def process_galaxies(galaxies): pdfs = clf.predict_proba(galaxies[parameters].values) / 0.01 cos_t_samples = [] index = 0 for i, galaxy in galaxies.iterrows(): xz_kde = get_xz_kde(PDF(pdfs[index], q_grid), False, 10, 0, 1) cos_t = sample_cos_t(galaxy["ba"], xz_kde, 10) cos_t_samples.append(cos_t) index += 1 return cos_t_samples
def guess_char(): global prev controller = Leap.Controller() controller.set_policy(Leap.Controller.POLICY_BACKGROUND_FRAMES) classes = clf.classes_ probs = zip( classes, clf.predict_proba([ v for k, v in get_hand_position(controller, True).iteritems() ])[0]) alpha = max([score for sym, score in probs]) most_probable = sorted([(sym, alpha * score + (1 - alpha)) for sym, score in probs], key=lambda t: t[1], reverse=True) print most_probable[:3] prev = most_probable[0][0] print prev
def guess_char(): global prev controller = Leap.Controller() controller.set_policy(Leap.Controller.POLICY_BACKGROUND_FRAMES) classes = clf.classes_ probs = zip(classes, clf.predict_proba([v for k, v in get_hand_position(controller, True).iteritems()])[0]) alpha = max([score for sym, score in probs]) most_probable = sorted([(sym, alpha * score + (1 - alpha)) for sym, score in probs], key=lambda t: t[1], reverse=True) print most_probable[:3] prev = most_probable[0][0] print prev