Пример #1
0
    def test_compare_column_and_integrated_profile(self):
        from CALIOPy.utils import integrate_profile, mask_data
        ext_data = cis.read_data(self.TEST_FILENAME,
                                 "Extinction_Coefficient_532",
                                 "Caliop_V4_QC_NO_PRESSURE")
        col_data = cis.read_data(
            self.TEST_FILENAME,
            "Column_Optical_Depth_Tropospheric_Aerosols_532", "Caliop_V4_QC")
        backscatter = cis.read_data(self.TEST_FILENAME,
                                    "Total_Backscatter_Coefficient_532",
                                    "Caliop_V4_QC_NO_PRESSURE")
        int_backscatter = cis.read_data(
            self.TEST_FILENAME, "Column_Integrated_Attenuated_Backscatter_532",
            "Caliop_V4_QC")

        # Integrate the profile
        int_data = integrate_profile(ext_data)
        my_int_back = integrate_profile(backscatter)

        assert np.abs((my_int_back.data - int_backscatter.data[:, 0]
                       ).mean()) < 0.016, "Backscatter integrations differ"
        print(np.abs((my_int_back.data - int_backscatter.data[:, 0]).mean()))
        #-0.0154302524737

        # There are a *few* values which are quite different, but I really don't know why, and they also have fairly
        # large uncertainty. On average the differences are very small.
        print(np.abs(np.mean(int_data.data - col_data.data[:, 0])))
        assert np.abs(np.mean(int_data.data - col_data.data[:, 0])
                      ) < 0.015, 'Extinction integrations are different'
        assert np.array_equal(
            int_data.data.mask,
            col_data.data[:, 0].mask), 'Arrays have different masks'
Пример #2
0
 def compare_column_and_integrated_profile(self):
     from CALIOPy.utils import integrate_profile
     ext_data = cis.read_data(self.TEST_FILENAME,
                              "Extinction_Coefficient_532")
     col_data = cis.read_data(self.TEST_FILENAME,
                              "Column_Optical_Depth_Aerosols_532")
     int_data = integrate_profile(ext_data)
     assert_almost_equal(int_data.data, col_data.data, delta=0.05)
Пример #3
0
 def setUpClass(cls):
     # Read this in separately so that the post-processing doesn't get called when the second dataset is appended
     # to the UngriddedDataList (via the .coords() call...)
     cls.extinction_qc = cis.read_data(cls.TEST_FILENAME,
                                       "Extinction_QC_Flag_532",
                                       "Caliop_V4")
     cls.cad_score = cis.read_data(cls.TEST_FILENAME, "CAD_Score",
                                   "Caliop_V4")
Пример #4
0
def get_clean_clear_sky_toa_net_sw(infile, product=None):
    """
    This is $F_{sw,clear}^{\top,0}$ as defined in A.7.1 of ECHAM6_userguide.pdf

    :param infile: An ECHAM-HAM echam filepath
    :param product:
    :return:
    """
    forcing_file = get_stream_file(infile, 'forcing')
    clean_clear_sky_toa_sw_forcing = cis.read_data(infile, 'sraf0', product) - \
                                     cis.read_data(forcing_file, 'FSW_CLEAR_TOP', product)
    return clean_clear_sky_toa_sw_forcing
Пример #5
0
def get_clean_all_sky_surface_net_sw(infile, product=None):
    """
    This is $F_{sw,all}^{\bot,0}$ as defined in A.7.1 of ECHAM6_userguide.pdf

    :param infile: An ECHAM-HAM echam filepath
    :param product:
    :return:
    """
    forcing_file = get_stream_file(infile, 'forcing')
    clean_all_sky_toa_sw_forcing = cis.read_data(infile, 'srads', product) - \
                                   cis.read_data(forcing_file, 'FSW_TOTAL_SUR', product)
    return clean_all_sky_toa_sw_forcing
Пример #6
0
def get_clean_all_sky_toa_net_lw(infile, product=None):
    """
    This is $F_{lw,all}^{\top,0}$ as defined in A.7.1 of ECHAM6_userguide.pdf

    :param infile: An ECHAM-HAM echam filepath
    :param product:
    :return:
    """
    forcing_file = get_stream_file(infile, 'forcing')
    clean_all_sky_toa_sw_forcing = cis.read_data(infile, 'trad0', product) - \
                                   cis.read_data(forcing_file, 'FLW_TOTAL_TOP', product)
    return clean_all_sky_toa_sw_forcing
Пример #7
0
def get_clean_clear_sky_surface_net_lw(infile, product=None):
    """
    This is $F_{lw,clear}^{\bot,0}$ as defined in A.7.1 of ECHAM6_userguide.pdf

    :param infile: An ECHAM-HAM echam filepath
    :param product:
    :return:
    """
    forcing_file = get_stream_file(infile, 'forcing')
    clean_clear_sky_toa_sw_forcing = cis.read_data(infile, 'trafs', product) - \
                                     cis.read_data(forcing_file, 'FLW_CLEAR_SUR', product)
    return clean_clear_sky_toa_sw_forcing
Пример #8
0
 def test_vertical_spacing(self):
     from CALIOPy.utils import VERTICAL_SPACING, remove_air_pressure
     ext_data = cis.read_data(self.TEST_FILENAME,
                              "Extinction_Coefficient_532", "Caliop_V4_QC")
     remove_air_pressure(ext_data)
     alt_diff = -np.diff(ext_data.coord('altitude').data[0, :] / 1000)
     assert_almost_equal(VERTICAL_SPACING.data, alt_diff, decimal=3)
Пример #9
0
 def test_masking_profile_vars(self):
     raw_data = cis.read_data(self.TEST_FILENAME,
                              "Extinction_Coefficient_532",
                              "Caliop_V4_QC_NO_PRESSURE")
     assert raw_data.shape == (639, 399)
     assert np.all(raw_data.data > 0.0)
     assert raw_data.data.count() == 15382
def subset_aerosol_cci_over_africa():
    from subset_by_region.utils import stack_data_list
    subsetted_data = []
    for f in files:
        d = cis.read_data(f, "AOD550")
        subsetted_data.append(subset_africa(d))
    subset = stack_data_list(subsetted_data)
    return subset
Пример #11
0
 def test_can_concatenate_aircraft_files(self):
     from cis import read_data
     from cis.test.integration_test_data import valid_GASSP_aircraft_files_with_different_timestamps,\
         valid_GASSP_aircraft_var_with_different_timestamps
     data = read_data(valid_GASSP_aircraft_files_with_different_timestamps,
                      valid_GASSP_aircraft_var_with_different_timestamps)
     time_coord = data.coord(axis='T')
     assert_that(len(time_coord.data), equal_to(63609))
Пример #12
0
 def test_can_concatenate_aircraft_files(self):
     from cis import read_data
     from cis.test.integration_test_data import valid_GASSP_aircraft_files_with_different_timestamps,\
         valid_GASSP_aircraft_var_with_different_timestamps
     data = read_data(valid_GASSP_aircraft_files_with_different_timestamps,
                      valid_GASSP_aircraft_var_with_different_timestamps)
     time_coord = data.coord(axis='T')
     assert_that(len(time_coord.data), equal_to(63609))
Пример #13
0
 def load_var(self, infile, product=None):
     # Take the specific variable product over the general one if there is one
     product = self.product or product
     if callable(self.load):
         cube = self.load(self.stream_file(infile), product=product)
     else:
         cube = cis.read_data(self.stream_file(infile), self.load, product)
     return cube
Пример #14
0
    def test_compare_column_and_integrated_profile(self):
        from CALIOPy.utils import integrate_profile, mask_data, remove_air_pressure
        ext_data = cis.read_data(self.TEST_FILENAME,
                                 "Extinction_Coefficient_532",
                                 "Caliop_V4_NO_PRESSURE")
        col_data = cis.read_data(
            self.TEST_FILENAME,
            "Column_Optical_Depth_Tropospheric_Aerosols_532")
        cum_prob = cis.read_data(self.TEST_FILENAME,
                                 "Column_IAB_Cumulative_Probability")
        backscatter = cis.read_data(self.TEST_FILENAME,
                                    "Total_Backscatter_Coefficient_532")
        int_backscatter = cis.read_data(
            self.TEST_FILENAME, "Column_Integrated_Attenuated_Backscatter_532")

        remove_air_pressure(ext_data)
        remove_air_pressure(col_data)
        remove_air_pressure(cum_prob)
        remove_air_pressure(backscatter)
        remove_air_pressure(int_backscatter)

        # Mask both datasets
        col_data, cum_data, int_backscatter = mask_data(
            [col_data, cum_prob, int_backscatter], self.cad_score,
            self.extinction_qc)
        ext_data, backscatter = mask_data([ext_data, backscatter],
                                          self.cad_score, self.extinction_qc)

        # Integrate the profile
        int_data = integrate_profile(ext_data)
        my_int_back = integrate_profile(backscatter)

        assert np.abs((my_int_back.data - int_backscatter.data[:, 0]
                       ).mean()) < 0.016, "Backscatter integrations differ"
        #-0.0154302524737
        print(np.abs((my_int_back.data - int_backscatter.data[:, 0]).mean()))

        # There are a *few* values which are quite different, but I really don't know why, and they also have fairly
        # large uncertainty. On average the differences are very small.
        print(np.abs(np.mean(int_data.data - col_data.data[:, 0])))
        assert np.abs(np.mean(int_data.data - col_data.data[:, 0])
                      ) < 0.015, 'Extinction integrations are different'
        assert np.array_equal(
            int_data.data.mask,
            col_data.data[:, 0].mask), 'Arrays have different masks'
Пример #15
0
    def test_polar_projection(self):
        from cis import read_data
        import cartopy.crs as ccrs

        d = read_data(valid_aerosol_cci_filename, valid_aerosol_cci_variable)

        ax = d.plot(projection=ccrs.NorthPolarStereo())

        self.check_graphic()
Пример #16
0
 def test_integrate_profile(self):
     from CALIOPy.utils import integrate_profile, mask_data
     ext_data = cis.read_data(self.TEST_FILENAME,
                              "Extinction_Coefficient_532",
                              "Caliop_V4_QC_NO_PRESSURE")
     int_data = integrate_profile(ext_data)
     assert np.all(int_data.data > 0.0)
     assert int_data.data.count() == 639
     # This isn't the same as the above test because we're doing the masking before the integration
     assert_almost_equal(int_data.data.mean(), 0.15009987)
Пример #17
0
    def test_mercator_projection(self):
        from cis import read_data
        import cartopy.crs as ccrs

        d = read_data(valid_aerosol_cci_filename, valid_aerosol_cci_variable)

        ax = d.plot(projection=ccrs.Mercator())

        ax.bluemarble()

        self.check_graphic()
Пример #18
0
 def test_can_concatenate_files_with_different_time_stamps(self):
     from cis import read_data
     import numpy as np
     from cis.test.integration_test_data import valid_GASSP_station_files_with_different_timestamps,\
         valid_GASSP_station_var_with_different_timestamps
     var = valid_GASSP_station_var_with_different_timestamps
     filename = valid_GASSP_station_files_with_different_timestamps
     data = read_data(filename, var)
     time_coord = data.coord(axis='T')
     assert_that(np.min(time_coord.data), close_to(149107 + 54690.0/86400, 1e-5))
     assert_that(np.max(time_coord.data), close_to(149110 + 81330.0/86400, 1e-5))
Пример #19
0
def get_bc_ppe_data(cache_path='.', dre=False, normalize_params=True):
    """
    Load the example BC PPE AAOD data and parameters, downloading if not present

    :param str cache_path: Path to load/store the PPE data
    :param bool dre: Output the Direct Radiative Effect data also
    :param bool normalize_params: Normalize the PPE parameters between 0.-1.
    :return:
    """
    import pandas as pd
    import numpy as np
    import cis

    bc_ppe_cache = os.path.join(cache_path, 'BC_PPE_PD_AAOD_monthly.nc')

    if not os.path.isfile(bc_ppe_cache):
        urllib.request.urlretrieve("https://zenodo.org/record/3856645/files/BC_PPE_PD_AAOD_monthly.nc?download=1", bc_ppe_cache)

    params_cache = os.path.join(cache_path, 'aerocommmppe_bcdesign.csv')
    if not os.path.isfile(params_cache):
        urllib.request.urlretrieve("https://zenodo.org/record/3856645/files/aerocommmppe_bcdesign.csv?download=1", params_cache)

    ppe_params = pd.read_csv(params_cache)
    ppe_aaod = cis.read_data(bc_ppe_cache, 'ABS_2D_550nm', 'NetCDF_Gridded')
    # Ensure the job dimension is at the front
    ppe_aaod.transpose((1, 0, 2, 3))
    
    if normalize_params:
        # These scaling parameters are log-uniformly distributed
        ppe_params[['BCnumber', 'Wetdep']] = np.log(ppe_params[['BCnumber', 'Wetdep']])
        ppe_params = ppe_params.apply(normalize, axis=0)
    
    if dre:
        ppe_dre_cache = os.path.join(cache_path, 'BC_PPE_PD_FORCING_monthly.nc')
        if not os.path.isfile(ppe_dre_cache):
            urllib.request.urlretrieve("https://zenodo.org/record/3856645/files/BC_PPE_PD_FORCING_monthly.nc?download=1", ppe_dre_cache)

        ppe_dre = cis.read_data(ppe_dre_cache, 'FSW_TOTAL_TOP', 'NetCDF_Gridded')        
        return ppe_params, ppe_aaod, ppe_dre
    else:
        return ppe_params, ppe_aaod
def density(file):
    d = cis.read_data(file, 'poc_mask')
    binned = d.aggregate(longitude=[-180,180,1], latitude=[-90,90,1])
    binned.append(d.aggregate(longitude=[-180,180,1], latitude=[-90,90,1], how='sum'))
    for info in binned:
        info.data = info.data.filled(0.0)
    density = make_from_cube(binned[3]/binned[2])
    count = binned[2]
    sums = binned[3]
    density.save_data('./density_data/'+file[0][-38:-16]+'_density_1km.nc')
    count.save_data('./density_data/'+file[0][-38:-16]+'_count_1km.nc')
    sums.save_data('./density_data/'+file[0][-38:-16]+'_sum_1km.nc')
    return None
Пример #21
0
    def test_orographic_projection(self):
        from cis import read_data
        import cartopy.crs as ccrs

        d = read_data(valid_aerosol_cci_filename, valid_aerosol_cci_variable)

        ax = plt.subplot(1, 1, 1, projection=ccrs.Orthographic(0, 90))

        ax = d.plot(ax=ax)

        ax.set_global()

        self.check_graphic()
Пример #22
0
 def test_can_concatenate_files_with_different_time_stamps(self):
     from cis import read_data
     import numpy as np
     from cis.test.integration_test_data import valid_GASSP_station_files_with_different_timestamps,\
         valid_GASSP_station_var_with_different_timestamps
     var = valid_GASSP_station_var_with_different_timestamps
     filename = valid_GASSP_station_files_with_different_timestamps
     data = read_data(filename, var)
     time_coord = data.coord(axis='T')
     assert_that(np.min(time_coord.data),
                 close_to(149107 + 54690.0 / 86400, 1e-5))
     assert_that(np.max(time_coord.data),
                 close_to(149110 + 81330.0 / 86400, 1e-5))
Пример #23
0
 def test_integrate_profile(self):
     from CALIOPy.utils import integrate_profile, remove_air_pressure, mask_data
     ext_data = cis.read_data(self.TEST_FILENAME,
                              "Extinction_Coefficient_532",
                              "Caliop_V4_NO_PRESSURE")
     remove_air_pressure(ext_data)
     int_data = integrate_profile(ext_data)
     assert np.all(int_data.data > 0.0)
     assert int_data.data.shape == (4224, )
     # Now check that masking this data produces something sensible
     masked_int_data, = mask_data([int_data], self.cad_score,
                                  self.extinction_qc)
     assert masked_int_data.data.count() == 639
     assert_almost_equal(masked_int_data.data.mean(), 0.1535116)
Пример #24
0
def density(file):
    d = cis.read_data(file, 'poc_mask', 'cis')
    binned = d.aggregate(longitude=[-180, 180, 1], latitude=[-90, 90, 1])
    binned.append(
        d.aggregate(longitude=[-180, 180, 1], latitude=[-90, 90, 1],
                    how='sum'))
    for info in binned:
        info.data = info.data.filled(0.0)
    density = make_from_cube(binned[3] / binned[2])
    count = binned[2]
    sums = binned[3]
    outname = './density_data/' + os.path.basename(file[0])
    density.save_data(outname + '_density_5km.nc')
    count.save_data(outname + '_count_5km.nc')
    sums.save_data(outname + '_sum_5km.nc')
    return None
Пример #25
0
def get_aeronet_data(cache_path='.'):
    import cis
    from cis.data_io.aeronet import AERONET_HEADER_LENGTH

    aerocom_cache = os.path.join(cache_path, 'aerocom_2017_global.lev15')

    if not os.path.isfile(aerocom_cache):
        _download_aeronet(aerocom_cache)

    # Fix the header length which seems to be different for downloaded files...
    AERONET_HEADER_LENGTH["AERONET/3"] = 6

    # TODO: I might want to interpolate between 440 and 630nm to get 550nm...
    aaod = cis.read_data(aerocom_cache, 'Absorption_AOD440nm')
    # Pop off the altitude coordinate which we're not interested in
    _ = aaod._coords.pop(aaod._coords.index(aaod.coord('altitude')))
    return aaod
Пример #26
0
    def check_output_col_grid(self, sample_file, sample_var, output_file, output_vars, expected_shape=None):
        """
        Check that the output grid matches the sample grid in shape.
        :param sample_file:
        :param sample_var:
        :param output_file:
        :param output_vars:
        :return:
        """
        from cis import read_data, read_data_list
        from operator import mul

        if expected_shape is None:
            sample_shape = read_data(sample_file, sample_var).data.shape
        else:
            sample_shape = expected_shape
        output = read_data_list(output_file, output_vars)
        for output_var in output:
            output_shape = output_var.data.shape
            # This copes with dims in different orders, length 1 values being taken out etc
            assert_that(reduce(mul, sample_shape), is_(reduce(mul, output_shape)))
Пример #27
0
 def check_output_col_grid(self, sample_file, sample_var, output_file, output_vars, expected_shape=None):
     """
     Check that the output grid matches the sample grid in shape.
     :param sample_file:
     :param sample_var:
     :param output_file:
     :param output_vars:
     :return:
     """
     from cis import read_data
     from operator import mul
     if expected_shape is None:
         sample_shape = read_data(self._clean_sample_file_name(sample_file), sample_var).data.shape
     else:
         sample_shape = expected_shape
     self.ds = Dataset(self._clean_sample_file_name(output_file))
     for output_var in output_vars:
         output_shape = self.ds.variables[output_var].shape
         # This copes with dims in different orders, length 1 values being taken out etc
         assert_that(reduce(mul, sample_shape), is_(reduce(mul, output_shape)))
     self.ds.close()
Пример #28
0
 def read_data(self):
     # Only need to do this once
     if self.data is None:
         filename = valid_echamham_geopotential_height_filename
         var = valid_echamham_geopotential_height_variable
         self.data = read_data(filename, var)
Пример #29
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cis
from glob import glob
import xarray as xr
from cis.data_io.gridded_data import make_from_cube
import matplotlib.pyplot as plt
from cartopy import crs as ccrs
import matplotlib.patches as patch

dataDIR = '/gws/nopw/j04/impala/users/dwatsonparris/POC_analysis/density_data/*count*'
filelist = glob(dataDIR)
counts=[]
for file in filelist:
    counts.append(cis.read_data(file, 'poc_mask_num_points', 'NetCDF_Gridded'))
total_counts = make_from_cube(sum(counts))
    
dataDIR = '/gws/nopw/j04/impala/users/dwatsonparris/POC_analysis/density_data/*sum*'
filelist = glob(dataDIR)
sums=[]
for file in filelist:
    sums.append(cis.read_data(file, 'poc_mask', 'NetCDF_Gridded'))
total_sum = make_from_cube(sum(sums))

lon = {'cal':[230,240], 'per':[270,280], 'nam':[360,10]}
lat = {'cal':[20,30], 'per':[-20,-10], 'nam':[-20,-10]}

fig=plt.figure(figsize=(15,15))#, dpi=300)
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
total_counts.plot(cmap='cool', ax=ax)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cis
from glob import glob
import xarray as xr
from cis.data_io.gridded_data import make_from_cube
import matplotlib.pyplot as plt
from cartopy import crs as ccrs
import matplotlib.patches as patch

dataDIR = './density_data/*count*'
filelist = glob(dataDIR)
counts = []
for file in filelist:
    counts.append(cis.read_data(file, 'poc_mask_num_points'))
total_counts = make_from_cube(sum(counts))

dataDIR = './density_data/*sum*'
filelist = glob(dataDIR)
sums = []
for file in filelist:
    sums.append(cis.read_data(file, 'poc_mask'))
total_sum = make_from_cube(sum(sums))

lon = {'cal': [230, 240], 'per': [270, 280], 'nam': [360, 10]}
lat = {'cal': [20, 30], 'per': [-20, -10], 'nam': [-20, -10]}

fig = plt.figure(figsize=(15, 15))  #, dpi=300)
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
total_counts.plot(cmap='cool', ax=ax)
Пример #31
0
filename='L1_ccn0.2_Cloud_condensation_nuclei_at_a_supersaturation_of_0.2000.nc'
filename=dir_file+filename

#----------------------------------------------------

var=get_variables(filename)
#output from cis should be in a set form 
"""
#var_name=[]
#for i in var:
#    var_name=np.append(var_name,i)

"""

var=list(var)
data0=read_data(filename,var[0])
mean=data0.collapsed(['latitude','longitude'],iris.analysis.MEAN)
mean2=data0.collapsed(['model_level_number'],iris.analysis.MEAN)
mean2.plot(yaxis='latitude')
plt.show()
time.sleep(20)
plt.close()

#print data0.info()
#print var

#----------------------------------------------------

"""
cube=iris.load(filename)
cube=cube[0].collapsed('model_level_number',iris.analysis.MEAN)
Пример #32
0
def read_and_subset_data(filename):
    d = cis.read_data(filename, "AOD550")
    return subset_region(d, make_african_land())
Пример #33
0
    def test_log_colorbar_scale(self):
        from cis import read_data
        d = read_data(valid_aerosol_cci_filename, valid_aerosol_cci_variable)
        d.plot(logv=True)

        self.check_graphic()
Пример #34
0
    def test_can_specify_yaxis_altitude(self):
        from cis import read_data
        d = read_data(valid_GASSP_aeroplane_filename, valid_GASSP_aeroplane_variable)
        d.plot(yaxis='altitude')

        self.check_graphic()
Пример #35
0
def test_read_data_raises_error_on_more_than_one_variable_returned():
    file = cis_test_files['caliop_L1'].master_filename
    read_data(file, cis_test_files['caliop_L1'].all_variable_names)
Пример #36
0
def test_read_data_raises_error_on_invalid_file():
    read_data(invalid_filename, cis_test_files['Aerosol_CCI'].all_variable_names)
Пример #37
0
def test_read_data_raises_error_on_invalid_file_wildcard():
    read_data(invalid_filename + '*', cis_test_files['caliop_L1'].all_variable_names)
Пример #38
0
def test_read_data_raises_error_on_invalid_variable():
    file = cis_test_files['modis_L3'].master_filename
    read_data(file, 'invalid_variable')