class TextSystemHelper(TextSystem): def __init__(self, args): self.text_detector = TextDetectorHelper(args) self.text_recognizer = TextRecognizerHelper(args) self.use_angle_cls = args.use_angle_cls if self.use_angle_cls: self.clas_client = Client() self.clas_client.load_client_config( os.path.join(args.cls_client_dir, "serving_client_conf.prototxt")) self.clas_client.connect(["127.0.0.1:9294"]) self.text_classifier = TextClassifierHelper(args) self.det_client = Client() self.det_client.load_client_config( os.path.join(args.det_client_dir, "serving_client_conf.prototxt")) self.det_client.connect(["127.0.0.1:9293"]) self.fetch = [ "save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0" ] def preprocess(self, img): feed, fetch, self.tmp_args = self.text_detector.preprocess(img) fetch_map = self.det_client.predict(feed, fetch) outputs = [fetch_map[x] for x in fetch] dt_boxes = self.text_detector.postprocess(outputs, self.tmp_args) if dt_boxes is None: return None, None img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) self.dt_boxes = dt_boxes for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) img_crop = self.get_rotate_crop_image(img, tmp_box) img_crop_list.append(img_crop) if self.use_angle_cls: feed, fetch, self.tmp_args = self.text_classifier.preprocess( img_crop_list) fetch_map = self.clas_client.predict(feed, fetch) outputs = [fetch_map[x] for x in self.text_classifier.fetch] for x in fetch_map.keys(): if ".lod" in x: self.tmp_args[x] = fetch_map[x] img_crop_list, _ = self.text_classifier.postprocess( outputs, self.tmp_args) feed, fetch, self.tmp_args = self.text_recognizer.preprocess( img_crop_list) return feed, self.fetch, self.tmp_args def postprocess(self, outputs, args): return self.text_recognizer.postprocess(outputs, args)
def __init__(self, args): self.text_detector = TextDetectorHelper(args) self.text_recognizer = TextRecognizerHelper(args) self.use_angle_cls = args.use_angle_cls if self.use_angle_cls: self.clas_client = Client() self.clas_client.load_client_config( "cls_infer_client/serving_client_conf.prototxt") self.clas_client.connect(["127.0.0.1:9294"]) self.text_classifier = TextClassifierHelper(args) self.det_client = Client() self.det_client.load_client_config( "det_infer_client/serving_client_conf.prototxt") self.det_client.connect(["127.0.0.1:9293"]) self.fetch = ["save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"]
def __init__(self, args): self.text_detector = TextDetectorHelper(args) self.text_recognizer = TextRecognizerHelper(args) self.use_angle_cls = args.use_angle_cls if self.use_angle_cls: self.clas_client = Client() self.clas_client.load_client_config( "ocr_clas_client/serving_client_conf.prototxt") self.clas_client.connect(["127.0.0.1:9294"]) self.text_classifier = TextClassifierHelper(args) self.det_client = Client() self.det_client.load_client_config( "det_db_client/serving_client_conf.prototxt") self.det_client.connect(["127.0.0.1:9293"]) self.fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]