Пример #1
0
    def test_GIVEN_single_masked_point_in_cube_WHEN_iterate_THEN_return_no_points(
            self):

        sample_cube = make_square_5x3_2d_cube_with_time(offset=0,
                                                        time_offset=0)
        data_point = make_dummy_ungridded_data_single_point(
            0.5,
            0.5,
            1.2,
            time=datetime.datetime(1984, 8, 28, 0, 0),
            mask=True)
        coord_map = make_coord_map(sample_cube, data_point)
        coords = sample_cube.coords()
        for (hpi, ci, shi) in coord_map:
            coord = coords[ci]
            if coord.ndim > 1:
                raise NotImplementedError(
                    "Co-location of data onto a cube with a coordinate of dimension greater"
                    " than one is not supported (coordinate %s)", coord.name())
            # Ensure that bounds exist.
            if not coord.has_bounds():
                coord.guess_bounds()

        constraint = BinnedCubeCellOnlyConstraint()
        data_index.create_indexes(constraint, coords,
                                  data_point.get_non_masked_points(),
                                  coord_map)
        iterator = constraint.get_iterator(False, coord_map, coords,
                                           data_point.get_non_masked_points(),
                                           None, sample_cube, None)

        final_points_index = [(out_index, hp, points)
                              for out_index, hp, points in iterator]
        assert_that(len(final_points_index), is_(0),
                    "Masked points should not be iterated over")
Пример #2
0
    def test_GIVEN_single_point_in_cube_WHEN_iterate_THEN_return_point_in_middle(self):

        sample_cube = make_square_5x3_2d_cube_with_time(offset=0, time_offset=0)
        data_point = make_dummy_ungridded_data_single_point(0.5, 0.5, 1.2, time=datetime.datetime(1984, 8, 28, 0, 0))
        coord_map = make_coord_map(sample_cube, data_point)
        coords = sample_cube.coords()
        for (hpi, ci, shi) in coord_map:
            coord = coords[ci]
            if coord.ndim > 1:
                raise NotImplementedError("Co-location of data onto a cube with a coordinate of dimension greater"
                                          " than one is not supported (coordinate %s)", coord.name())
            # Ensure that bounds exist.
            if not coord.has_bounds():
                coord.guess_bounds()

        constraint = BinnedCubeCellOnlyConstraint()
        data_index.create_indexes(constraint, coords, data_point.get_non_masked_points(), coord_map)
        iterator = constraint.get_iterator(False, coord_map, coords, data_point.get_non_masked_points(), None,
                                           sample_cube, None)

        final_points_index = [(out_index, hp, points) for out_index, hp, points in iterator]
        assert_that(len(final_points_index), is_(1), "There is one mapping from sample_cube to the final grid")
        assert_that(final_points_index[0][0], is_((2, 1, 1)), "The points should map to index")
        assert_that(final_points_index[0][1], is_(HyperPoint(lat=0, lon=0, t=datetime.datetime(1984, 8, 28))),
                    "The points should map to index")
        assert_that(final_points_index[0][2].latitudes, is_([0.5]), "The points should map to index")
        assert_that(final_points_index[0][2].longitudes, is_([0.5]), "The points should map to index")
        assert_that(final_points_index[0][2].times,
                    is_([convert_datetime_to_std_time(datetime.datetime(1984, 8, 28, 0, 0))]),
                    "The points should map to index")
        assert_that(final_points_index[0][2].vals, is_([1.2]), "The points should map to index")
Пример #3
0
    def test_GIVEN_single_point_in_cube_WHEN_iterate_THEN_return_point_in_middle(
            self):

        sample_cube = make_square_5x3_2d_cube_with_time(offset=0,
                                                        time_offset=0)
        data_point = make_dummy_ungridded_data_single_point(
            0.5, 0.5, 1.2, time=datetime.datetime(1984, 8, 28, 0, 0))
        coord_map = make_coord_map(sample_cube, data_point)
        coords = sample_cube.coords()
        for (hpi, ci, shi) in coord_map:
            coord = coords[ci]
            if coord.ndim > 1:
                raise NotImplementedError(
                    "Co-location of data onto a cube with a coordinate of dimension greater"
                    " than one is not supported (coordinate %s)", coord.name())
            # Ensure that bounds exist.
            if not coord.has_bounds():
                coord.guess_bounds()

        constraint = BinnedCubeCellOnlyConstraint()
        data_index.create_indexes(constraint, coords,
                                  data_point.get_non_masked_points(),
                                  coord_map)
        iterator = constraint.get_iterator(False, coord_map, coords,
                                           data_point.get_non_masked_points(),
                                           None, sample_cube, None)

        final_points_index = [(out_index, hp, points)
                              for out_index, hp, points in iterator]
        assert_that(len(final_points_index), is_(1),
                    "There is one mapping from sample_cube to the final grid")
        assert_that(final_points_index[0][0], is_((2, 1, 1)),
                    "The points should map to index")
        assert_that(
            final_points_index[0][1],
            is_(HyperPoint(lat=0, lon=0, t=datetime.datetime(1984, 8, 28))),
            "The points should map to index")
        assert_that(final_points_index[0][2].latitudes, is_([0.5]),
                    "The points should map to index")
        assert_that(final_points_index[0][2].longitudes, is_([0.5]),
                    "The points should map to index")
        assert_that(
            final_points_index[0][2].times,
            is_([
                convert_datetime_to_std_time(
                    datetime.datetime(1984, 8, 28, 0, 0))
            ]), "The points should map to index")
        assert_that(final_points_index[0][2].vals, is_([1.2]),
                    "The points should map to index")
Пример #4
0
    def test_GIVEN_single_masked_point_in_cube_WHEN_iterate_THEN_return_no_points(self):

        sample_cube = make_square_5x3_2d_cube_with_time(offset=0, time_offset=0)
        data_point = make_dummy_ungridded_data_single_point(0.5, 0.5, 1.2, time=datetime.datetime(1984, 8, 28, 0, 0),
                                                            mask=True)
        coord_map = make_coord_map(sample_cube, data_point)
        coords = sample_cube.coords()
        for (hpi, ci, shi) in coord_map:
            coord = coords[ci]
            if coord.ndim > 1:
                raise NotImplementedError("Co-location of data onto a cube with a coordinate of dimension greater"
                                          " than one is not supported (coordinate %s)", coord.name())
            # Ensure that bounds exist.
            if not coord.has_bounds():
                coord.guess_bounds()

        constraint = BinnedCubeCellOnlyConstraint()
        data_index.create_indexes(constraint, coords, data_point.get_non_masked_points(), coord_map)
        iterator = constraint.get_iterator(False, coord_map, coords, data_point.get_non_masked_points(), None,
                                           sample_cube, None)

        final_points_index = [(out_index, hp, points) for out_index, hp, points in iterator]
        assert_that(len(final_points_index), is_(0), "Masked points should not be iterated over")
Пример #5
0
    def collocate(self, points, data, constraint, kernel):
        """
        :param points: cube defining the sample points
        :param data: CommonData object providing data to be collocated (or list of Data)
        :param constraint: instance of a Constraint subclass, which takes a data object and returns a subset of that
                           data based on it's internal parameters
        :param kernel: instance of a Kernel subclass which takes a number of points and returns a single value
        :return: GriddedDataList of collocated data
        """
        log_memory_profile("GeneralGriddedCollocator Initial")
        if isinstance(data, list):
            # If data is a list then call this method recursively over each element
            output_list = []
            for variable in data:
                collocated = self.collocate(points, variable, constraint, kernel)
                output_list.extend(collocated)
            return GriddedDataList(output_list)

        data_points = data.get_non_masked_points()

        log_memory_profile("GeneralGriddedCollocator Created data hyperpoint list view")

        # Work out how to iterate over the cube and map HyperPoint coordinates to cube coordinates.
        coord_map = make_coord_map(points, data)
        if self.missing_data_for_missing_sample and len(coord_map) is not len(points.coords()):
            raise cis.exceptions.UserPrintableException(
                "A sample variable has been specified but not all coordinates in the data appear in the sample so "
                "there are multiple points in the sample data so whether the data is missing or not can not be "
                "determined")

        coords = points.coords()
        shape = []
        output_coords = []

        # Find shape of coordinates to be iterated over.
        for (hpi, ci, shi) in coord_map:
            coord = coords[ci]
            if coord.ndim > 1:
                raise NotImplementedError("Co-location of data onto a cube with a coordinate of dimension greater"
                                          " than one is not supported (coordinate %s)", coord.name())
            # Ensure that bounds exist.
            if not coord.has_bounds():
                logging.warning("Creating guessed bounds as none exist in file")
                coord.guess_bounds()
            shape.append(coord.shape[0])
            output_coords.append(coord)

        _fix_longitude_range(coords, data_points)

        log_memory_profile("GeneralGriddedCollocator Created output coord map")

        # Create index if constraint supports it.
        data_index.create_indexes(constraint, coords, data_points, coord_map)
        data_index.create_indexes(kernel, points, data_points, coord_map)

        log_memory_profile("GeneralGriddedCollocator Created indexes")

        # Initialise output array as initially all masked, and set the appropriate fill value.
        values = []
        for i in range(kernel.return_size):
            val = np.ma.zeros(shape)
            val.mask = True
            val.fill_value = self.fill_value
            values.append(val)

        if kernel.return_size == 1:
            set_value_kernel = self._set_single_value_kernel
        else:
            set_value_kernel = self._set_multi_value_kernel

        logging.info("--> Co-locating...")

        if hasattr(kernel, "get_value_for_data_only") and hasattr(constraint, "get_iterator_for_data_only"):
            # Iterate over constrained cells
            iterator = constraint.get_iterator_for_data_only(
                self.missing_data_for_missing_sample, coord_map, coords, data_points, shape, points, values)
            for out_indices, data_values in iterator:
                try:
                    kernel_val = kernel.get_value_for_data_only(data_values)
                    set_value_kernel(kernel_val, values, out_indices)
                except ValueError:
                    # ValueErrors are raised by Kernel when there are no points to operate on.
                    # We don't need to do anything.
                    pass
        else:
            # Iterate over constrained cells
            iterator = constraint.get_iterator(
                self.missing_data_for_missing_sample, coord_map, coords, data_points, shape, points, values)
            for out_indices, hp, con_points in iterator:
                try:
                    kernel_val = kernel.get_value(hp, con_points)
                    set_value_kernel(kernel_val, values, out_indices)
                except ValueError:
                    # ValueErrors are raised by Kernel when there are no points to operate on.
                    # We don't need to do anything.
                    pass

        log_memory_profile("GeneralGriddedCollocator Completed collocation")

        # Construct an output cube containing the collocated data.
        kernel_var_details = kernel.get_variable_details(self.var_name or data.var_name,
                                                         self.var_long_name or data.long_name,
                                                         data.standard_name,
                                                         self.var_units or data.units)
        output = GriddedDataList([])
        for idx, val in enumerate(values):
            cube = self._create_collocated_cube(data, val, output_coords)
            data_with_nan_and_inf_removed = np.ma.masked_invalid(cube.data)
            data_with_nan_and_inf_removed.set_fill_value(self.fill_value)
            cube.data = data_with_nan_and_inf_removed
            cube.var_name = kernel_var_details[idx][0]
            cube.long_name = kernel_var_details[idx][1]
            set_standard_name_if_valid(cube, kernel_var_details[idx][2])
            try:
                cube.units = kernel_var_details[idx][3]
            except ValueError:
                logging.warn(
                    "Units are not cf compliant, not setting them. Units {}".format(kernel_var_details[idx][3]))

            # Sort the cube into the correct shape, so that the order of coordinates
            # is the same as in the source data
            coord_map = sorted(coord_map, key=lambda x: x[1])
            transpose_order = [coord[2] for coord in coord_map]
            cube.transpose(transpose_order)
            output.append(cube)

        log_memory_profile("GeneralGriddedCollocator Finished")

        return output
Пример #6
0
    def collocate(self, points, data, constraint, kernel):
        """
        This collocator takes a list of HyperPoints and a data object (currently either Ungridded
        data or a Cube) and returns one new LazyData object with the values as determined by the
        constraint and kernel objects. The metadata for the output LazyData object is copied from
        the input data object.

        :param UngriddedData or UngriddedCoordinates points: Object defining the sample points
        :param UngriddedData data: The source data to collocate from
        :param constraint: An instance of a Constraint subclass which takes a data object and
                           returns a subset of that data based on it's internal parameters
        :param kernel: An instance of a Kernel subclass which takes a number of points and returns
                       a single value
        :return UngriddedData or UngriddedDataList: Depending on the input
        """
        log_memory_profile("GeneralUngriddedCollocator Initial")

        if isinstance(data, list):
            # Indexing and constraints (for SepConstraintKdTree) will only take place on the first iteration,
            # so we really can just call this method recursively if we've got a list of data.
            output = UngriddedDataList()
            for var in data:
                output.extend(self.collocate(points, var, constraint, kernel))
            return output

        # First fix the sample points so that they all fall within the same 360 degree longitude range
        _fix_longitude_range(points.coords(), points)
        # Then fix the data points so that they fall onto the same 360 degree longitude range as the sample points
        _fix_longitude_range(points.coords(), data)

        # Convert to dataframes for fancy indexing
        sample_points = points.as_data_frame(time_index=False, name='vals')
        data_points = data.as_data_frame(time_index=False, name='vals').dropna(axis=0)

        log_memory_profile("GeneralUngriddedCollocator after data retrieval")

        # Create index if constraint and/or kernel require one.
        coord_map = None
        data_index.create_indexes(constraint, points, data_points, coord_map)
        log_memory_profile("GeneralUngriddedCollocator after indexing")

        logging.info("--> Collocating...")

        # Create output arrays.
        self.var_name = data.var_name
        self.var_long_name = data.long_name
        self.var_standard_name = data.standard_name
        self.var_units = data.units
        var_set_details = kernel.get_variable_details(self.var_name, self.var_long_name,
                                                      self.var_standard_name, self.var_units)

        sample_points_count = len(sample_points)
        # Create an empty masked array to store the collocated values. The elements will be unmasked by assignment.
        values = np.ma.masked_all((len(var_set_details), sample_points_count))
        values.fill_value = self.fill_value
        log_memory_profile("GeneralUngriddedCollocator after output array creation")

        logging.info("    {} sample points".format(sample_points_count))
        # Apply constraint and/or kernel to each sample point.

        if isinstance(kernel, nn_horizontal_only):
            # Only find the nearest point using the kd-tree, without constraint in other dimensions
            nearest_points = data_points.iloc[constraint.haversine_distance_kd_tree_index.find_nearest_point(sample_points)]
            values[0, :] = nearest_points.vals.values
        else:
            for i, point, con_points in constraint.get_iterator(self.missing_data_for_missing_sample, None, None,
                                                                data_points, None, sample_points, None):

                try:
                    values[:, i] = kernel.get_value(point, con_points)
                    # Kernel returns either a single value or a tuple of values to insert into each output variable.
                except CoordinateMultiDimError as e:
                    raise NotImplementedError(e)
                except ValueError as e:
                    pass
        log_memory_profile("GeneralUngriddedCollocator after running kernel on sample points")

        # Mask any bad values
        values = np.ma.masked_invalid(values)

        return_data = UngriddedDataList()
        for idx, var_details in enumerate(var_set_details):
            var_metadata = Metadata(name=var_details[0], long_name=var_details[1], shape=(len(sample_points),),
                                    missing_value=self.fill_value, units=var_details[3])
            set_standard_name_if_valid(var_metadata, var_details[2])
            return_data.append(UngriddedData(values[idx, :], var_metadata, points.coords()))
        log_memory_profile("GeneralUngriddedCollocator final")

        return return_data
Пример #7
0
    def collocate(self, points, data, constraint, kernel):
        """
        :param points: cube defining the sample points
        :param data: CommonData object providing data to be collocated (or list of Data)
        :param constraint: instance of a Constraint subclass, which takes a data object and returns a subset of that
                           data based on it's internal parameters
        :param kernel: instance of a Kernel subclass which takes a number of points and returns a single value
        :return: GriddedDataList of collocated data
        """
        if isinstance(data, list):
            # If data is a list then call this method recursively over each element
            output_list = []
            for variable in data:
                collocated = self.collocate(points, variable, constraint, kernel)
                output_list.extend(collocated)
            return GriddedDataList(output_list)

        data_points = data.get_non_masked_points()

        # Work out how to iterate over the cube and map HyperPoint coordinates to cube coordinates.
        coord_map = make_coord_map(points, data)
        if self.missing_data_for_missing_sample and len(coord_map) is not len(points.coords()):
            raise cis.exceptions.UserPrintableException(
                "A sample variable has been specified but not all coordinates in the data appear in the sample so "
                "there are multiple points in the sample data so whether the data is missing or not can not be "
                "determined")

        coords = points.coords()
        shape = []
        output_coords = []

        # Find shape of coordinates to be iterated over.
        for (hpi, ci, shi) in coord_map:
            coord = coords[ci]
            if coord.ndim > 1:
                raise NotImplementedError("Co-location of data onto a cube with a coordinate of dimension greater"
                                          " than one is not supported (coordinate %s)", coord.name())
            # Ensure that bounds exist.
            if not coord.has_bounds():
                logging.warning("Creating guessed bounds as none exist in file")
                coord.guess_bounds()
            shape.append(coord.shape[0])
            output_coords.append(coord)

        _fix_longitude_range(coords, data_points)

        # Create index if constraint supports it.
        data_index.create_indexes(constraint, coords, data_points, coord_map)
        data_index.create_indexes(kernel, points, data_points, coord_map)

        # Initialise output array as initially all masked, and set the appropriate fill value.
        values = []
        for i in range(kernel.return_size):
            val = np.ma.zeros(shape)
            val.mask = True
            val.fill_value = self.fill_value
            values.append(val)

        if kernel.return_size == 1:
            set_value_kernel = self._set_single_value_kernel
        else:
            set_value_kernel = self._set_multi_value_kernel

        logging.info("--> Co-locating...")

        if hasattr(kernel, "get_value_for_data_only") and hasattr(constraint, "get_iterator_for_data_only"):
            # Iterate over constrained cells
            iterator = constraint.get_iterator_for_data_only(
                self.missing_data_for_missing_sample, coord_map, coords, data_points, shape, points, values)
            for out_indices, data_values in iterator:
                try:
                    kernel_val = kernel.get_value_for_data_only(data_values)
                    set_value_kernel(kernel_val, values, out_indices)
                except ValueError:
                    # ValueErrors are raised by Kernel when there are no points to operate on.
                    # We don't need to do anything.
                    pass
        else:
            # Iterate over constrained cells
            iterator = constraint.get_iterator(
                self.missing_data_for_missing_sample, coord_map, coords, data_points, shape, points, values)
            for out_indices, hp, con_points in iterator:
                try:
                    kernel_val = kernel.get_value(hp, con_points)
                    set_value_kernel(kernel_val, values, out_indices)
                except ValueError:
                    # ValueErrors are raised by Kernel when there are no points to operate on.
                    # We don't need to do anything.
                    pass

        # Construct an output cube containing the collocated data.
        kernel_var_details = kernel.get_variable_details(data.var_name, data.long_name, data.standard_name, data.units)
        output = GriddedDataList([])
        for idx, val in enumerate(values):
            cube = self._create_collocated_cube(data, val, output_coords)
            data_with_nan_and_inf_removed = np.ma.masked_invalid(cube.data)
            data_with_nan_and_inf_removed.set_fill_value(self.fill_value)
            cube.data = data_with_nan_and_inf_removed
            cube.var_name = kernel_var_details[idx][0]
            cube.long_name = kernel_var_details[idx][1]
            cis.utils.set_cube_standard_name_if_valid(cube, kernel_var_details[idx][2])
            try:
                cube.units = kernel_var_details[idx][3]
            except ValueError:
                logging.warn(
                    "Units are not cf compliant, not setting them. Units {}".format(kernel_var_details[idx][3]))

            # Sort the cube into the correct shape, so that the order of coordinates
            # is the same as in the source data
            coord_map = sorted(coord_map, key=lambda x: x[1])
            transpose_order = [coord[2] for coord in coord_map]
            cube.transpose(transpose_order)
            output.append(cube)

        return output
Пример #8
0
    def collocate(self, points, data, constraint, kernel):
        """
        This collocator takes a list of HyperPoints and a data object (currently either Ungridded
        data or a Cube) and returns one new LazyData object with the values as determined by the
        constraint and kernel objects. The metadata for the output LazyData object is copied from
        the input data object.

        :param points: UngriddedData or UngriddedCoordinates defining the sample points
        :param data: An UngriddedData object or Cube, or any other object containing metadata that
                     the constraint object can read. May also be a list of objects, in which case a list will
                     be returned
        :param constraint: An instance of a Constraint subclass which takes a data object and
                           returns a subset of that data based on it's internal parameters
        :param kernel: An instance of a Kernel subclass which takes a number of points and returns
                       a single value
        :return: A single LazyData object
        """
        log_memory_profile("GeneralUngriddedCollocator Initial")

        if isinstance(data, list):
            # Indexing and constraints (for SepConstraintKdTree) will only take place on the first iteration,
            # so we really can just call this method recursively if we've got a list of data.
            output = UngriddedDataList()
            for var in data:
                output.extend(self.collocate(points, var, constraint, kernel))
            return output

        metadata = data.metadata

        sample_points = points.get_all_points()

        # Convert ungridded data to a list of points if kernel needs it.
        # Special case checks for kernels that use a cube - this could be done more elegantly.
        if isinstance(kernel, nn_gridded) or isinstance(kernel, li):
            if hasattr(kernel, "interpolator"):
                # If we have an interpolator on the kernel we need to reset it as it depends on the actual values
                #  as well as the coordinates
                kernel.interpolator = None
                kernel.coord_names = []
            if not isinstance(data, iris.cube.Cube):
                raise ValueError("Ungridded data cannot be used with kernel nn_gridded or li")
            if constraint is not None and not isinstance(constraint, DummyConstraint):
                raise ValueError("A constraint cannot be specified with kernel nn_gridded or li")
            data_points = data
        else:
            data_points = data.get_non_masked_points()

        # First fix the sample points so that they all fall within the same 360 degree longitude range
        _fix_longitude_range(points.coords(), sample_points)
        # Then fix the data points so that they fall onto the same 360 degree longitude range as the sample points
        _fix_longitude_range(points.coords(), data_points)

        log_memory_profile("GeneralUngriddedCollocator after data retrieval")

        # Create index if constraint and/or kernel require one.
        coord_map = None
        data_index.create_indexes(constraint, points, data_points, coord_map)
        data_index.create_indexes(kernel, points, data_points, coord_map)
        log_memory_profile("GeneralUngriddedCollocator after indexing")

        logging.info("--> Collocating...")

        # Create output arrays.
        self.var_name = data.name()
        self.var_long_name = metadata.long_name
        self.var_standard_name = metadata.standard_name
        self.var_units = data.units
        var_set_details = kernel.get_variable_details(self.var_name, self.var_long_name,
                                                      self.var_standard_name, self.var_units)
        sample_points_count = len(sample_points)
        values = np.zeros((len(var_set_details), sample_points_count)) + self.fill_value
        log_memory_profile("GeneralUngriddedCollocator after output array creation")

        logging.info("    {} sample points".format(sample_points_count))
        # Apply constraint and/or kernel to each sample point.
        cell_count = 0
        total_count = 0
        for i, point in sample_points.enumerate_non_masked_points():
            # Log progress periodically.
            cell_count += 1
            if cell_count == 1000:
                total_count += cell_count
                cell_count = 0
                logging.info("    Processed {} points of {}".format(total_count, sample_points_count))

            if constraint is None:
                con_points = data_points
            else:
                con_points = constraint.constrain_points(point, data_points)
            try:
                value_obj = kernel.get_value(point, con_points)
                # Kernel returns either a single value or a tuple of values to insert into each output variable.
                if isinstance(value_obj, tuple):
                    for idx, val in enumerate(value_obj):
                        if not np.isnan(val):
                            values[idx, i] = val
                else:
                    values[0, i] = value_obj
            except CoordinateMultiDimError as e:
                raise NotImplementedError(e)
            except ValueError as e:
                pass
        log_memory_profile("GeneralUngriddedCollocator after running kernel on sample points")

        return_data = UngriddedDataList()
        for idx, var_details in enumerate(var_set_details):
            if idx == 0:
                new_data = UngriddedData(values[0, :], metadata, points.coords())
                new_data.metadata._name = var_details[0]
                new_data.metadata.long_name = var_details[1]
                cis.utils.set_cube_standard_name_if_valid(new_data, var_details[2])
                new_data.metadata.shape = (len(sample_points),)
                new_data.metadata.missing_value = self.fill_value
                new_data.units = var_details[2]
            else:
                var_metadata = Metadata(name=var_details[0], long_name=var_details[1], shape=(len(sample_points),),
                                        missing_value=self.fill_value, units=var_details[2])
                new_data = UngriddedData(values[idx, :], var_metadata, points.coords())
            return_data.append(new_data)
        log_memory_profile("GeneralUngriddedCollocator final")

        return return_data