Пример #1
0
 def cc_locs(mask):
     ccs = cv2.connectedComponents(mask.astype(np.uint8), connectivity=4)[1]
     rc_locs = np.where(mask > 0)
     rc_ids = ccs[rc_locs]
     rc_arrs = np.ascontiguousarray(np.vstack(rc_locs).T)
     cc_to_loc = util.group_items(rc_arrs, rc_ids, axis=0)
     return cc_to_loc
Пример #2
0
def cc_locs(mask):
    """
    Grouped row/col locations of 4-connected-components
    """
    from clab import util
    import cv2
    ccs = cv2.connectedComponents(mask.astype(np.uint8), connectivity=4)[1]
    rc_locs = np.where(mask > 0)
    rc_ids = ccs[rc_locs]
    rc_arrs = np.ascontiguousarray(np.vstack(rc_locs).T)
    cc_to_loc = util.group_items(rc_arrs, rc_ids, axis=0)
    return cc_to_loc
Пример #3
0
def instance_contours(gti):
    """ Extracts a contour for each (non-overlapping) instance label in a mask """
    # TODO: move to somewhere better
    import cv2

    rc_locs = np.where(gti > 0)
    grouped_cc_rcs = util.group_items(
        np.ascontiguousarray(np.vstack(rc_locs).T),
        gti[rc_locs], axis=0
    )

    def bounding_box(rcs):
        rc1 = rcs.min(axis=0)
        rc2 = rcs.max(axis=0)
        return rc1, rc2

    # slice out a bounding region around each instance, detect the contour and
    # then offset it back into image coordinates
    grouped_contours = {}
    for label, rcs in grouped_cc_rcs.items():
        rc1, rc2 = bounding_box(rcs)
        sl = (slice(rc1[0], rc2[0] + 2), slice(rc1[1], rc2[1] + 2))
        submask = (gti[sl] == label).astype(np.uint8)

        xy_offset = rc1[::-1]
        offset = xy_offset + [-2, -2]

        border = cv2.copyMakeBorder(submask, 2, 2, 2, 2, cv2.BORDER_CONSTANT, value=0 )
        _, contors, hierarchy = cv2.findContours(border, cv2.RETR_TREE,
                                                 cv2.CHAIN_APPROX_SIMPLE,
                                                 offset=tuple(offset))
        """
        offset = [0, 0]
        BGR_GREEN = (0, 255, 0)
        x = np.ascontiguousarray(util.ensure_alpha_channel(submask)[:, :, 0:3]).astype(np.uint8)
        draw_img = cv2.drawContours(
            image=x, contours=contors,
            contourIdx=-1, color=BGR_GREEN, thickness=2)
        """
        # note when len(contours > 1, there is a hole in the building)
        # assert len(contors) == 1
        grouped_contours[label] = contors
    return grouped_contours
Пример #4
0
def instance_submasks(gti):
    """
    Iterate over a cropped mask for each instance in an instance segmentation

    Example:
        >>> gti = np.array([
        >>>   [0, 0, 5, 5, 5, 2, 2],
        >>>   [0, 0, 5, 5, 5, 2, 2],
        >>>   [0, 0, 0, 0, 0, 0, 0],
        >>>   [0, 0, 0, 1, 9, 0, 0],
        >>>   [3, 0, 0, 1, 1, 0, 0],
        >>> ], dtype=np.uint8)
        >>> first, *rest = instance_submasks(gti)
        >>> (label, submask, rc_off, rc_sl) = first
        >>> submask
        array([[1, 0],
               [1, 1]], dtype=uint8)
    """
    rc_locs = np.where(gti > 0)
    grouped_cc_rcs = util.group_items(
        np.ascontiguousarray(np.vstack(rc_locs).T),
        gti[rc_locs], axis=0
    )

    def bounding_box(rcs):
        rc1 = rcs.min(axis=0)
        rc2 = rcs.max(axis=0)
        return rc1, rc2

    for label, rcs in grouped_cc_rcs.items():
        rc1, rc2 = bounding_box(rcs)
        r_slice = slice(rc1[0], rc2[0] + 1)
        c_slice = slice(rc1[1], rc2[1] + 1)
        rc_sl = (r_slice, c_slice)
        subimg = gti[rc_sl]
        submask = (subimg == label).astype(np.uint8)

        rc_off = rc1
        yield label, submask, rc_off, rc_sl