def __init__(self, name, data_set=None, answer=None, classifier=None):
     if type(name) is not str:
         raise TypeError('ClassificationNode name must be str', name)
     self.name = name
     self.sub_nodes = []
     self.classifier = ClassifierBase()
     self.parent_node = None
     self.data_set = data_set
     if answer is not None and type(answer) is not AnswerMessage:
         raise ValueError('Answer has to be AnswerMessage or '
                          'None: [{}] {}'.format(answer, type(answer)))
     self.answer = answer
     if classifier is not None:
         self.set_classifier(classifier)
Пример #2
0
    def _init_classifiers(cls, config, all_features):
        '''
        Init classifiers by settings.
        '''
        classifiers = {}
        for name, classifier_config in config["classifier_configs"].items():
            classifier = ClassifierBase.create_classifier(name, config["feature_extraction_parameters"], classifier_config, all_features)
            classifiers[name] = classifier

        return classifiers
Пример #3
0
    def _init_classifiers(cls, config, all_features):
        '''
        Init classifiers by settings.
        '''
        classifiers = {}
        for name, classifier_config in config["classifier_configs"].items():
            # create classifiers. TODO how to understand classifier?
            # TODO understand feature extraction parameters. Looks like some
            # default feature value?
            classifier = ClassifierBase.create_classifier(name, config["feature_extraction_parameters"], classifier_config, all_features)
            classifiers[name] = classifier

        return classifiers
class ClassificationNode(object):
    def __init__(self, name, data_set=None, answer=None, classifier=None):
        if type(name) is not str:
            raise TypeError('ClassificationNode name must be str', name)
        self.name = name
        self.sub_nodes = []
        self.classifier = ClassifierBase()
        self.parent_node = None
        self.data_set = data_set
        if answer is not None and type(answer) is not AnswerMessage:
            raise ValueError('Answer has to be AnswerMessage or '
                             'None: [{}] {}'.format(answer, type(answer)))
        self.answer = answer
        if classifier is not None:
            self.set_classifier(classifier)

    def __repr__(self):
        res = '<{}> Name: \'{}\' Classifier: \'{}\' Answer: \'{}\''.format(
            type(self).__name__, self.name,
            type(self.classifier).__name__, self.answer)
        # answers = self.classifier.get_answers()
        # if answers is not None:
        #     res += ' Options: \'{}\''.format(answers)
        return res

    def set_classifier(self, classifier):
        if ClassifierBase not in type(classifier).__bases__ and \
                        type(classifier) is not ClassifierBase:
            raise TypeError('Classifier has to be based on ClassifierBase',
                            classifier)
        self.classifier = classifier

    def train_classifier(self):
        self.classifier.train()

    def answer_message(self, message):
        if self.answer is None:
            raise ValueError('Answer has to be not None in {}'.format(self))
        self.answer.options = self.classifier.get_answers()
        return self.answer
        # if self.answer.function is not None:
        #     answer = eval(
        #         'nodes.external_node_functions.' + self.answer.function
        #     )(message=message, answer_params=self.answer)
        #     if type(answer) is AnswerMessage:
        #         return answer
        #     return AnswerMessage(text=answer)
        # else:
        #     return self.answer

    def parse_message(self, message):
        if self.classifier is None:
            raise AttributeError(
                'Error: classifier is not set.\n{}'.format(self))
        node = self.classifier.predict(message=message)
        if type(node) is not ClassificationNode:
            return None, node
        return node, node.answer_message(message)

    def add_sub_node(self, sub_node):
        if type(sub_node) is not ClassificationNode:
            raise TypeError('Sub node must be ClassificationNode')
        if self.classifier is None:
            raise ValueError('Classifier is None')
        self.sub_nodes.append(sub_node)
        self.classifier.add_option(sub_node)
        sub_node.parent_node = self

    def show_children_tree(self,
                           prefix=' ▶',
                           first_cycle=True,
                           full_info=False):
        if first_cycle:
            print('\n{} children tree:'.format(self.name))
        if full_info:
            print(prefix, self)
        else:
            print(prefix, self.name)
        for sub in self.sub_nodes:
            ClassificationNode.show_children_tree(sub,
                                                  prefix='\t' + prefix,
                                                  full_info=full_info,
                                                  first_cycle=False)
        if first_cycle:
            print('')

    def show_parents_tree(self, full_info=False):
        print('\n{} parents tree:'.format(self.name))
        if full_info:
            sup_tree = [self.__repr__()]
        else:
            sup_tree = [self.name]
        node = self
        while node.parent_node is not None:
            node = node.parent_node
            if full_info:
                sup_tree.append(node.__repr__())
            else:
                sup_tree.append(node.name)
        prefix = ' ▶ '
        for i in range(len(sup_tree)).__reversed__():
            print(prefix + sup_tree[i])
            prefix = '\t' + prefix
        print('')

    def show_full_tree(self, full_info=False):
        node = self
        while node.parent_node is not None:
            node = node.parent_node
        node.show_children_tree(full_info=full_info)