Пример #1
0
    def __init__(self, resolution=None, input_shape=None):
        super(Flower_DataSet, self).__init__()

        if resolution is None:
            resolution = [100, 100]
        if input_shape is None:
            input_shape = [-1]
        path = '../data/flowers'
        self.target_names = mu.list_dir(path)

        images = []
        idxs = []

        for dx, dname in enumerate(self.target_names):
            subpath = path + '/' + dname
            filenames = mu.list_dir(subpath)
            for fname in filenames:
                if fname[-4:] != '.jpg':
                    continue
                imagepath = os.path.join(subpath, fname)
                pixels = mu.load_image_pixels(imagepath, resolution,
                                              input_shape)
                images.append(pixels)
                idxs.append(dx)
        self.image_shape = resolution + [3]
        xs = np.asarray(images, np.float32)
        ys = mu.onehot(idxs, len(self.target_names))
        self.dataset_shuffle_data(xs, ys, 0.8)
Пример #2
0
    def __init__(self, resolution=None, input_shape=None):

        super(Office31Dataset, self).__init__()

        if resolution is None:
            resolution = [100, 100]
        if input_shape is None:
            input_shape = [-1]
        path = '../data/domain_adaptation_images'
        domain_names = mu.list_dir(path)

        images = []
        didxs, oidxs = [], []
        object_names = None

        for dx, dname in enumerate(domain_names):
            domainpath = os.path.join(path, dname, 'images')
            object_names = mu.list_dir(domainpath)

            for ox, oname in enumerate(object_names):
                objectpath = os.path.join(domainpath, oname)
                filenames = mu.list_dir(objectpath)
                for fname in filenames:
                    if fname[-4:] != '.jpg':
                        continue
                    imagepath = os.path.join(objectpath, fname)
                    pixels = mu.load_image_pixels(imagepath, resolution,
                                                  input_shape)
                    images.append(pixels)
                    didxs.append(dx)
                    oidxs.append(ox)
        self.image_shape = resolution + [3]

        xs = np.asarray(images, np.float32)  # shape(4110, 30000)

        ys0 = mu.onehot(didxs, len(domain_names))  # ys0.shape(4110, 3)
        ys1 = mu.onehot(oidxs, len(object_names))  # ys1.shape(4110, 31)
        ys = np.hstack([ys0, ys1])  # ys.shape(4110, 34)

        self.dataset_shuffle_data(xs, ys, 0.8)
        self.target_names = [domain_names, object_names]
        self.cnts = [len(domain_names)]
Пример #3
0
    def __init__(self, name):
        super(DataSet, self).__init__(name)
        # print("dataset init")
        resolution = [100, 100]
        input_shape = [-1]
        self.initialize()
        if self.name == 'abalone':


        elif self.name == 'pulsar':
            rows, _ = mu.load_csv('../data/pulsar_stars.csv')
            data = np.asarray(rows, dtype='float32')
            self.dataset_shuffle_data(data[:, :-1], data[:, -1:], 0.8)
            self.target_names = ['별', '펄서']

        elif self.name == 'steel':
            rows, headers = mu.load_csv('../data/faults.csv')
            data = np.asarray(rows, dtype='float32')
            self.dataset_shuffle_data(data[:, :-7], data[:, -7:], 0.8)

            self.target_names = headers[-7:]

        elif self.name == 'pulsarselect':
            rows, _ = mu.load_csv('../data/pulsar_stars.csv')
            data = np.asarray(rows, dtype='float32')
            self.dataset_shuffle_data(data[:, :-1], mu.onehot(data[:, -1], 2), 0.8)
            self.target_names = ['별', '펄서']

        elif self.name == 'flower':

            path = '../data/flowers'
            self.target_names = mu.list_dir(path)

            images = []
            idxs = []

            for dx, dname in enumerate(self.target_names):
                subpath = path + '/' + dname
                filenames = mu.list_dir(subpath)
                for fname in filenames:
                    if fname[-4:] != '.jpg':
                        continue
                    imagepath = os.path.join(subpath, fname)
                    pixels = mu.load_image_pixels(imagepath, resolution, input_shape)
                    images.append(pixels)
                    idxs.append(dx)
            self.image_shape = resolution + [3]
            xs = np.asarray(images, np.float32)
            ys = mu.onehot(idxs, len(self.target_names))
            self.dataset_shuffle_data(xs, ys, 0.8)

        elif self.name == 'office31':
            path = '../data/domain_adaptation_images'
            domain_names = mu.list_dir(path)

            images = []
            didxs, oidxs = [], []
            object_names = None

            for dx, dname in enumerate(domain_names):
                domainpath = os.path.join(path, dname, 'images')
                object_names = mu.list_dir(domainpath)

                for ox, oname in enumerate(object_names):
                    objectpath = os.path.join(domainpath, oname)
                    filenames = mu.list_dir(objectpath)
                    for fname in filenames:
                        if fname[-4:] != '.jpg':
                            continue
                        imagepath = os.path.join(objectpath, fname)
                        pixels = mu.load_image_pixels(imagepath, resolution, input_shape)
                        images.append(pixels)
                        didxs.append(dx)
                        oidxs.append(ox)
            self.image_shape = resolution + [3]

            xs = np.asarray(images, np.float32)  # shape(4110, 30000)

            ys0 = mu.onehot(didxs, len(domain_names))  # ys0.shape(4110, 3)
            ys1 = mu.onehot(oidxs, len(object_names))  # ys1.shape(4110, 31)
            ys = np.hstack([ys0, ys1])  # ys.shape(4110, 34)

            self.dataset_shuffle_data(xs, ys, 0.8)
            self.target_names = [domain_names, object_names]
            print(type(self.target_names[0]))
            self.cnts = [len(domain_names)]
Пример #4
0
 def __init__(self):
     super(Pulsar_Select_DataSet, self).__init__()
     rows, _ = mu.load_csv('../data/pulsar_stars.csv')
     data = np.asarray(rows, dtype='float32')
     self.dataset_shuffle_data(data[:, :-1], mu.onehot(data[:, -1], 2), 0.8)
     self.target_names = ['별', '펄서']