Пример #1
0
def _stim_append_depolarizing_channel(c: stim.Circuit,
                                      g: cirq.DepolarizingChannel,
                                      t: List[int]):
    if g.num_qubits() == 1:
        c.append_operation("DEPOLARIZE1", t, g.p)
    elif g.num_qubits() == 2:
        c.append_operation("DEPOLARIZE2", t, g.p)
    else:
        raise TypeError(f"Don't know how to turn {g!r} into Stim operations.")
Пример #2
0
def global_depolarizing_kraus(noise_level: float,
                              num_qubits: int) -> List[np.ndarray]:
    """Returns the kraus operators of a global depolarizing channel
    at a given noise level.
    """
    noisy_op = DepolarizingChannel(noise_level, num_qubits)
    return list(channel(noisy_op))
Пример #3
0
def test_find_optimal_representation_depolarizing_two_qubit_gates(circ_type):
    """Test optimal representation agrees with a known analytic result."""
    for ideal_gate, noise_level in product([CNOT, CZ], [0.1, 0.5]):
        q = LineQubit.range(2)
        ideal_op = Circuit(ideal_gate(*q))
        implementable_circuits = [Circuit(ideal_op)]
        # Append two-qubit-gate with Paulis on one qubit
        for gate in [X, Y, Z]:
            implementable_circuits.append(Circuit([ideal_op, gate(q[0])]))
            implementable_circuits.append(Circuit([ideal_op, gate(q[1])]))
        # Append two-qubit gate with Paulis on both qubits
        for gate_a, gate_b in product([X, Y, Z], repeat=2):
            implementable_circuits.append(
                Circuit([ideal_op, gate_a(q[0]), gate_b(q[1])])
            )
        noisy_circuits = [
            circ + Circuit(DepolarizingChannel(noise_level).on_each(*q))
            for circ in implementable_circuits
        ]
        super_operators = [
            choi_to_super(_circuit_to_choi(circ)) for circ in noisy_circuits
        ]

        # Define circuits with native types
        implementable_native = [
            convert_from_mitiq(c, circ_type) for c in implementable_circuits
        ]
        ideal_op_native = convert_from_mitiq(ideal_op, circ_type)

        noisy_operations = [
            NoisyOperation(ideal, real)
            for ideal, real in zip(implementable_native, super_operators)
        ]

        # Find optimal representation
        noisy_basis = NoisyBasis(*noisy_operations)
        rep = find_optimal_representation(
            ideal_op_native, noisy_basis, tol=1.0e-8
        )
        # Expected analytical result
        expected_rep = represent_operation_with_local_depolarizing_noise(
            ideal_op_native,
            noise_level,
        )
        assert np.allclose(np.sort(rep.coeffs), np.sort(expected_rep.coeffs))
        assert rep == expected_rep
Пример #4
0
def test_depolarizing_representation_with_choi(gate: Gate, noise: float):
    """Tests the representation by comparing exact Choi matrices."""
    qreg = LineQubit.range(gate.num_qubits())
    ideal_choi = _operation_to_choi(gate.on(*qreg))
    op_rep = represent_operation_with_global_depolarizing_noise(
        Circuit(gate.on(*qreg)), noise,
    )
    choi_components = []
    for noisy_op, coeff in op_rep.basis_expansion.items():
        implementable_circ = noisy_op.circuit()
        # Apply noise after each sequence.
        # NOTE: noise is not applied after each operation.
        depolarizing_op = DepolarizingChannel(noise, len(qreg))(*qreg)
        implementable_circ.append(depolarizing_op)
        sequence_choi = _circuit_to_choi(implementable_circ)
        choi_components.append(coeff * sequence_choi)
    combination_choi = np.sum(choi_components, axis=0)
    assert np.allclose(ideal_choi, combination_choi, atol=10 ** -6)
Пример #5
0
def test_minimize_one_norm_with_depolarized_choi():
    for noise_level in [0.01, 0.02, 0.03]:
        q = LineQubit(0)
        ideal_matrix = _operation_to_choi(H(q))
        basis_matrices = [
            _operation_to_choi(
                [H(q), gate(q),
                 DepolarizingChannel(noise_level, 1)(q)])
            for gate in [I, X, Y, Z, H]
        ]
        optimal_coeffs = minimize_one_norm(ideal_matrix, basis_matrices)
        represented_mat = sum(
            [eta * mat for eta, mat in zip(optimal_coeffs, basis_matrices)])
        assert np.allclose(ideal_matrix, represented_mat)

        # Optimal analytic result by Takagi (arXiv:2006.12509)
        eps = 4.0 / 3.0 * noise_level
        expected = (1.0 + 0.5 * eps) / (1.0 - eps)
        assert np.isclose(np.linalg.norm(optimal_coeffs, 1), expected)
Пример #6
0
def test_find_optimal_representation_single_qubit_depolarizing(circ_type):
    """Test optimal representation agrees with a known analytic result."""
    for ideal_gate, noise_level in product([X, Y, H], [0.1, 0.3]):
        q = LineQubit(0)

        ideal_op = Circuit(ideal_gate(q))
        implementable_circuits = [Circuit(ideal_op)]
        # Add ideal gate followed by Paulis
        for gate in [X, Y, Z]:
            implementable_circuits.append(Circuit([ideal_op, gate(q)]))

        noisy_circuits = [
            circ + Circuit(DepolarizingChannel(noise_level).on_each(q))
            for circ in implementable_circuits
        ]
        super_operators = [
            choi_to_super(_circuit_to_choi(circ)) for circ in noisy_circuits
        ]

        # Define circuits with native types
        implementable_native = [
            convert_from_mitiq(c, circ_type) for c in implementable_circuits
        ]
        ideal_op_native = convert_from_mitiq(ideal_op, circ_type)

        noisy_operations = [
            NoisyOperation(ideal, real)
            for ideal, real in zip(implementable_native, super_operators)
        ]
        # Find optimal representation
        noisy_basis = NoisyBasis(*noisy_operations)
        rep = find_optimal_representation(
            ideal_op_native, noisy_basis, tol=1.0e-8
        )
        # Expected analytical result
        expected_rep = represent_operation_with_local_depolarizing_noise(
            ideal_op_native,
            noise_level,
        )
        assert np.allclose(np.sort(rep.coeffs), np.sort(expected_rep.coeffs))
        assert rep == expected_rep