def test_create_db(self): cities.create_db() query = cities.find('London') results = list(query) self.failIf(len(results) == 0) full_names = [c.full_name for c in results] self.failIf('London, ENG (United Kingdom)' not in full_names)
def test_find(self): cities.create_db() query = cities.find('London') results = list(query) self.failIf(len(results) == 0) full_names = [c.full_name for c in results] self.failIf('London, ENG (United Kingdom)' not in full_names)
def cities_json(): MIN_QUERY_LENGTH = 2 NUM_RESULTS = 5 query = request.args.get('q', '') if len(query) < MIN_QUERY_LENGTH: abort(400) return Response(json.dumps([ {'name': city.full_name, 'lat': city.latitude, 'long': city.longitude} for city in cities.find(query)[:NUM_RESULTS] ]), mimetype='application/json')
def main(): # test functions ''' city or adress("1600 Amphitheatre Parkway, Mountain View, CA") address=input("Enter address: ") print("\n") cord=locationlatlng(address,apikey) cord=cord.split(",") temp=elevation(cord[0],cord[1],apikey) print("this is temp"+str(temp)) ''' locations = cities.find() el = [] place = [] # throw locations in fucntions to find there respective elevations for city in locations: cord = locationlatlng(city, apikey) cord = cord.split(",") place.append(city) el.append(elevationlatlng(cord[0], cord[1], apikey)) # create dictionary city_stats = {"City": place, "Elevation(m)": el} # create pandas Dataframe with previous dictionary inside dft = pd.DataFrame(city_stats) # print dataframe without index print(dft.to_string(index=False)) # use matplotlib to display the scatter between elevations and cities plt.scatter(place, el) plt.ylabel('Meters(Elevation)') plt.xlabel('Cities') plt.show()