders[1])
                peaktimes = peaktimes[idx]

                if ignore_dead_times:
                    if dead_indices[0] != dead_indices[1]:
                        is_included = numpy.in1d(
                            peaktimes + t_offset,
                            all_dead_times[dead_indices[0]:dead_indices[1]])
                        peaktimes = peaktimes[~is_included]

                peaktimes = peaktimes.astype(numpy.uint32)
                found_peaktimes.append(peaktimes)

                peak_amplitudes = local_chunk[peaktimes, i]
                found_peak_amplitudes.append(peak_amplitudes)

            all_peaktimes = numpy.concatenate(
                found_peaktimes)  # i.e. concatenate once for efficiency
            all_peak_amplitudes = numpy.concatenate(found_peak_amplitudes)
            local_peaktimes, local_indices = numpy.unique(all_peaktimes,
                                                          return_inverse=True)

            if len(local_peaktimes) > 0:

                diff_times = (local_peaktimes[-1] - local_peaktimes[0]) + 1
                all_times = numpy.zeros((N_e, diff_times), dtype=numpy.bool)

                padded_peaks = (local_peaktimes - local_peaktimes[0]).astype(
                    numpy.int32)
                min_times = numpy.maximum(padded_peaks - safety_time, 0)
                max_times = numpy.minimum(padded_peaks + safety_time + 1,
                                          diff_times + 1)
                test_extremas = numpy.zeros((N_e, diff_times + 1),
                                            dtype=numpy.bool)
                for i in range(N_e):
                    test_extremas[i, found_peaktimes[i] -
                                  local_peaktimes[0]] = True

                # Consider the peaks by decreasing extremum.
                if sort_waveforms:
                    order = numpy.argsort(-np.abs(all_peak_amplitudes))
                    all_idx = numpy.take(all_peaktimes, order)
                    argmax_peak = local_indices[order]
                else:
                    n_times = len(all_peaktimes)
                    shuffling = numpy.random.permutation(numpy.arange(n_times))
                    all_idx = numpy.take(all_peaktimes, shuffling)
                    argmax_peak = local_indices[shuffling]

                # print "Selection of the peaks with spatio-temporal masks..."
                for midx, peak in zip(argmax_peak, all_idx):
                    if (elt_count_neg + elt_count_pos) == nb_elts:
                        break

                    all_elecs = numpy.where(
                        test_extremas[:, peak - local_peaktimes[0]])[0]
                    data = local_chunk[peak, all_elecs]

                    #target_area = test_extremas[:, min_times[midx]:max_times[midx]].sum(1)
                    #all_elecs = numpy.where(target_area)[0]
                    #data = local_chunk[peak, all_elecs]

                    if sign_peaks == 'negative':
                        if N_e > 1:
                            if use_barycenter:
                                weighed_position = data[:, numpy.
                                                        newaxis] * positions[
                                                            all_elecs]
                                barycenter = weighed_position.sum(
                                    0) / data.sum()
                                elec = numpy.argmin(
                                    numpy.linalg.norm(barycenter -
                                                      positions[all_elecs],
                                                      axis=1))
                            else:
                                elec = numpy.argmin(data)
                        else:
                            elec = 0
                        negative_peak = True
                    elif sign_peaks == 'positive':
                        if N_e > 1:
                            if use_barycenter:
                                weighed_position = data[:, numpy.
                                                        newaxis] * positions[
                                                            all_elecs]
                                barycenter = weighed_position.sum(
                                    0) / data.sum()
                                elec = numpy.argmax(
                                    numpy.linalg.norm(barycenter -
                                                      positions[all_elecs],
                                                      axis=1))
                            else:
                                elec = numpy.argmax(data)
                        else:
                            elec = 0
                        negative_peak = False
                    elif sign_peaks == 'both':
                        if N_e == 1:
                            if data < 0:
                                negative_peak = True
                            elif data > 0:
                                negative_peak = False
                            elec = 0
                        else:
                            if numpy.abs(numpy.max(data)) > numpy.abs(
                                    numpy.min(data)):
                                elec = numpy.argmax(data)
                                negative_peak = False
                            else:
                                elec = numpy.argmin(data)
                                negative_peak = True

                    elec = all_elecs[elec]

                    if groups[elec] < upper_bounds:

                        indices = nodes_indices[elec]
                        myslice = all_times[indices,
                                            min_times[midx]:max_times[midx]]

                        if not myslice.any():

                            sub_mat = local_chunk[peak -
                                                  snippet_duration:peak +
                                                  snippet_duration + 1, elec]

                            if reject_noise:
                                slice_window = sub_mat[
                                    snippet_duration -
                                    noise_window:snippet_duration +
                                    noise_window + 1]
                                value = numpy.linalg.norm(
                                    slice_window) / noise_levels[elec]
                                is_noise = value < rejection_threshold
                            else:
                                is_noise = False

                            if not is_noise:

                                extrema = sub_mat[snippet_duration]

                                if alignment:
                                    smoothed = True
                                    try:
                                        f = scipy.interpolate.UnivariateSpline(
                                            xdata,
                                            sub_mat,
                                            s=local_factors[elec],
                                            k=3)
                                    except Exception:
                                        smoothed = False
                                        f = scipy.interpolate.UnivariateSpline(
                                            xdata, sub_mat, k=3, s=0)

                                    if negative_peak:
                                        rmin = (numpy.argmin(f(cdata)) -
                                                xoff) / over_factor
                                    else:
                                        rmin = (numpy.argmax(f(cdata)) -
                                                xoff) / over_factor
                                    ddata = numpy.linspace(
                                        rmin - template_shift,
                                        rmin + template_shift, N_t)

                                    if smoothed:
                                        f = scipy.interpolate.UnivariateSpline(
                                            xdata,
                                            sub_mat,
                                            s=local_factors[elec],
                                            k=3)
                                    else:
                                        f = scipy.interpolate.UnivariateSpline(
                                            xdata, sub_mat, s=0, k=3)

                                    sub_mat = f(ddata).astype(numpy.float32)

                                if negative_peak:
                                    times_neg[elt_count_neg] = peak + t_offset
                                    electrodes_neg[elt_count_neg] = elec
                                    extremum_neg[elt_count_neg] = extrema
                                    elts_neg[:, elt_count_neg] = sub_mat
                                    elt_count_neg += 1
                                else:
                                    times_pos[elt_count_pos] = peak + t_offset
                                    electrodes_pos[elt_count_pos] = elec
                                    extremum_pos[elt_count_pos] = extrema
                                    elts_pos[:, elt_count_pos] = sub_mat
                                    elt_count_pos += 1

                                groups[elec] += 1
                                all_times[
                                    indices,
                                    min_times[midx]:max_times[midx]] = True
                                test_extremas[elec, peak -
                                              local_peaktimes[0]] = False

    sys.stderr.flush()

    print_and_log([
        "Node %d has collected %d waveforms" %
        (comm.rank, elt_count_pos + elt_count_neg)
    ], 'debug', logger)

    if sign_peaks in ['negative', 'both']:
        times_neg = gather_array(times_neg[:elt_count_neg],
                                 comm,
                                 0,
                                 1,
                                 dtype='int32')
        electrodes_neg = gather_array(electrodes_neg[:elt_count_neg],
                                      comm,
                                      0,
                                      1,
                                      dtype='int32')
        extremum_neg = gather_array(extremum_neg[:elt_count_neg], comm, 0, 1)
        gdata_neg = gather_array(elts_neg[:, :elt_count_neg].T, comm, 0, 1)
    if sign_peaks in ['positive', 'both']:
        times_pos = gather_array(times_pos[:elt_count_pos],
                                 comm,
                                 0,
                                 1,
                                 dtype='int32')
        electrodes_pos = gather_array(electrodes_pos[:elt_count_pos],
                                      comm,
                                      0,
                                      1,
                                      dtype='int32')
        extremum_pos = gather_array(extremum_pos[:elt_count_pos], comm, 0, 1)
        gdata_pos = gather_array(elts_pos[:, :elt_count_pos].T, comm, 0, 1)

    nb_waveforms = 0

    if comm.rank == 0:
        # DO PCA on elts and store the basis obtained.

        if sign_peaks in ['negative', 'both']:
            nb_waveforms += gdata_neg.shape[0]
        if sign_peaks in ['positive', 'both']:
            nb_waveforms += gdata_pos.shape[0]

    nb_waveforms = all_gather_array(
        numpy.array([nb_waveforms], dtype=numpy.float32), comm, 0)[0]

    if comm.rank == 0:
        print_and_log([
            "Found %d waveforms over %d requested" %
            (nb_waveforms, int(nb_elts * comm.size))
        ], 'default', logger)

        if nb_waveforms == 0:
            print_and_log(
                ['No waveforms found! Are the data properly loaded??'],
                'error', logger)

    if nb_waveforms == 0:
        sys.exit(0)

    if comm.rank == 0:
        res = {}
        pca = None
        pca_pos = None
        pca_neg = None
        warning_n_t = False
        if sign_peaks in ['negative', 'both']:
            res['times'] = times_neg
            res['electrodes'] = electrodes_neg
            res['extremum'] = extremum_neg
            if len(gdata_neg) > 0:
                pca = PCA(output_dim)
                if use_hanning:
                    pca.fit(gdata_neg * hanning_filter)
                else:
                    pca.fit(gdata_neg)
                res['proj'] = pca.components_.T.astype(numpy.float32)
                pca_neg = numpy.sum(pca.explained_variance_ratio_)
            else:
                res['proj'] = numpy.identity(int(output_dim),
                                             dtype=numpy.float32)
            res['rec'] = res['proj'].T
            res['waveform'] = numpy.median(gdata_neg, 0)
            # dispersion = numpy.std(gdata_neg, 0) / numpy.median(stds)
            # ratio = numpy.sum(dispersion > 1.1) / float(len(dispersion))
            # if ratio < 0.25:
            #     print_and_log(["Time window N_t in [detection] seems too large!"], 'info', logger)
            #     warning_n_t = True
            # elif ratio == 1:
            #     print_and_log(["Time window N_t in [detection] seems too small!"], 'info', logger)
            #     warning_n_t = True
            idx = numpy.random.permutation(numpy.arange(
                gdata_neg.shape[0]))[:2500]
            res['waveforms'] = gdata_neg[idx, :]
        if sign_peaks in ['positive', 'both']:
            res['times_pos'] = times_pos
            res['electrodes_pos'] = electrodes_pos
            res['extremum_pos'] = extremum_pos
            if len(gdata_pos) > 0:
                pca = PCA(output_dim)
                if use_hanning:
                    pca.fit(gdata_pos * hanning_filter)
                else:
                    pca.fit(gdata_pos)
                res['proj_pos'] = pca.components_.T.astype(numpy.float32)
                pca_pos = numpy.sum(pca.explained_variance_ratio_)
            else:
                res['proj_pos'] = numpy.identity(int(output_dim),
                                                 dtype=numpy.float32)
            res['rec_pos'] = res['proj_pos'].T
            res['waveform_pos'] = numpy.median(gdata_pos, 0)
            # dispersion = numpy.std(gdata_pos, 0) / numpy.median(stds)
            # ratio = numpy.sum(dispersion > 1.1) / float(len(dispersion))
            # if ratio < 0.25 and not warning_n_t:
            #     print_and_log(["Time window N_t in [detection] seems too large!"], 'info', logger)
            # elif ratio == 1 and not warning_n_t:
            #     print_and_log(["Time window N_t in [detection] seems too small!"], 'info', logger)
            idx = numpy.random.permutation(numpy.arange(
                gdata_pos.shape[0]))[:2500]
            res['waveforms_pos'] = gdata_pos[idx, :]

        bfile = h5py.File(file_out_suff + '.basis.hdf5',
                          'r+',
                          libver='earliest')
        io.write_datasets(bfile,
                          list(res.keys()),
                          res,
                          compression=hdf5_compress)
        if sign_peaks == 'positive':
            print_and_log([
                "A basis with %s dimensions has been built" %
                res['proj_pos'].shape[1]
            ], 'info', logger)
        elif sign_peaks == 'negative':
            print_and_log([
                "A basis with %s dimensions has been built" %
                res['proj'].shape[1]
            ], 'info', logger)
        elif sign_peaks == 'both':
            print_and_log([
                "Two basis with %s dimensions has been built" %
                res['proj'].shape[1]
            ], 'debug', logger)
        if pca_pos is not None:
            print_and_log([
                "The percentage of variance explained is %s for positive spikes"
                % pca_pos
            ], 'debug', logger)
        if pca_neg is not None:
            print_and_log([
                "The percentage of variance explained is %s for negative spikes"
                % pca_neg
            ], 'debug', logger)

        bfile.close()

    comm.Barrier()

    if matched_filter:

        if comm.rank == 0:
            print_and_log([
                "Because of matched filters, need to recompute the thresholds..."
            ], 'default', logger)

        if do_spatial_whitening:
            spatial_whitening = io.load_data(params, 'spatial_whitening')
            if use_gpu:
                spatial_whitening = cmt.CUDAMatrix(spatial_whitening,
                                                   copy_on_host=False)
        if do_temporal_whitening:
            temporal_whitening = io.load_data(params, 'temporal_whitening')

        if sign_peaks in ['negative', 'both']:
            waveform_neg = io.load_data(params, 'waveform')[::-1]
            waveform_neg /= (numpy.abs(numpy.sum(waveform_neg)) *
                             len(waveform_neg))
        if sign_peaks in ['positive', 'both']:
            waveform_pos = io.load_data(params, 'waveform-pos')[::-1]
            waveform_pos /= (numpy.abs(numpy.sum(waveform_pos)) *
                             len(waveform_pos))

        for gidx in [all_chunks[comm.rank]]:
            local_chunk, t_offset = data_file.get_data(gidx,
                                                       chunk_size,
                                                       nodes=nodes)
            local_shape = len(local_chunk)

            if do_spatial_whitening:
                if use_gpu:
                    local_chunk = cmt.CUDAMatrix(local_chunk,
                                                 copy_on_host=False)
                    local_chunk = local_chunk.dot(spatial_whitening).asarray()
                else:
                    local_chunk = numpy.dot(local_chunk, spatial_whitening)
            if do_temporal_whitening:
                local_chunk = scipy.ndimage.filters.convolve1d(
                    local_chunk, temporal_whitening, axis=0, mode='constant')

            local_chunk /= thresholds

            if sign_peaks in ['negative', 'both']:
                tmp_chunk = scipy.ndimage.filters.convolve1d(local_chunk,
                                                             waveform_neg,
                                                             axis=0,
                                                             mode='constant')
                thresholds = numpy.zeros(N_e, dtype=numpy.float32)
                for i in range(N_e):
                    u = numpy.median(tmp_chunk[:, i], 0)
                    thresholds[i] = numpy.median(
                        numpy.abs(tmp_chunk[:, i] - u), 0)
                gdata = gather_array(thresholds, comm)
                if comm.rank == 0:
                    gdata = gdata.reshape((comm.size, N_e))
                    thresholds = numpy.mean(gdata, 0)
                    bfile = h5py.File(file_out_suff + '.basis.hdf5',
                                      'r+',
                                      libver='earliest')
                    io.write_datasets(bfile, ['matched_thresholds'],
                                      {'matched_thresholds': thresholds},
                                      compression=hdf5_compress)
                    bfile.close()
                comm.Barrier()

            if sign_peaks in ['positive', 'both']:
                tmp_chunk = scipy.ndimage.filters.convolve1d(local_chunk,
                                                             waveform_pos,
                                                             axis=0,
                                                             mode='constant')
                thresholds = numpy.zeros(N_e, dtype=numpy.float32)
                for i in range(N_e):
                    u = numpy.median(tmp_chunk[:, i], 0)
                    thresholds[i] = numpy.median(
                        numpy.abs(tmp_chunk[:, i] - u), 0)
                gdata = gather_array(thresholds, comm)
                if comm.rank == 0:
                    gdata = gdata.reshape((comm.size, N_e))
                    thresholds = numpy.mean(gdata, 0)
                    bfile = h5py.File(file_out_suff + '.basis.hdf5',
                                      'r+',
                                      libver='earliest')
                    io.write_datasets(bfile, ['matched_thresholds_pos'],
                                      {'matched_thresholds_pos': thresholds},
                                      compression=hdf5_compress)
                    bfile.close()
                comm.Barrier()

    data_file.close()

    if SHARED_MEMORY and ignore_dead_times:
        mpi_memory_3.Free()
Пример #3
0
def main(params, nb_cpu, nb_gpu, use_gpu):

    #################################################################
    # params = detect_memory(params)
    _ = init_logging(params.logfile)
    SHARED_MEMORY = get_shared_memory_flag(params)
    logger = logging.getLogger('circus.fitting')
    data_file = params.data_file
    N_e = params.getint('data', 'N_e')
    N_total = params.nb_channels
    N_t = params.getint('detection', 'N_t')
    template_shift = params.getint('detection', 'template_shift')
    file_out = params.get('data', 'file_out')
    file_out_suff = params.get('data', 'file_out_suff')
    sign_peaks = params.get('detection', 'peaks')
    dist_peaks = params.getint('detection', 'dist_peaks')
    matched_filter = params.getboolean('detection', 'matched-filter')
    spike_thresh = params.getfloat('detection', 'spike_thresh')
    spike_width = params.getfloat('detection', 'spike_width')
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening = params.getboolean('whitening', 'spatial')
    chunk_size = detect_memory(params)
    gpu_only = params.getboolean('fitting', 'gpu_only')
    nodes, edges = get_nodes_and_edges(params)
    tmp_limits = params.get('fitting',
                            'amp_limits').replace('(',
                                                  '').replace(')',
                                                              '').split(',')
    tmp_limits = map(float, tmp_limits)
    amp_auto = params.getboolean('fitting', 'amp_auto')
    nb_chances = params.getint('fitting', 'nb_chances')
    max_chunk = params.getfloat('fitting', 'max_chunk')
    noise_thr = params.getfloat('clustering', 'noise_thr')
    collect_all = params.getboolean('fitting', 'collect_all')
    ignore_dead_times = params.getboolean('triggers', 'ignore_times')
    inv_nodes = numpy.zeros(N_total, dtype=numpy.int32)
    inv_nodes[nodes] = numpy.arange(len(nodes))
    data_file.open()
    #################################################################

    if use_gpu:
        import cudamat as cmt
        # # Need to properly handle multi GPU per MPI nodes?
        if nb_gpu > nb_cpu:
            gpu_id = int(comm.rank // nb_cpu)
        else:
            gpu_id = 0
        cmt.cuda_set_device(gpu_id)
        cmt.init()
        cmt.cuda_sync_threads()

    if matched_filter:
        if sign_peaks in ['negative', 'both']:
            waveform_neg = io.load_data(params, 'waveform')[::-1]
            waveform_neg /= (numpy.abs(numpy.sum(waveform_neg)) *
                             len(waveform_neg))
            matched_tresholds_neg = io.load_data(params, 'matched-thresholds')
        if sign_peaks in ['positive', 'both']:
            waveform_pos = io.load_data(params, 'waveform-pos')[::-1]
            waveform_pos /= (numpy.abs(numpy.sum(waveform_pos)) *
                             len(waveform_pos))
            matched_tresholds_pos = io.load_data(params,
                                                 'matched-thresholds-pos')

    if ignore_dead_times:
        all_dead_times = get_dead_times(params)

    thresholds = io.load_data(params, 'thresholds')

    comm.Barrier()

    if comm.rank == 0:
        print_and_log(["Extracting MUA activity..."], 'default', logger)
        purge(file_out_suff, '.data')

    if do_spatial_whitening:
        spatial_whitening = io.load_data(params, 'spatial_whitening')
    else:
        spatial_whitening = None  # default assignment (PyCharm code inspection)
    if do_temporal_whitening:
        temporal_whitening = io.load_data(params, 'temporal_whitening')
    else:
        temporal_whitening = None  # default assignment (PyCharm code inspection)

    nb_chunks, last_chunk_len = data_file.analyze(chunk_size)
    processed_chunks = int(min(nb_chunks, max_chunk))

    comm.Barrier()
    spiketimes_file = open(file_out_suff + '.mua-%d.data' % comm.rank, 'wb')
    comm.Barrier()
    electrodes_file = open(file_out_suff + '.elec-%d.data' % comm.rank, 'wb')
    comm.Barrier()
    amplitudes_file = open(file_out_suff + '.amp-%d.data' % comm.rank, 'wb')
    comm.Barrier()

    if use_gpu and do_spatial_whitening:
        spatial_whitening = cmt.CUDAMatrix(spatial_whitening,
                                           copy_on_host=False)

    to_explore = range(comm.rank, processed_chunks, comm.size)

    if comm.rank == 0:
        to_explore = get_tqdm_progressbar(to_explore)

    for gcount, gidx in enumerate(to_explore):
        # print "Node", comm.rank, "is analyzing chunk", gidx, "/", nb_chunks, " ..."
        # # We need to deal with the borders by taking chunks of size [0, chunck_size + template_shift].

        is_first = data_file.is_first_chunk(gidx, nb_chunks)
        is_last = data_file.is_last_chunk(gidx, nb_chunks)

        if is_last:
            padding = (-dist_peaks, 0)
        elif is_first:
            padding = (0, dist_peaks)
        else:
            padding = (-dist_peaks, dist_peaks)

        result = {'spiketimes': [], 'amplitudes': [], 'templates': []}

        local_chunk, t_offset = data_file.get_data(gidx,
                                                   chunk_size,
                                                   padding,
                                                   nodes=nodes)
        len_chunk = len(local_chunk)

        if do_spatial_whitening:
            if use_gpu:
                local_chunk = cmt.CUDAMatrix(local_chunk, copy_on_host=False)
                local_chunk = local_chunk.dot(spatial_whitening).asarray()
            else:
                local_chunk = numpy.dot(local_chunk, spatial_whitening)
        if do_temporal_whitening:
            local_chunk = scipy.ndimage.filters.convolve1d(local_chunk,
                                                           temporal_whitening,
                                                           axis=0,
                                                           mode='constant')

        # print "Extracting the peaks..."

        local_peaktimes = [numpy.zeros(0, dtype=numpy.uint32)]
        local_elecs = [numpy.zeros(0, dtype=numpy.uint32)]
        local_amps = [numpy.zeros(0, dtype=numpy.float32)]

        if matched_filter:
            if sign_peaks in ['positive', 'both']:
                filter_chunk = scipy.ndimage.filters.convolve1d(
                    local_chunk, waveform_pos, axis=0, mode='constant')
                for i in range(N_e):
                    peaktimes = scipy.signal.find_peaks(
                        filter_chunk[:, i],
                        height=matched_tresholds_pos[i],
                        width=spike_width,
                        distance=dist_peaks,
                        wlen=N_t)[0]
                    local_peaktimes.append(peaktimes)
                    local_elecs.append(
                        i * numpy.ones(len(peaktimes), dtype='uint32'))
                    local_amps.append(filter_chunk[peaktimes, i])
            if sign_peaks in ['negative', 'both']:
                filter_chunk = scipy.ndimage.filters.convolve1d(
                    local_chunk, waveform_neg, axis=0, mode='constant')
                for i in range(N_e):
                    peaktimes = scipy.signal.find_peaks(
                        filter_chunk[:, i],
                        height=matched_tresholds_neg[i],
                        width=spike_width,
                        distance=dist_peaks,
                        wlen=N_t)[0]
                    local_peaktimes.append(peaktimes)
                    local_elecs.append(
                        i * numpy.ones(len(peaktimes), dtype='uint32'))
                    local_amps.append(filter_chunk[peaktimes, i])
        else:
            for i in range(N_e):
                if sign_peaks == 'negative':
                    peaktimes = scipy.signal.find_peaks(-local_chunk[:, i],
                                                        height=thresholds[i],
                                                        width=spike_width,
                                                        distance=dist_peaks,
                                                        wlen=N_t)[0]
                elif sign_peaks == 'positive':
                    peaktimes = scipy.signal.find_peaks(local_chunk[:, i],
                                                        height=thresholds[i],
                                                        width=spike_width,
                                                        distance=dist_peaks,
                                                        wlen=N_t)[0]
                elif sign_peaks == 'both':
                    peaktimes = scipy.signal.find_peaks(numpy.abs(
                        local_chunk[:, i]),
                                                        height=thresholds[i],
                                                        width=spike_width,
                                                        distance=dist_peaks,
                                                        wlen=N_t)[0]
                local_peaktimes.append(peaktimes)
                local_elecs.append(i *
                                   numpy.ones(len(peaktimes), dtype='uint32'))
                local_amps.append(local_chunk[peaktimes, i])

        local_peaktimes = numpy.concatenate(local_peaktimes)
        local_elecs = numpy.concatenate(local_elecs)
        local_amps = numpy.concatenate(local_amps)

        g_offset = t_offset + padding[0]

        if ignore_dead_times:
            dead_indices = numpy.searchsorted(
                all_dead_times, [t_offset, t_offset + chunk_size])
            if dead_indices[0] != dead_indices[1]:
                is_included = numpy.in1d(
                    local_peaktimes + g_offset,
                    all_dead_times[dead_indices[0]:dead_indices[1]])
                local_peaktimes = local_peaktimes[~is_included]
                local_elecs = local_elecs[~is_included]
                local_amps = local_amps[~is_included]

        # print "Removing the useless borders..."
        local_borders = (dist_peaks, len_chunk - dist_peaks)
        idx = (local_peaktimes >= local_borders[0]) & (local_peaktimes <
                                                       local_borders[1])
        local_peaktimes = numpy.compress(idx, local_peaktimes) + g_offset
        local_elecs = numpy.compress(idx, local_elecs)
        local_amps = numpy.compress(idx, local_amps)

        spiketimes_file.write(local_peaktimes.astype(numpy.uint32).tostring())
        electrodes_file.write(local_elecs.tostring())
        amplitudes_file.write(local_amps.tostring())

    sys.stderr.flush()

    spiketimes_file.flush()
    os.fsync(spiketimes_file.fileno())
    spiketimes_file.close()

    electrodes_file.flush()
    os.fsync(electrodes_file.fileno())
    electrodes_file.close()

    amplitudes_file.flush()
    os.fsync(amplitudes_file.fileno())
    amplitudes_file.close()

    comm.Barrier()

    if comm.rank == 0:
        io.collect_mua(comm.size, params, erase=True)

    data_file.close()
Пример #4
0
def main(params, nb_cpu, nb_gpu, use_gpu):

    #################################################################
    # params = detect_memory(params)
    _ = init_logging(params.logfile)
    SHARED_MEMORY = get_shared_memory_flag(params)
    logger = logging.getLogger('circus.fitting')
    data_file = params.data_file
    n_e = params.getint('data', 'N_e')
    n_total = params.nb_channels
    n_t = params.getint('detection', 'N_t')
    template_shift = params.getint('detection', 'template_shift')
    # file_out = params.get('data', 'file_out')
    file_out_suff = params.get('data', 'file_out_suff')
    sign_peaks = params.get('detection', 'peaks')
    matched_filter = params.getboolean('detection', 'matched-filter')
    # spike_thresh = params.getfloat('detection', 'spike_thresh')
    ratio_thresh = params.getfloat('fitting', 'ratio_thresh')
    two_components = params.getboolean('fitting', 'two_components')
    sparse_threshold = params.getfloat('fitting', 'sparse_thresh')
    # spike_width = params.getfloat('detection', 'spike_width')
    # dist_peaks = params.getint('detection', 'dist_peaks')
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening = params.getboolean('whitening', 'spatial')
    templates_normalization = params.getboolean('clustering', 'templates_normalization')  # TODO test, switch, test!
    chunk_size = detect_memory(params, fitting=True)
    gpu_only = params.getboolean('fitting', 'gpu_only')
    nodes, edges = get_nodes_and_edges(params)
    tmp_limits = params.get('fitting', 'amp_limits').replace('(', '').replace(')', '').split(',')
    tmp_limits = [float(v) for v in tmp_limits]
    amp_auto = params.getboolean('fitting', 'amp_auto')
    max_chunk = params.getfloat('fitting', 'max_chunk')
    # noise_thr = params.getfloat('clustering', 'noise_thr')
    collect_all = params.getboolean('fitting', 'collect_all')
    min_second_component = params.getfloat('fitting', 'min_second_component')
    debug = params.getboolean('fitting', 'debug')
    ignore_dead_times = params.getboolean('triggers', 'ignore_times')
    inv_nodes = numpy.zeros(n_total, dtype=numpy.int32)
    inv_nodes[nodes] = numpy.arange(len(nodes))
    data_file.open()
    supports = io.load_data(params, 'supports')
    low_channels_thr = params.getint('detection', 'low_channels_thr')
    median_channels = numpy.median(numpy.sum(supports, 1))
    fixed_amplitudes = params.getboolean('clustering', 'fixed_amplitudes')

    weird_thresh = params.get('detection', 'weird_thresh')
    if weird_thresh != '':
        ignore_artefacts = True
        weird_thresh = io.load_data(params, 'weird-thresholds')
    else:
        ignore_artefacts = False

    if not fixed_amplitudes:
        nb_amp_bins = params.getint('clustering', 'nb_amp_bins')
        splits = np.linspace(0, params.data_file.duration, nb_amp_bins)
        interpolated_times = np.zeros(len(splits) - 1, dtype=numpy.float32)
        for count in range(0, len(splits) - 1):
            interpolated_times[count] = (splits[count] + splits[count + 1])/2
        interpolated_times = numpy.concatenate(([0], interpolated_times, [params.data_file.duration]))
        nb_amp_times = len(splits) + 1

    mse_error = params.getboolean('fitting', 'mse_error')
    if mse_error:
        stds = io.load_data(params, 'stds')
        stds_norm = numpy.linalg.norm(stds)
    # if median_channels < low_channels_thr:
    #     normalization = False
    #     if comm.rank == 0:
    #         print_and_log(['Templates defined on few channels (%g), turning off normalization' %median_channels], 'debug', logger)

    #################################################################

    if SHARED_MEMORY:
        templates, mpi_memory_1 = io.load_data_memshared(params, 'templates', normalize=templates_normalization, transpose=True, sparse_threshold=sparse_threshold)
        N_tm, x = templates.shape
        is_sparse = not isinstance(templates, numpy.ndarray)
    else:
        templates = io.load_data(params, 'templates')
        x, N_tm = templates.shape
        if N_tm > 0:
            sparsity = templates.nnz / (x * N_tm)
            is_sparse = sparsity < sparse_threshold
        else:
            is_sparse = True
        if not is_sparse:
            if comm.rank == 0:
                print_and_log(['Templates sparsity is low (%g): densified to speedup the algorithm' %sparsity], 'debug', logger)
            templates = templates.toarray()

    temp_2_shift = 2 * template_shift
    temp_3_shift = 3 * template_shift
    n_tm = N_tm // 2
    n_scalar = n_e * n_t

    temp_window = numpy.arange(-template_shift, template_shift + 1)
    size_window = n_e * (2 * template_shift + 1)

    if not amp_auto:
        amp_limits = numpy.zeros((n_tm, 2))
        amp_limits[:, 0] = tmp_limits[0]
        amp_limits[:, 1] = tmp_limits[1]
    else:
        amp_limits = io.load_data(params, 'limits')

    norm_templates = io.load_data(params, 'norm-templates')
    sub_norm_templates = n_scalar * norm_templates[:n_tm]
    if not templates_normalization:
        norm_templates_2 = (norm_templates ** 2.0) * n_scalar
        sub_norm_templates_2 = norm_templates_2[:n_tm]

    if not SHARED_MEMORY:
        # Normalize templates (if necessary).
        if templates_normalization:
            if is_sparse:
                for idx in range(templates.shape[1]):
                    myslice = numpy.arange(templates.indptr[idx], templates.indptr[idx+1])
                    templates.data[myslice] /= norm_templates[idx]
            else:
                for idx in range(templates.shape[1]):
                    templates[:, idx] /= norm_templates[idx]
        # Transpose templates.
        templates = templates.T

    maxoverlap = io.load_data(params, 'maxoverlap')/n_scalar
    similar = np.where(maxoverlap > 0.5)

    idx = similar[0] < similar[1]
    similar = similar[0][idx], similar[1][idx]
    nb_mixtures = len(similar[0])

    waveform_neg = numpy.empty(0)  # default assignment (for PyCharm code inspection)
    matched_thresholds_neg = None  # default assignment (for PyCharm code inspection)
    waveform_pos = numpy.empty(0)  # default assignment (for PyCharm code inspection)
    matched_thresholds_pos = None  # default assignment (for PyCharm code inspection)
    if matched_filter:
        if sign_peaks in ['negative', 'both']:
            waveform_neg = io.load_data(params, 'waveform')[::-1]
            waveform_neg /= (numpy.abs(numpy.sum(waveform_neg)) * len(waveform_neg))
            matched_thresholds_neg = io.load_data(params, 'matched-thresholds')
        if sign_peaks in ['positive', 'both']:
            waveform_pos = io.load_data(params, 'waveform-pos')[::-1]
            waveform_pos /= (numpy.abs(numpy.sum(waveform_pos)) * len(waveform_pos))
            matched_thresholds_pos = io.load_data(params, 'matched-thresholds-pos')

    if ignore_dead_times:
        if SHARED_MEMORY:
            all_dead_times, mpi_memory_3 = get_dead_times(params)
        else:
            all_dead_times = get_dead_times(params)
    else:
        all_dead_times = None  # default assignment (for PyCharm code inspection)

    thresholds = io.get_accurate_thresholds(params, ratio_thresh)

    neighbors = {}
    if collect_all:
        is_sparse = not isinstance(templates, numpy.ndarray)
        for i in range(0, n_tm):
            if is_sparse:
                tmp = templates[i, :].toarray().reshape(n_e, n_t)
            else:
                tmp = templates[i].reshape(n_e, n_t)
            if templates_normalization:
                tmp = tmp * norm_templates[i]
            neighbors[i] = numpy.where(numpy.sum(tmp, axis=1) != 0.0)[0]

    #N_tm, x = templates.shape
    #sparsity_factor = templates.nnz / (N_tm * x)
    #if sparsity_factor > sparse_threshold:
    #    if comm.rank == 0:
    #        print_and_log(['Templates are not sparse enough, we densify them for'], 'default', logger)
    #    templates = templates.toarray()

    info_string = ''

    if comm.rank == 0:
        info_string = "using %d CPUs" % comm.size

    comm.Barrier()

    c_overlap = io.get_overlaps(params, nb_cpu=nb_cpu, nb_gpu=nb_gpu, use_gpu=use_gpu)
    over_shape = c_overlap.get('over_shape')[:]
    n_over = int(numpy.sqrt(over_shape[0]))
    s_over = over_shape[1]
    s_center = s_over // 2
    # # If the number of overlaps is different from templates, we need to recompute them.
    if n_over != N_tm:
        if comm.rank == 0:
            print_and_log(['Templates have been modified, recomputing the overlaps...'], 'default', logger)
        c_overlap = io.get_overlaps(params, erase=True, nb_cpu=nb_cpu, nb_gpu=nb_gpu, use_gpu=use_gpu)
        over_shape = c_overlap.get('over_shape')[:]
        n_over = int(numpy.sqrt(over_shape[0]))
        s_over = over_shape[1]

    if SHARED_MEMORY:
        c_overs, mpi_memory_2 = io.load_data_memshared(params, 'overlaps')
    else:
        c_overs = io.load_data(params, 'overlaps')

    comm.Barrier()

    if n_tm == 0:
        if comm.rank == 0:
            print_and_log(["No templates present. Redo clustering?"], 'default', logger)

        sys.exit(0)

    if comm.rank == 0:
        print_and_log(["Here comes the SpyKING CIRCUS %s and %d templates..." % (info_string, n_tm)], 'default', logger)
        purge(file_out_suff, '.data')

    if do_spatial_whitening:
        spatial_whitening = io.load_data(params, 'spatial_whitening')
    else:
        spatial_whitening = None  # default assignment (for PyCharm code inspection)
    if do_temporal_whitening:
        temporal_whitening = io.load_data(params, 'temporal_whitening')
    else:
        temporal_whitening = None  # default assignment (for PyCharm code inspection)

    nb_chunks, last_chunk_len = data_file.analyze(chunk_size)
    processed_chunks = int(min(nb_chunks, max_chunk))

    comm.Barrier()
    spiketimes_file = open(file_out_suff + '.spiketimes-%d.data' % comm.rank, 'wb')
    comm.Barrier()
    amplitudes_file = open(file_out_suff + '.amplitudes-%d.data' % comm.rank, 'wb')
    comm.Barrier()
    templates_file = open(file_out_suff + '.templates-%d.data' % comm.rank, 'wb')
    comm.Barrier()

    if ignore_artefacts:
        comm.Barrier()
        arte_spiketimes_file = open(file_out_suff + '.times-%d.sata' % comm.rank, 'wb')
        comm.Barrier()
        arte_electrodes_file = open(file_out_suff + '.elec-%d.sata' % comm.rank, 'wb')
        comm.Barrier()
        arte_amplitudes_file = open(file_out_suff + '.amp-%d.sata' % comm.rank, 'wb')
        comm.Barrier()

    if mse_error:
        mse_file = open(file_out_suff + '.mses-%d.data' % comm.rank, 'wb')
        comm.Barrier()

    if collect_all:
        garbage_times_file = open(file_out_suff + '.gspiketimes-%d.data' % comm.rank, 'wb')
        comm.Barrier()
        garbage_temp_file = open(file_out_suff + '.gtemplates-%d.data' % comm.rank, 'wb')
        comm.Barrier()
    else:
        garbage_times_file = None  # default assignment (for PyCharm code inspection)
        garbage_temp_file = None  # default assignment (for PyCharm code inspection)

    if debug:
        # Open debug files.
        chunk_nbs_debug_file = open(file_out_suff + '.chunk_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        iteration_nbs_debug_file = open(file_out_suff + '.iteration_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        peak_nbs_debug_file = open(file_out_suff + '.peak_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        peak_local_time_steps_debug_file = open(
            file_out_suff + '.peak_local_time_steps_debug_%d.data' % comm.rank, mode='wb'
        )
        comm.Barrier()
        peak_time_steps_debug_file = open(file_out_suff + '.peak_time_steps_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        peak_scalar_products_debug_file = open(
            file_out_suff + '.peak_scalar_products_debug_%d.data' % comm.rank, mode='wb'
        )
        comm.Barrier()
        peak_solved_flags_debug_file = open(file_out_suff + '.peak_solved_flags_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        template_nbs_debug_file = open(file_out_suff + '.template_nbs_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
        success_flags_debug_file = open(file_out_suff + '.success_flags_debug_%d.data' % comm.rank, mode='wb')
        comm.Barrier()
    else:
        chunk_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        iteration_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_local_time_steps_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_time_steps_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_scalar_products_debug_file = None  # default assignment (for PyCharm code inspection)
        peak_solved_flags_debug_file = None  # default assignment (for PyCharm code inspection)
        template_nbs_debug_file = None  # default assignment (for PyCharm code inspection)
        success_flags_debug_file = None  # default assignment (for PyCharm code inspection)

    last_chunk_size = 0
    slice_indices = numpy.zeros(0, dtype=numpy.int32)

    to_explore = list(range(comm.rank, processed_chunks, comm.size))

    if comm.rank == 0:
        to_explore = get_tqdm_progressbar(params, to_explore)

    if fixed_amplitudes:
        min_scalar_products = amp_limits[:,0][:, numpy.newaxis]
        max_scalar_products = amp_limits[:,1][:, numpy.newaxis]

        if templates_normalization:
            min_sps = min_scalar_products * sub_norm_templates[:, numpy.newaxis]
            max_sps = max_scalar_products * sub_norm_templates[:, numpy.newaxis]
        else:
            min_sps = min_scalar_products * sub_norm_templates_2[:, numpy.newaxis]
            max_sps = max_scalar_products * sub_norm_templates_2[:, numpy.newaxis]

    for gcount, gidx in enumerate(to_explore):
        # print "Node", comm.rank, "is analyzing chunk", gidx, "/", nb_chunks, " ..."
        # # We need to deal with the borders by taking chunks of size [0, chunck_size + template_shift].

        is_first = data_file.is_first_chunk(gidx, nb_chunks)
        is_last = data_file.is_last_chunk(gidx, nb_chunks)

        if not (is_first and is_last):
            if is_last:
                padding = (-temp_3_shift, 0)
            elif is_first:
                padding = (0, temp_3_shift)
            else:
                padding = (-temp_3_shift, temp_3_shift)
        else:
            padding = (0, 0)

        result = {
            'spiketimes': [],
            'amplitudes': [],
            'templates': [],
        }

        if mse_error:
            mse_fit = {
            'spiketimes': [],
            'amplitudes': [],
            'templates': [],
        }

        result_debug = {
            'chunk_nbs': [],
            'iteration_nbs': [],
            'peak_nbs': [],
            'peak_local_time_steps': [],
            'peak_time_steps': [],
            'peak_scalar_products': [],
            'peak_solved_flags': [],
            'template_nbs': [],
            'success_flags': [],
        }

        local_chunk, t_offset = data_file.get_data(gidx, chunk_size, padding, nodes=nodes)           
        len_chunk = len(local_chunk)
        if is_last:
            my_chunk_size = last_chunk_size
        else:
            my_chunk_size = chunk_size

        if do_spatial_whitening:
            local_chunk = numpy.dot(local_chunk, spatial_whitening)
        if do_temporal_whitening:
            local_chunk = scipy.ndimage.filters.convolve1d(local_chunk, temporal_whitening, axis=0, mode='constant')

        # Extracting peaks.

        all_found_spikes = {}
        if collect_all:
            for i in range(n_e):
                all_found_spikes[i] = []

        local_peaktimes = [numpy.empty(0, dtype=numpy.uint32)]

        if ignore_artefacts:
            artefacts_peaktimes = [numpy.zeros(0, dtype=numpy.uint32)]
            artefacts_elecs = [numpy.zeros(0, dtype=numpy.uint32)]
            artefacts_amps = [numpy.zeros(0, dtype=numpy.float32)]    

        if matched_filter:
            if sign_peaks in ['positive', 'both']:
                filter_chunk = scipy.ndimage.filters.convolve1d(local_chunk, waveform_pos, axis=0, mode='constant')
                for i in range(n_e):
                    peaktimes = scipy.signal.find_peaks(filter_chunk[:, i], height=matched_thresholds_pos[i])[0]

                    if ignore_artefacts:
                        artetimes = scipy.signal.find_peaks(numpy.abs(filter_chunk[:, i]), height=weird_thresh[i])[0]
                        to_keep = numpy.logical_not(numpy.in1d(peaktimes, artetimes))
                        peaktimes = peaktimes[to_keep]
                        artefacts_peaktimes.append(artetimes)
                        artefacts_elecs.append(i*numpy.ones(len(artetimes), dtype='uint32'))
                        artefacts_amps.append(local_chunk[artetimes, i])

                    local_peaktimes.append(peaktimes)
                    if collect_all:
                        all_found_spikes[i] += peaktimes.tolist()
            if sign_peaks in ['negative', 'both']:
                filter_chunk = scipy.ndimage.filters.convolve1d(local_chunk, waveform_neg, axis=0, mode='constant')
                for i in range(n_e):
                    peaktimes = scipy.signal.find_peaks(filter_chunk[:, i], height=matched_thresholds_neg[i])[0]

                    if ignore_artefacts:
                        artetimes = scipy.signal.find_peaks(numpy.abs(filter_chunk[:, i]), height=weird_thresh[i])[0]
                        to_keep = numpy.logical_not(numpy.in1d(peaktimes, artetimes))
                        peaktimes = peaktimes[to_keep]
                        artefacts_peaktimes.append(artetimes)
                        artefacts_elecs.append(i*numpy.ones(len(artetimes), dtype='uint32'))
                        artefacts_amps.append(local_chunk[artetimes, i])

                    local_peaktimes.append(peaktimes)
                    if collect_all:
                        all_found_spikes[i] += peaktimes.tolist()
            local_peaktimes = numpy.concatenate(local_peaktimes)

            if ignore_artefacts:
                artefacts_peaktimes = numpy.concatenate(artefacts_peaktimes)
                artefacts_elecs = numpy.concatenate(artefacts_elecs)
                artefacts_amps = numpy.concatenate(artefacts_amps)
        else:
            for i in range(n_e):
                if sign_peaks == 'negative':
                    peaktimes = scipy.signal.find_peaks(-local_chunk[:, i], height=thresholds[i])[0]
                elif sign_peaks == 'positive':
                    peaktimes = scipy.signal.find_peaks(local_chunk[:, i], height=thresholds[i])[0]
                elif sign_peaks == 'both':
                    peaktimes = scipy.signal.find_peaks(numpy.abs(local_chunk[:, i]), height=thresholds[i])[0]
                else:
                    raise ValueError("Unexpected value %s" % sign_peaks)

                if ignore_artefacts:
                    artetimes = scipy.signal.find_peaks(numpy.abs(local_chunk[:, i]), height=weird_thresh[i])[0]
                    to_keep = numpy.logical_not(numpy.in1d(peaktimes, artetimes))
                    peaktimes = peaktimes[to_keep]
                    artefacts_peaktimes.append(artetimes)
                    artefacts_elecs.append(i*numpy.ones(len(artetimes), dtype='uint32'))
                    artefacts_amps.append(local_chunk[artetimes, i])

                local_peaktimes.append(peaktimes)
                if collect_all:
                    all_found_spikes[i] += peaktimes.tolist()
            local_peaktimes = numpy.concatenate(local_peaktimes)

            if ignore_artefacts:
                artefacts_peaktimes = numpy.concatenate(artefacts_peaktimes)
                artefacts_elecs = numpy.concatenate(artefacts_elecs)
                artefacts_amps = numpy.concatenate(artefacts_amps)

        local_peaktimes = numpy.unique(local_peaktimes)
        g_offset = t_offset + padding[0]

        if ignore_dead_times:
            dead_indices = numpy.searchsorted(all_dead_times, [t_offset, t_offset + my_chunk_size])
            if dead_indices[0] != dead_indices[1]:
                is_included = numpy.in1d(local_peaktimes + g_offset, all_dead_times[dead_indices[0]:dead_indices[1]])
                local_peaktimes = local_peaktimes[~is_included]

                if ignore_artefacts:
                    is_included = numpy.in1d(artefacts_peaktimes + g_offset, all_dead_times[dead_indices[0]:dead_indices[1]])
                    artefacts_peaktimes = artefacts_peaktimes[~is_included]
                    artefacts_elecs = artefacts_elecs[~is_included]
                    artefacts_amps = artefacts_amps[~is_included]  

                local_peaktimes = numpy.sort(local_peaktimes)
        else:
            dead_indices = None  # default assignment (for PyCharm code inspection)

        # print "Removing the useless borders..."
        local_borders = (template_shift, len_chunk - template_shift)
        idx = (local_peaktimes >= local_borders[0]) & (local_peaktimes < local_borders[1])
        local_peaktimes = numpy.compress(idx, local_peaktimes)

        if ignore_artefacts:
            artefacts_peaktimes = artefacts_peaktimes + g_offset
            idx = (artefacts_peaktimes >= t_offset) & (artefacts_peaktimes < t_offset + my_chunk_size)
            artefacts_peaktimes = numpy.compress(idx, artefacts_peaktimes)
            artefacts_elecs = numpy.compress(idx, artefacts_elecs)
            artefacts_amps = numpy.compress(idx, artefacts_amps)

        if collect_all:
            for i in range(n_e):
                all_found_spikes[i] = numpy.array(all_found_spikes[i], dtype=numpy.uint32)

                if ignore_dead_times:
                    if dead_indices[0] != dead_indices[1]:
                        is_included = numpy.in1d(
                            all_found_spikes[i] + g_offset, all_dead_times[dead_indices[0]:dead_indices[1]]
                        )
                        all_found_spikes[i] = all_found_spikes[i][~is_included]
                        all_found_spikes[i] = numpy.sort(all_found_spikes[i])

                idx = (all_found_spikes[i] >= local_borders[0]) & (all_found_spikes[i] < local_borders[1])
                all_found_spikes[i] = numpy.compress(idx, all_found_spikes[i])

        nb_local_peak_times = len(local_peaktimes)

        if nb_local_peak_times > 0:
            # print "Computing the b (should full_gpu by putting all chunks on GPU if possible?)..."

            if collect_all or mse_error:
                c_local_chunk = local_chunk.copy()
            else:
                c_local_chunk = None  # default assignment (for PyCharm code inspection)

            sub_mat = local_chunk[local_peaktimes[:, None] + temp_window]
            sub_mat = sub_mat.transpose(2, 1, 0).reshape(size_window, nb_local_peak_times)

            del local_chunk

            b = templates.dot(sub_mat)
    
            del sub_mat

            local_restriction = (t_offset, t_offset + my_chunk_size)
            all_spikes = local_peaktimes + g_offset

            if collect_all:
                c_all_times = numpy.zeros((len_chunk, n_e), dtype=numpy.bool)
                c_min_times = numpy.maximum(numpy.arange(len_chunk) - template_shift, 0)
                c_max_times = numpy.minimum(numpy.arange(len_chunk) + template_shift + 1, len_chunk)
                for i in range(n_e):
                    c_all_times[all_found_spikes[i], i] = True
            else:
                c_all_times = None  # default assignment (for PyCharm code inspection)
                c_min_times = None  # default assignment (for PyCharm code inspection)
                c_max_times = None  # default assignment (for PyCharm code inspection)

            iteration_nb = 0
            data = b[:n_tm, :]

            if not fixed_amplitudes:
                amp_index = numpy.searchsorted(splits, local_restriction[0], 'right')
                scaling = 1/(splits[amp_index] - splits[amp_index - 1])
                min_scalar_products = amp_limits[:, amp_index, 0] + (amp_limits[:, amp_index, 0] - amp_limits[:, amp_index+1, 0])*scaling
                max_scalar_products = amp_limits[:, amp_index, 1] + (amp_limits[:, amp_index, 1] - amp_limits[:, amp_index+1, 0])*scaling
                    
                min_scalar_products = min_scalar_products[:, numpy.newaxis]
                max_scalar_products = max_scalar_products[:, numpy.newaxis]

                if templates_normalization:
                    min_sps = min_scalar_products * sub_norm_templates[:, numpy.newaxis]
                    max_sps = max_scalar_products * sub_norm_templates[:, numpy.newaxis]
                else:
                    min_sps = min_scalar_products * sub_norm_templates_2[:, numpy.newaxis]
                    max_sps = max_scalar_products * sub_norm_templates_2[:, numpy.newaxis]

            while True:

                is_valid = (data > min_sps)*(data < max_sps)
                valid_indices = numpy.where(is_valid)

                if len(valid_indices[0]) == 0:
                    break

                best_amplitude_idx = data[is_valid].argmax()

                best_template_index, peak_index = valid_indices[0][best_amplitude_idx], valid_indices[1][best_amplitude_idx]
                peak_scalar_product = data[is_valid][best_amplitude_idx]

                best_template2_index = best_template_index + n_tm
                if templates_normalization:
                    best_amp = b[best_template_index, peak_index] / n_scalar
                    best_amp_n = best_amp / norm_templates[best_template_index]
                    if two_components:
                        best_amp2 = b[best_template2_index, peak_index] / n_scalar
                        best_amp2_n = best_amp2 /  norm_templates[best_template2_index]
                    else:
                        best_amp2 = 0
                        best_amp2_n = 0
                else:
                    best_amp = b[best_template_index, peak_index] / norm_templates_2[best_template_index]
                    best_amp_n = best_amp
                    if two_components:     
                        best_amp2 = b[best_template2_index, peak_index] / norm_templates_2[best_template2_index]
                        best_amp2_n = best_amp2
                    else:
                        best_amp2 = 0
                        best_amp2_n = 0

                peak_time_step = local_peaktimes[peak_index]

                peak_data = (local_peaktimes - peak_time_step).astype(np.int32)
                is_neighbor = np.abs(peak_data) <= temp_2_shift
                idx_neighbor = peak_data[is_neighbor] + temp_2_shift

                tmp1 = c_overs[best_template_index].multiply(-best_amp)
                if numpy.abs(best_amp2_n) > min_second_component:
                    tmp1 += c_overs[best_template2_index].multiply(-best_amp2)

                to_add = tmp1.toarray()[:, idx_neighbor]
                b[:, is_neighbor] += to_add

                b[best_template_index, peak_index] = -numpy.inf

                # Add matching to the result.
                t_spike = all_spikes[peak_index]

                if (t_spike >= local_restriction[0]) and (t_spike < local_restriction[1]):
                    result['spiketimes'] += [t_spike]
                    result['amplitudes'] += [(best_amp_n, best_amp2_n)]
                    result['templates'] += [best_template_index]
                elif mse_error:
                    mse_fit['spiketimes'] += [t_spike]
                    mse_fit['amplitudes'] += [(best_amp_n, best_amp2_n)]
                    mse_fit['templates'] += [best_template_index]

                # Save debug data.
                if debug:
                    result_debug['chunk_nbs'] += [gidx]
                    result_debug['iteration_nbs'] += [iteration_nb]
                    result_debug['peak_nbs'] += [peak_index]
                    result_debug['peak_local_time_steps'] += [local_peaktimes[peak_index]]
                    result_debug['peak_time_steps'] += [all_spikes[peak_index]]
                    result_debug['peak_scalar_products'] += [peak_scalar_product]
                    result_debug['peak_solved_flags'] += [b[best_template_index, peak_index]]
                    result_debug['template_nbs'] += [best_template_index]
                    result_debug['success_flags'] += [True]

                iteration_nb += 1

            spikes_to_write = numpy.array(result['spiketimes'], dtype=numpy.uint32)
            amplitudes_to_write = numpy.array(result['amplitudes'], dtype=numpy.float32)
            templates_to_write = numpy.array(result['templates'], dtype=numpy.uint32)

            spiketimes_file.write(spikes_to_write.tostring())
            amplitudes_file.write(amplitudes_to_write.tostring())
            templates_file.write(templates_to_write.tostring())

            if ignore_artefacts:
                arte_spiketimes_file.write(artefacts_peaktimes.astype(numpy.uint32).tostring())
                arte_electrodes_file.write(artefacts_elecs.tostring())
                arte_amplitudes_file.write(artefacts_amps.tostring())

            if mse_error:
                curve = numpy.zeros((len_chunk, n_e), dtype=numpy.float32)
                for spike, temp_id, amplitude in zip(result['spiketimes'], result['templates'], result['amplitudes']):
                    spike = spike - t_offset - padding[0]
                    if is_sparse:
                        tmp1 = templates[temp_id].toarray().reshape(n_e, n_t)
                        tmp2 = templates[temp_id + n_tm].toarray().reshape(n_e, n_t)
                    else:
                        tmp1 = templates[temp_id].reshape(n_e, n_t)
                        tmp2 = templates[temp_id + n_tm].reshape(n_e, n_t)

                    curve[spike - template_shift:spike + template_shift + 1, :] += (amplitude[0] * tmp1 + amplitude[1] * tmp2).T

                for spike, temp_id, amplitude in zip(mse_fit['spiketimes'], mse_fit['templates'], mse_fit['amplitudes']):
                    spike = spike - t_offset + padding[0]
                    if is_sparse:
                        tmp1 = templates[temp_id].toarray().reshape(n_e, n_t)
                        tmp2 = templates[temp_id + n_tm].toarray().reshape(n_e, n_t)
                    else:
                        tmp1 = templates[temp_id].reshape(n_e, n_t)
                        tmp2 = templates[temp_id + n_tm].reshape(n_e, n_t)
                    try:
                        curve[int(spike) - template_shift:int(spike) + template_shift + 1, :] += (amplitude[0] * tmp1 + amplitude[1] * tmp2).T
                    except Exception:
                        pass
                mse = numpy.linalg.norm((curve - c_local_chunk)[-padding[0]:-padding[1]])
                nb_points = len(curve) - (padding[1] - padding[0])
                mse_ratio = mse/(numpy.sqrt(nb_points)*stds_norm)
                mse_to_write = numpy.array([g_offset, mse_ratio], dtype=numpy.float32)
                mse_file.write(mse_to_write.tostring())

            if collect_all:

                for temp, spike in zip(templates_to_write, spikes_to_write - g_offset):
                    c_all_times[c_min_times[spike]:c_max_times[spike], neighbors[temp]] = False

                gspikes = numpy.where(numpy.sum(c_all_times, 1) > 0)[0]
                c_all_times = numpy.take(c_all_times, gspikes, axis=0)
                c_local_chunk = numpy.take(c_local_chunk, gspikes, axis=0) * c_all_times                

                if sign_peaks == 'negative':
                    bestlecs = numpy.argmin(c_local_chunk, 1)
                    if matched_filter:
                        threshs = -matched_thresholds_neg[bestlecs]
                    else:
                        threshs = -thresholds[bestlecs]
                    idx = numpy.where(numpy.min(c_local_chunk, 1) < threshs)[0]
                elif sign_peaks == 'positive':
                    bestlecs = numpy.argmax(c_local_chunk, 1)
                    if matched_filter:
                        threshs = matched_thresholds_pos[bestlecs]
                    else:
                        threshs = thresholds[bestlecs]
                    idx = numpy.where(numpy.max(c_local_chunk, 1) > threshs)[0]
                elif sign_peaks == 'both':
                    c_local_chunk = numpy.abs(c_local_chunk)
                    bestlecs = numpy.argmax(c_local_chunk, 1)
                    if matched_filter:
                        threshs = numpy.minimum(matched_thresholds_neg[bestlecs], matched_thresholds_pos[bestlecs])
                    else:
                        threshs = thresholds[bestlecs]
                    idx = numpy.where(numpy.max(c_local_chunk, 1) > threshs)[0]
                else:
                    raise ValueError("Unexpected value %s" % sign_peaks)

                gspikes = numpy.take(gspikes, idx)
                bestlecs = numpy.take(bestlecs, idx)
                gspikes_to_write = numpy.array(gspikes + g_offset, dtype=numpy.uint32)
                gtemplates_to_write = numpy.array(bestlecs, dtype=numpy.uint32)

                garbage_times_file.write(gspikes_to_write.tostring())
                garbage_temp_file.write(gtemplates_to_write.tostring())

            if debug:
                # Write debug data to debug files.
                for field_label, field_dtype, field_file in [
                    ('chunk_nbs', numpy.uint32, chunk_nbs_debug_file),
                    ('iteration_nbs', numpy.uint32, iteration_nbs_debug_file),
                    ('peak_nbs', numpy.uint32, peak_nbs_debug_file),
                    ('peak_local_time_steps', numpy.uint32, peak_local_time_steps_debug_file),
                    ('peak_time_steps', numpy.uint32, peak_time_steps_debug_file),
                    ('peak_scalar_products', numpy.float32, peak_scalar_products_debug_file),
                    ('peak_solved_flags', numpy.float32, peak_solved_flags_debug_file),
                    ('template_nbs', numpy.uint32, template_nbs_debug_file),
                    ('success_flags', numpy.bool, success_flags_debug_file),
                ]:
                    field_to_write = numpy.array(result_debug[field_label], dtype=field_dtype)
                    field_file.write(field_to_write.tostring())

    sys.stderr.flush()

    spiketimes_file.flush()
    os.fsync(spiketimes_file.fileno())
    spiketimes_file.close()

    amplitudes_file.flush()
    os.fsync(amplitudes_file.fileno())
    amplitudes_file.close()

    templates_file.flush()
    os.fsync(templates_file.fileno())
    templates_file.close()

    if collect_all:

        garbage_temp_file.flush()
        os.fsync(garbage_temp_file.fileno())
        garbage_temp_file.close()
        
        garbage_times_file.flush()
        os.fsync(garbage_times_file.fileno())
        garbage_times_file.close()

    if mse_error:
        mse_file.flush()
        os.fsync(mse_file.fileno())
        mse_file.close()

    if ignore_artefacts:
        arte_spiketimes_file.flush()
        os.fsync(arte_spiketimes_file.fileno())
        arte_spiketimes_file.close()

        arte_electrodes_file.flush()
        os.fsync(arte_electrodes_file.fileno())
        arte_electrodes_file.close()

        arte_amplitudes_file.flush()
        os.fsync(arte_amplitudes_file.fileno())
        arte_amplitudes_file.close()

    if debug:
        # Close debug files.
        for field_file in [
            chunk_nbs_debug_file,
            iteration_nbs_debug_file,
            peak_nbs_debug_file,
            peak_local_time_steps_debug_file,
            peak_time_steps_debug_file,
            peak_scalar_products_debug_file,
            peak_solved_flags_debug_file,
            template_nbs_debug_file,
            success_flags_debug_file,
        ]:
            field_file.flush()
            os.fsync(field_file.fileno())
            field_file.close()

    comm.Barrier()

    if SHARED_MEMORY:
        for memory in mpi_memory_1 + mpi_memory_2:
            memory.Free()
        if ignore_dead_times:
            mpi_memory_3.Free()

    if comm.rank == 0:
        io.collect_data(comm.size, params, erase=True)

        if ignore_artefacts:
            io.collect_artefacts(comm.size, params, erase=True)

    data_file.close()