def setplot(plotdata=None, bathy_location=0.15, bathy_angle=0.0, bathy_left=-1.0, bathy_right=-0.2): """Setup the plotting data objects. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. returns plotdata object """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data')) def transform_c2p(x, y, x0, y0, theta): return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta), (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta)) def transform_p2c(x, y, x0, y0, theta): return (x * np.cos(theta) + y * np.sin(theta) - x0, -x * np.sin(theta) + y * np.cos(theta) - y0) # Setup bathymetry reference lines with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \ as bathy_geometry_file: bathy_location = float(bathy_geometry_file.readline()) bathy_angle = float(bathy_geometry_file.readline()) x = [0.0, 0.0] y = [0.0, 1.0] x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle) x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle) if abs(x1 - x2) < 10**-3: x = [x1, x1] y = [clawdata.lower[1], clawdata.upper[1]] else: m = (y1 - y2) / (x1 - x2) x[0] = (clawdata.lower[1] - y1) / m + x1 y[0] = clawdata.lower[1] x[1] = (clawdata.upper[1] - y1) / m + x1 y[1] = clawdata.upper[1] ref_lines = [((x[0], y[0]), (x[1], y[1]))] plotdata.clearfigures() plotdata.save_frames = False # ======================================================================== # Generic helper functions def pcolor_afteraxes(current_data): bathy_ref_lines(current_data) def contour_afteraxes(current_data): axes = plt.gca() pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3], [-300e3, 300e3], 'y') wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def bathy_ref_lines(current_data): axes = plt.gca() for ref_line in ref_lines: x1 = ref_line[0][0] y1 = ref_line[0][1] x2 = ref_line[1][0] y2 = ref_line[1][1] axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1) # ======================================================================== # Axis limits xlimits = [-0.5, 0.5] ylimits = [-0.5, 0.5] eta = [multilayer_data.eta[0], multilayer_data.eta[1]] top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03] internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015] top_speed_limits = [0.0, 0.1] internal_speed_limits = [0.0, 0.03] # ======================================================================== # Surface Elevations plotfigure = plotdata.new_plotfigure(name='Surface') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) ml_plot.add_land(plotaxes) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) ml_plot.add_land(plotaxes) # ======================================================================== # Water Speed plotfigure = plotdata.new_plotfigure(name='speed') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits) ml_plot.add_land(plotaxes) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits) ml_plot.add_land(plotaxes) # ======================================================================== # Profile Plots # Note that these are not currently plotted by default - set # `plotfigure.show = True` is you want this to be plotted plotfigure = plotdata.new_plotfigure(name='profile') plotfigure.show = False # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = [-1.1, 0.1] plotaxes.title = "Profile of depth" plotaxes.afteraxes = profile_afteraxes slice_index = 30 # Internal surface def bathy_profile(current_data): return current_data.x[:, slice_index], b(current_data)[:, slice_index] def lower_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta2(current_data)[slice_index, :] def upper_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta1(current_data)[slice_index, :] def top_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u1(current_data)[slice_index, :] def bottom_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u2(current_data)[slice_index, :] # Bathy plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = bathy_profile plotitem.plot_var = 0 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'k' plotitem.show = True # Internal Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = lower_surface plotitem.plot_var = 7 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'b' plotitem.show = True # Upper Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = upper_surface plotitem.plot_var = 6 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = (0.2, 0.8, 1.0) plotitem.show = True # ======================================================================== # Figures for gauges # Top plotfigure = plotdata.new_plotfigure(name='Surface & topo', type='each_gauge', figno=301) plotfigure.show = True plotfigure.clf_each_gauge = True plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = top_surface_limits plotaxes.title = 'Top Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 6 plotitem.plotstyle = 'b-' # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = internal_surface_limits plotaxes.title = 'Bottom Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 7 plotitem.plotstyle = 'b-' # ========================================================================= # Other plots # Gauge Locations - Enable to see where gauges are located def locations_afteraxes(current_data, gaugenos='all'): gaugetools.plot_gauge_locations(current_data.plotdata, gaugenos=gaugenos, format_string='kx', add_labels=True) pcolor_afteraxes(current_data) plotfigure = plotdata.new_plotfigure(name='Gauge Locations') plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) ml_plot.add_land(plotaxes) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) ml_plot.add_land(plotaxes) # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-4.0, 4.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] color_limits = [0, 20] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = {"Atlantic": {"xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8)}, "Bahamas": {"xlimits": (-81, -75), "ylimits": (23.0, 26.0), "figsize": (8, 4)}, "Haiti": {"xlimits": (-73, -71), "ylimits": (18.0, 20.0), "figsize": (4, 4)}, "Cuba": {"xlimits": (-80, -75), "ylimits": (15.0, 25.0), "figsize": (4 ,8)}, "Florida": {"xlimits": (-82, -79), "ylimits": (23.0, 26.0), "figsize": (4 ,4)}} for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-3, 5] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-2, 3] plotaxes.title = 'Surface' try: # comparison water level files gauges = [np.loadtxt('gauge_data_1.txt'), np.loadtxt('gauge_data_2.txt'), np.loadtxt('gauge_data_3.txt'), np.loadtxt('gauge_data_4.txt')] # origin of comparison data (for legend) data_names = ["Difference in Water level of Virginia Key, Biscanay Bay, Florida from NOAA", "Difference in Water level of Key West, Florida from NOAA", "Difference in Water level of Mona Island, Puerto Rico from NOAA", "Difference in Water level of Magueyes Island, Puerto Rico from NOAA", "Flood Height of Rum Cay, the Bahamas from local newspaper, Bahamas Press", "Flood Height of Cat Island, the Bahamas from local newspaper, The Tribune"] except: pass def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels # axes.legend() axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-3, 5]) axes.set_ylim([-2, 3]) axes.set_xticks([-3, -2, -1, 0, 1, 2, 3, 4, 5]) axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$", r"$4$", r"$5$"]) axes.grid(True) try: # gauge 5 and 6 are in the Bahamas, and there's no water level data, # comparison data is estimate flood heights from newspapers if(cd.gaugeno == 5 or cd.gaugeno == 6): if(cd.gaugeno == 5): axes.axhline(y=4*0.3040, color = 'r', label = data_names[4]) # flood height was 4 feet else: axes.axhline(y=5*0.3040, color = 'r', label = data_names[5]) # flood height was 5 feet # the rest have NOAA water level files else: # read water level data gauge_data = gauges[cd.gaugeno - 1] axes.plot(gauge_data[:, 1], gauge_data[:, 0], label = data_names[cd.gaugeno - 1]) axes.legend() except: pass plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [-82, -64] plotaxes.ylimits = [16.0, 27.0] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4, 5, 6] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data fig_num_counter = surge.plot.figure_counter() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = surge.data.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = surge.data.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surge.plot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Calculate landfall time, off by a day, maybe leap year issue? landfall_dt = datetime.datetime(2013, 10, 5, 0) - datetime.datetime( 2013, 1, 1, 0) landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds # Set afteraxes function surge_afteraxes = lambda cd: surge.plot.surge_afteraxes( cd, track, landfall, plot_direction=False) # Color limits surface_range = 5.0 speed_range = 3.0 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [eta[0] - surface_range, eta[0] + surface_range] # surface_contours = numpy.linspace(-surface_range, surface_range,11) surface_contours = [ -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 ] surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] surface_labels = [str(value) for value in surface_ticks] speed_limits = [0.0, speed_range] speed_contours = numpy.linspace(0.0, speed_range, 13) speed_ticks = [0, 1, 2, 3] speed_labels = [str(value) for value in speed_ticks] wind_limits = [0, 64] # wind_limits = [-0.002,0.002] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] # vorticity_limits = [-1.e-2,1.e-2] # def pcolor_afteraxes(current_data): # surge_afteraxes(current_data) # surge.plot.gauge_locations(current_data,gaugenos=[6]) def contour_afteraxes(current_data): surge_afteraxes(current_data) def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None): axes.plotitem_dict[item_name].colorbar_ticks = ticks axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels # ========================================================================== # ========================================================================== # Plot specifications # ========================================================================== # ========================================================================== # ======================================================================== # Entire Gulf # ======================================================================== gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]] gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]] gulf_shrink = 0.9 def gulf_after_axes(cd): plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) surge_afteraxes(cd) # # Surface # plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes surge.plot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=gulf_shrink) surge.plot.add_land(plotaxes, topo_min=-10.0, topo_max=5.0) # surge.plot.add_bathy_contours(plotaxes) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 1, 1, 1, 1, 1, 1, 1, 1 ] # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes # Speed surge.plot.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=gulf_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # Land surge.plot.add_land(plotaxes) surge.plot.add_bathy_contours(plotaxes) # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction', figno=fig_num_counter.get_counter()) plotfigure.show = friction_data.variable_friction and True def friction_after_axes(cd): plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surge.plot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # ======================================================================== # LaTex Shelf # ======================================================================== latex_xlimits = [-97.5, -88.5] latex_ylimits = [27.5, 30.5] latex_shrink = 1.0 def latex_after_axes(cd): if article: plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86) else: plt.subplots_adjust(right=1.0) surge_afteraxes(cd) # # Surface # plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf', figno=fig_num_counter.get_counter()) plotfigure.show = True if article: plotfigure.kwargs = {'figsize': (8, 2.7), 'facecolor': 'none'} else: plotfigure.kwargs = {'figsize': (9, 2.7), 'facecolor': 'none'} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = latex_xlimits plotaxes.ylimits = latex_ylimits plotaxes.afteraxes = latex_after_axes surge.plot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=latex_shrink) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall) else: add_custom_colorbar_ticks_to_axes( plotaxes, 'surface', [-5, -2.5, 0, 2.5, 5.0], ["-5.0", "-2.5", " 0", " 2.5", " 5.0"]) # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd') # surge.plot.add_surface_elevation(plotaxes,plot_type='contour') surge.plot.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf', figno=fig_num_counter.get_counter()) plotfigure.show = True if article: plotfigure.kwargs = {'figsize': (8, 2.7), 'facecolor': 'none'} else: plotfigure.kwargs = {'figsize': (9, 2.7), 'facecolor': 'none'} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = latex_xlimits plotaxes.ylimits = latex_ylimits plotaxes.afteraxes = latex_after_axes surge.plot.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=latex_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # surge.plot.add_surface_elevation(plotaxes,plot_type='contour') surge.plot.add_land(plotaxes) # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # ========================== # Hurricane Forcing fields # ========================== # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure', figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Pressure Field" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True surge.plot.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink) surge.plot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed', figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Wind Field" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True surge.plot.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor', shrink=gulf_shrink) surge.plot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True plotfigure.kwargs['figsize'] = (16, 10) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' # plotaxes.afteraxes = gauge_after_axes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # ===================== # Gauge Location Plot # ===================== gauge_xlimits = [-95.5, -94] gauge_ylimits = [29.0, 30.0] gauge_location_shrink = 0.75 def gauge_after_axes(cd): # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) surge.plot.gauge_locations(cd, gaugenos=[1, 2, 3, 4]) plt.title("Gauge Locations") plotfigure = plotdata.new_plotfigure(name='Gauge Locations', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gauge_xlimits plotaxes.ylimits = gauge_ylimits plotaxes.afteraxes = gauge_after_axes surge.plot.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=gauge_location_shrink) # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf") add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) surge.plot.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] # plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg') # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: if article: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = [54, 60, 66, 72, 78, 84] # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = [4, 5, 6, 7, 10, 3, 300] # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? else: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track')) # Set afteraxes function surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, track, plot_direction=False) # Color limits surface_range = 1.5 speed_range = 1.0 # speed_range = 1.e-2 eta = physics.sea_level if not isinstance(eta,list): eta = [eta] surface_limits = [eta[0]-surface_range,eta[0]+surface_range] speed_limits = [0.0,speed_range] wind_limits = [0, 55] pressure_limits = [966, 1013] friction_bounds = [0.01, 0.04] vorticity_limits = [-1.e-2, 1.e-2] land_bounds = [-10, 50] # ========================================================================== # Plot specifications # ========================================================================== # Limits for plots regions = {'Full Domain': {"xlimits": [clawdata.lower[0], clawdata.upper[0]], "ylimits": [clawdata.lower[1], clawdata.upper[1]], "shrink": 1.0, "figsize": [6.4, 4.8]}, 'Tri-State Region': {"xlimits": [-74.5,-71.0], "ylimits": [40.0,41.5], "shrink": 1.0, "figsize": [6.4, 4.8]}, 'NYC': {"xlimits": [-74.2,-73.8], "ylimits": [40.55,40.85], "shrink": 1.0, "figsize": [6.4, 4.8]} } for (name, region_dict) in regions.items(): # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) # plotaxes.plotitem_dict['land'].amr_patchedges_show = # plotaxes.plotitem_dict['surface'].amr_patchedges_show = # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) # ======================================================================== # Hurricane forcing - Entire Atlantic # ======================================================================== # Friction field plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Manning's N Coefficients" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_friction(plotaxes,bounds=friction_bounds) # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes,bounds=pressure_limits) surgeplot.add_land(plotaxes, bounds=[-10, 500]) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow') surgeplot.add_land(plotaxes, bounds=[-10, 500]) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface, Speeds', type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Surface and Topography plotaxes = plotfigure.new_plotaxes() # plotaxes.axescmd = 'subplot(121)' try: plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] except: pass plotaxes.ylimits = surface_limits plotaxes.title = 'Surface' # plotaxes.afteraxes = surgeplot.gauge_afteraxes plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Speeds plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(122)' try: plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] except: pass plotaxes.ylimits = surface_limits plotaxes.title = 'Momenta' # plotaxes.afteraxes = surge.gauge_afteraxes plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 1 plotitem.plotstyle = 'r-' plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 2 plotitem.plotstyle = 'b-' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = { "Gulf": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8) }, "Texas Gulf Coast": { "xlimits": (-99.2, -94.2), "ylimits": (26.4, 30.4), "figsize": (6, 6) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() #Time Conversions def days2seconds(days): return days * 60.0**2 * 24.0 stations = [('8773037', 'Seadrift'), ('8773701', 'Port OConnor'), ('8774230', 'Aransas Wildlife Refuge'), ('8775237', 'Port Aransas'), ('8775296', 'USS Lexington')] landfall_time = numpy.datetime64('2017-08-25T10:00') begin_date = datetime.datetime(2017, 8, 24) end_date = datetime.datetime(2017, 8, 28) def get_actual_water_levels(station_id): # Fetch water levels and tide predictions for given station date_time, water_level, tide = fetch_noaa_tide_data( station_id, begin_date, end_date) # Calculate times relative to landfall seconds_rel_landfall = (date_time - landfall_time) / numpy.timedelta64( 1, 's') # Subtract tide predictions from measured water levels water_level -= tide return seconds_rel_landfall, water_level def gauge_afteraxes(cd): station_id, station_name = stations[cd.gaugeno - 1] seconds_rel_landfall, actual_level = get_actual_water_levels( station_id) axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) axes.plot(seconds_rel_landfall, actual_level, 'g') # Fix up plot - in particular fix time labels axes.set_title(station_name) axes.set_xlabel('Seconds relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([days2seconds(-1), days2seconds(3)]) axes.set_ylim([-1, 5]) axes.set_xticks([ -days2seconds(-1), 0, days2seconds(1), days2seconds(2), days2seconds(3) ]) #axes.set_xticklabels([r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$"]) #axes.grid(True) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=False) #Plot for gauge location 1 plotfigure = plotdata.new_plotfigure(name="Gauge Location 1") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Location 1' plotaxes.scaled = True plotaxes.xlimits = [-96.83, -96.63] plotaxes.ylimits = [28.33, 28.43] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 #Plot for gauge location 2 plotfigure = plotdata.new_plotfigure(name="Gauge Location 2") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Location 2' plotaxes.scaled = True plotaxes.xlimits = [-96.48, -96.28] plotaxes.ylimits = [28.40, 28.50] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 #Plot for gauge location 3 plotfigure = plotdata.new_plotfigure(name="Gauge Location 3") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Location 3' plotaxes.scaled = True plotaxes.xlimits = [-96.85, -96.65] plotaxes.ylimits = [28.17, 28.27] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 #Plot for gauge location 4 plotfigure = plotdata.new_plotfigure(name="Gauge Location 4") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Location 4' plotaxes.scaled = True plotaxes.xlimits = [-97.15, -96.95] plotaxes.ylimits = [27.79, 27.89] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 #Plot for gauge location 5 plotfigure = plotdata.new_plotfigure(name="Gauge Location 5") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Location 5' plotaxes.scaled = True plotaxes.xlimits = [-97.48, -97.28] plotaxes.ylimits = [27.75, 27.85] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4, 5] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = { "Gulf": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8) }, "LaTex Shelf": { "xlimits": (-97.5, -88.5), "ylimits": (27.5, 30.5), "figsize": (8, 2.7) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [-95.5, -94] plotaxes.ylimits = [29.0, 30.0] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' fig_num_counter = surgeplot.figure_counter() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir,'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir,'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir,'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir,'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir,'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track')) # Calculate landfall time, off by a day, maybe leap year issue? landfall_dt = datetime.datetime(2008, 8, 1, 12) - datetime.datetime(2008,1,1,0) landfall = landfall_dt.days * 24.0 * 60**2 + landfall_dt.seconds # Set afteraxes function surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, track, landfall, plot_direction=False) # Limits for plots full_xlimits = [clawdata.lower[0], clawdata.upper[0]] full_ylimits = [clawdata.lower[1], clawdata.upper[1]] # Color limits surface_range = 1.0 speed_range = 2.0 xlimits = full_xlimits ylimits = full_ylimits eta = physics.sea_level if not isinstance(eta,list): eta = [eta] surface_limits = [eta[0]-surface_range,eta[0]+surface_range] speed_limits = [0.0,speed_range] wind_limits = [0,55] pressure_limits = [966,1013] ref_lines = [] # ========================================================================== # Generic helper functions # ========================================================================== def pcolor_afteraxes(current_data): surge_afteraxes(current_data) # surgeplot.gauge_locations(current_data) def contour_afteraxes(current_data): surge_afteraxes(current_data) def bathy_ref_lines(current_data): pass # plt.hold(True) # y = [amrdata.ylower,amrdata.yupper] # for ref_line in ref_lines: # plt.plot([ref_line,ref_line],y,'y--') # plt.hold(False) # ========================================================================== # ========================================================================== # Plot specifications # ========================================================================== # ========================================================================== # ======================================================================== # Surface Elevations - Entire Domain # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes,topo_min=-10.0,topo_max=5.0) # ======================================================================== # Water Speed - Entire Domain # ======================================================================== plotfigure = plotdata.new_plotfigure(name='speed', figno=1) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # Speed surgeplot.add_speed(plotaxes,bounds=speed_limits) # Land surgeplot.add_land(plotaxes) # ======================================================================== # Hurricane forcing - Entire Domain # ======================================================================== # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure', figno=2) plotfigure.show = surge_data.pressure_forcing plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes,bounds=pressure_limits) # add_pressure(plotaxes) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed',figno=4) plotfigure.show = surge_data.wind_forcing plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow') # add_wind(plotaxes,bounds=wind_limits,plot_type='contour') # add_wind(plotaxes,bounds=wind_limits,plot_type='quiver') surgeplot.add_land(plotaxes) # Wind field components plotfigure = plotdata.new_plotfigure(name='Wind Components',figno=5) plotfigure.show = surge_data.wind_forcing and False plotfigure.kwargs = {'figsize':(16,6)} plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(121)" plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "X-Component of Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') plotitem.plot_var = surgeplot.wind_x plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) plotitem.imshow_cmin = -wind_limits[1] plotitem.imshow_cmax = wind_limits[1] plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1] plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(122)" plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "Y-Component of Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') plotitem.plot_var = surgeplot.wind_y plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) plotitem.imshow_cmin = -wind_limits[1] plotitem.imshow_cmax = wind_limits[1] plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [1,1,1] # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() # plotaxes.xlimits = [0.0,amrdata.tfinal] # plotaxes.ylimits = [0,150.0] plotaxes.ylimits = surface_limits plotaxes.title = 'Surface' plotaxes.afteraxes = surgeplot.gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'r-' # ================= # Plot bathymetry # ================= plotfigure = plotdata.new_plotfigure(name='Bathymetry', figno=301) plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "Bathymetry" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") plotitem.plot_var = geoplot.topo # plotitem.pcolor_cmap = geoplot.seafloor_colormap plotitem.pcolor_cmin = -3000.0 plotitem.pcolor_cmax = 300.0 plotitem.add_colorbar = True surgeplot.add_land(plotaxes) #----------------------------------------- # Figures for gauges #----------------------------------------- # plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ # type='each_gauge') # plotfigure.clf_each_gauge = True # # # Set up for axes in this figure: # plotaxes = plotfigure.new_plotaxes() # plotaxes.xlimits = 'auto' # plotaxes.ylimits = 'auto' # plotaxes.title = 'Surface' # # # Plot surface as blue curve: # plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # # Plot topo as green curve: # plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.show = False # # def gaugetopo(current_data): # q = current_data.q # h = q[0,:] # eta = q[3,:] # topo = eta - h # return topo # # plotitem.plot_var = gaugetopo # plotitem.plotstyle = 'g-' # # def add_zeroline(current_data): # from pylab import plot, legend, xticks, floor # t = current_data.t # #legend(('surface','topography'),loc='lower left') # plot(t, 0*t, 'k') # n = int(floor(t.max()/3600.) + 2) # xticks([3600*i for i in range(n)]) # # plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print # plotdata.print_framenos = [45,46,47,48] plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' #plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) ocean_xlimits = [clawdata.lower[0], clawdata.upper[0]] ocean_ylimits = [clawdata.lower[1], clawdata.upper[1]] amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) probdata = clawutil.ClawData() #probdata.read('setprob.data', force=True) #theta_island = probdata.theta_island # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) def mynewafteraxes(current_data): addgauges(current_data) bigfont(current_data) #----------------------------------------- # Some global KML settings #----------------------------------------- #plotdata.kml_publish = 'http://math.boisestate.edu/~calhoun/visclaw/GoogleEarth/kmz/' #public html plotdata.kml_publish = None plotdata.kml_name = "NYC Asteroid" # name appears in Google Earth display only plotdata.kml_index_fname = "NYC_Asteroid" # name for .kmz and .kml files ["_GoogleEarth"] # specify beginning of slider time. if not used, assumes Jan. 1 1970 plotdata.kml_starttime = [2115, 4, 29, 7, 32, 0] # Asteroid hits at 1:32AM, 4/29/2115 (UTC) plotdata.kml_tz_offset = 6 # off set to UTC # for todays date as the default use kml_cmin = -0.005 #colorbar min and max kml_cmax = 0.005 kml_dpi = 400 # only used if individual figures dpi not set kml_cmap = geoplot.googleearth_lightblue # kml_cmap = geoplot.googleearth_darkblue # kml_cmap = geoplot.googleearth_transparent # kml_cmap = geoplot.googleearth_white def kml_colorbar(filename): #cmin = -0.01 #cmax = 0.01 geoplot.kml_build_colorbar(filename, kml_cmap, kml_cmin, kml_cmax) #----------------------------------------- # Figure for pcolor plot for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True #plotaxes.afteraxes = addgauges # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.show = True #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth #plotitem.plot_var = 0/1/2 or plot that entry into q instead of a function plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -.8 plotitem.pcolor_cmax = .8 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.show = True # plotitem.pcolor_cmap = colormaps.all_white # to print better in B&W plotitem.pcolor_cmap = geoplot.land_colors #plotitem.pcolor_cmap = geoplot.googleearth_transparent plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0, 0, 0] #plotitem.patchedges_show = 1 plotitem.amr_patchedges_show = [0, 0, 0] #plotaxes.xlimits = [-85,-55] #plotaxes.ylimits = [25,45] plotaxes.xlimits = ocean_xlimits plotaxes.ylimits = ocean_ylimits #plotaxes.xlimits = [-75,-70] #plotaxes.ylimits = [38,43] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = True plotitem.plot_var = geoplot.topo #plotitem.contour_levels = [-500,-250,-100, -50, 0, 50] plotitem.contour_levels = linspace(-1000, -400, 3) plotitem.amr_contour_colors = ['g'] # color on each level #plotitem.kwargs = {'linestyles':'dashed','linewidths':2,'colors' : 'red' } plotitem.kwargs = { 'linestyles': 'dashed', 'linewidths': 1, 'colors': 'magenta' } plotitem.amr_contour_show = [1, 1, 1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------------------------- # Figure for KML files - Sea Surface Height #---------------------------------------------------------- #plotfigure = plotdata.new_plotfigure(name='Sea Surface',figno=1) #plotfigure.show = True #plotfigure.use_for_kml = True #plotfigure.kml_use_for_initial_view = True # These overide any values set in the plotitems below #plotfigure.kml_xlimits = [-80,-55] #plotfigure.kml_ylimits = [25, 45] # Resolution #plotfigure.kml_dpi = 300 #plotfigure.kml_tile_images = False def kml_colorbar_transparent(filename): #cmin = -0.01 #cmax = 0.01 geoplot.kml_build_colorbar(filename, geoplot.googleearth_transparent, kml_cmin, kml_cmax) #plotfigure.kml_colorbar = kml_colorbar_transparent # Set up for axes in this figure: #plotaxes = plotfigure.new_plotaxes('kml') #plotaxes.scaled = True # Water #plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.show = True #plotitem.plot_var = geoplot.surface_or_depth #plotitem.pcolor_cmap = geoplot.googleearth_transparent #plotitem.pcolor_cmin = kml_cmin #plotitem.pcolor_cmax = kml_cmax #plotitem.amr_celledges_show = [0,0,0] #plotitem.patchedges_show = 0 #plotfigure.kml_colorbar = kml_colorbar #----------------------------------------- # Figure for speeds #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Speeds', figno=10) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Speed' plotaxes.scaled = True #def fixup(current_data): # import pylab # addgauges(current_data) # t = current_data.t # t = t / 3600. # hours # pylab.title('Speed at %4.2f hours' % t, fontsize=20) # pylab.xticks(fontsize=15) # pylab.yticks(fontsize=15) #plotaxes.afteraxes = fixup def speed(current_data): from pylab import where, sqrt q = current_data.q h = q[0, :] dry_tol = 0.001 u = q[1, :] # this is just to initialize v = q[2, :] # to correct size s = 0 * q[2, :] # to correct size nq = len(q[1, :]) [n, m] = h.shape for ii in range(0, n): for jj in range(0, m): if h[ii, jj] > dry_tol: u[ii, jj] = q[1, ii, jj] / h[ii, jj] v[ii, jj] = q[2, ii, jj] / h[ii, jj] s[ii, jj] = sqrt(u[ii, jj] * u[ii, jj] + v[ii, jj] * v[ii, jj]) else: u[ii, jj] = 0. v[ii, jj] = 0. s[ii, jj] = 0 #print("max of u = " + str(max(u))) #u = where(h>dry_tol, q[1,:]/h, 0.) #v = where(h>dry_tol, q[2,:]/h, 0.) #s = sqrt(u**2 + v**2) #s = sqrt(u*2+v*v) #try not dividing or using where return s # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.show = False plotitem.plot_var = speed plotitem.pcolor_cmap = geoplot.tsunami_colormap #plotitem.pcolor_cmap = \ # colormaps.make_colormap({0:[1,1,1],0.5:[0.5,0.5,1],1:[1,0.3,0.3]}) plotitem.pcolor_cmin = 0. plotitem.pcolor_cmax = .10 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] #plotitem.patchedges_show = 1 plotitem.amr_patchedges_show = [0, 0, 0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 plotaxes.xlimits = ocean_xlimits plotaxes.ylimits = ocean_ylimits #----------------------------------------- # Figure for zoom around NYC #----------------------------------------- zoomWanted = True if zoomWanted: plotfigure = plotdata.new_plotfigure(name='Zoom1', figno=7) # add another figure #plotfigure.use_for_kml = True #plotfigure.kml_use_for_initial_view = False # These overide any values set in the plotitems below #plotfigure.kml_xlimits = [-74.5, -73.5] #plotfigure.kml_ylimits = [40.4,40.9] # Resolution #plotfigure.kml_dpi = 300 #plotfigure.kml_tile_images = True #plotfigure.kml_colorbar = kml_colorbar # defined above # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('zoom on nyc') plotaxes.title = 'Surface elevation' plotaxes.scaled = True manhattan_island = -73.5 xisland, yisland = latlong(1600e3, manhattan_island, 40., Rearth) #plotaxes.xlimits = [xisland-0.6, xisland+0.6] #plotaxes.xlimits = [manhattan_island-1, manhattan_island+1] #plotaxes.ylimits = [40.15,41.5] plotaxes.xlimits = [-74.5, -72.5] # really zoom in on lower manhattan] plotaxes.ylimits = [40.25, 41.5] plotaxes.afteraxes = addgauges def bigfont(current_data): import pylab t = current_data.t pylab.title("Surface at t = %8.1f" % t, fontsize=20) pylab.xticks(fontsize=15) pylab.yticks(fontsize=15) #plotaxes.afteraxes = bigfont #plotaxes.afteraxes = mynewafteraxes # after axes functions mess with GE plots # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.show = False #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth #plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmap = kml_cmap #plotitem.pcolor_cmin = kml_cmin # same as above #plotitem.pcolor_cmax = kml_cmax plotitem.pcolor_cmin = -.2 plotitem.pcolor_cmax = .2 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.show = False plotitem.plot_var = geoplot.land # plotitem.pcolor_cmap = colormaps.all_white # to print better in B&W plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0, 0, 0] plotitem.patchedges_show = 0 # contour lines: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.surface plotitem.contour_levels = [-0.8, -0.4, 0.4, 0.8] plotitem.amr_contour_colors = ['k'] # color on each level plotitem.kwargs = {'linewidths': 1} plotitem.amr_contour_show = [0, 0, 0, 1, 1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-30, -10, 3) plotitem.amr_contour_colors = ['m'] # color on each level plotitem.kwargs = {'linestyles': 'dashed', 'linewidths': 1} plotitem.amr_contour_show = [1, 1, 1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() #plotaxes.xlimits = [0000, 6500] #plotaxes.ylimits = [-.10, .15] plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: #plotitem = plotaxes.new_plotitem(plot_type='1d_plot') def gaugetopo(current_data): q = current_data.q h = q[0, :] eta = q[3, :] topo = eta - h return topo def gaugedpress(current_data): q = current_data.q #dpress = (q[4,:] - 101300)/101300 dpress = q[4, :] # already output as relative: dp/amb_pr return dpress def gs(current_data): q = current_data.q # different than speed function because q is function of time, not # x,y at the gauges. from numpy import where, sqrt h = q[0, :] #print('shape of h ' + str(h.shape)) dry_tol = 0.001 u = where(h > dry_tol, q[1, :] / h, 0.) v = where(h > dry_tol, q[2, :] / h, 0.) ssq = sqrt(u * u + v * v) #s = sqrt(u**2 + v**2) s = sqrt(ssq) return ssq #plotitem.plot_var = gaugetopo #plotitem.plotstyle = 'g-' # Plot relative delta pressure as red curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = gaugedpress plotitem.plotstyle = 'r-' # add speed to this plot since cant get new one going plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = gs plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend t = current_data.t # legend(('surface','topography','dp'),loc='lower left') legend(('surface', 'dp', 'speed'), loc='upper right') #plot(t, 0*t, 'k') plotaxes.afteraxes = add_zeroline # ------------------------------- # Figure for speed at gauges #-------------------------------- # plotfigure = plotdata.new_plotfigure(name='Speed at gauges', figno=310, \ # type='each_gauge') # # # # Set up for axes in this figure: # plotaxes = plotfigure.new_plotaxes() # plotaxes.xlimits = 'auto' # plotaxes.ylimits = 'auto' # #plotaxes.xlimits = [0000, 7000] # #plotaxes.ylimits = 'auto' # plotaxes.title = 'Speed' # # # Plot surface as blue curve: # plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # #plotitem.plot_var = speed # plotitem.plot_var = gs #gauge_speed # plotitem.plotstyle = 'b-' # # plotfigure.show = True # #----------------------------------------- # Figure for bathy alone #----------------------------------------- def bathy(current_data): return current_data.aux[0, :, :] plotfigure = plotdata.new_plotfigure(name='bathymetry', figno=3) plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Bathymetry' plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = bathy plotitem.pcolor_cmin = -3000.00 plotitem.pcolor_cmax = 500 plotitem.add_colorbar = True plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-2000, 2000, 21) plotitem.amr_contour_colors = ['k'] # color on each level #plotitem.contour_levels = [-1000 -500,-250,-100, -5, 5] #----------------------------------------- # Figure for grids alone #----------------------------------------- #plotfigure = plotdata.new_plotfigure(name='grids', figno=2) #plotfigure.show = False # Set up for axes in this figure: #plotaxes = plotfigure.new_plotaxes() #plotaxes.xlimits = [0,1] #plotaxes.ylimits = [0,1] #plotaxes.title = 'grids' #plotaxes.scaled = True # Set up for item on these axes: #plotitem = plotaxes.new_plotitem(plot_type='2d_patch') #plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] #plotitem.amr_celledges_show = [0,0,0] #plotitem.amr_patchedges_show = [0,0,0] def normalized_pressure(current_data): pressure_index = 6 #7 in fortran, but python is 0 based return current_data.aux[ pressure_index, :, :] / surge_data.ambient_pressure # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure', figno=33) plotfigure.show = True plotaxes = plotfigure.new_plotaxes('normalized_pressure') plotaxes.xlimits = ocean_xlimits plotaxes.ylimits = ocean_ylimits plotaxes.title = 'Pressure Field' plotaxes.scaled = True plotaxes.afteraxes = addgauges pressure_limits = [.99, 1.10] #pressure_limits = [.999*surge_data.ambient_pressure / 100.0, # 1.001 * surge_data.ambient_pressure / 100.0] #pressure_limits = [-.000001*surge_data.ambient_pressure, # .000001 * surge_data.ambient_pressure] surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) #plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem = plotaxes.plotitem_dict['pressure'] plotitem.show = False plotitem.plot_var = normalized_pressure plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] plotaxes.plotitem_dict['land'].amr_celledges_show = [0, 0, 0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0] #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via clawpack.visclaw.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print #plotdata.print_framenos = [30,50,70] # list of frames to print #plotdata.print_framenos = [1] # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print #plotdata.print_fignos = [0,7,10,33,300] # list of figures to print #plotdata.print_fignos = [0,7,10,300] # list of figures to print plotdata.print_fignos = [0, 300] # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.kml = False return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data # plotdata.format = 'binary' plotdata.format = 'ascii' # Load data from output claw_data = clawdata.ClawInputData(2) claw_data.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function surge_afteraxes = lambda cd: surgeplot.surge_afteraxes( cd, track, plot_direction=False) # Color limits surface_range = 4.5 speed_range = 1.0 # speed_range = 1.e-2 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [eta[0] - surface_range, eta[0] + surface_range] speed_limits = [0.0, speed_range] wind_limits = [0, 55] pressure_limits = [966, 1013] friction_bounds = [0.01, 0.04] vorticity_limits = [-1.e-2, 1.e-2] land_bounds = [-10, 50] # ========================================================================== # Plot specifications # ========================================================================== # Limits for plots regions = { 'Full Domain': { "xlimits": [claw_data.lower[0], claw_data.upper[0]], "ylimits": [claw_data.lower[1], claw_data.upper[1]], "shrink": 1.0, "figsize": [6.4, 4.8] }, 'Mumbai Region': { "xlimits": [70, 75], "ylimits": [17, 22], "shrink": 1.0, "figsize": [6.4, 4.8] }, 'Mumbai': { "xlimits": [72.6, 73.15], "ylimits": [18.80, 19.25], "shrink": 1.0, "figsize": [6.4, 4.8] } } def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) for (name, region_dict) in regions.items(): # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name) plotfigure.show = True #plotfigure = plotdata.new_plotfigure(name="Gauge Locations") #plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = surge_afteraxes plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) plotaxes.plotitem_dict['land'].amr_patchedges_show = [1, 0, 0] plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1, 0, 0] # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) # ======================================================================== # Hurricane forcing - Entire Atlantic # ======================================================================== # Friction field plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Manning's N Coefficients" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds) # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes, bounds=[-10, 500]) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits, plot_type='imshow') surgeplot.add_land(plotaxes, bounds=[-10, 500]) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([0, 6]) axes.set_xticks([0, 1, 2, 3, 4, 5, 6]) axes.set_xticklabels( [r"$0$", r"$1$", r"$2$", r"$3$", r"$4$", r"$5$", r"$6$"]) #axes.set_ylim([-1, 5]) axes.grid(True) # def gauge_afteraxes(cd): # station_id, station_name = stations[cd.gaugeno-1] # seconds_rel_landfall, actual_level = get_actual_water_levels(station_id) # # axes = plt.gca() # #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall) # axes.plot(seconds_rel_landfall, actual_level, 'g') # # # Fix up plot - in particular fix time labels # axes.set_title(station_name) # axes.set_xlabel('Seconds relative to landfall') # axes.set_ylabel('Surface (m)') # axes.set_xlim([days2seconds(-2), days2seconds(1)]) # axes.set_ylim([0, 4]) # axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0, #days2seconds(1)]) #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"]) #axes.grid(True) # def current_afterxes(cd): # station_id, station_name = stations[cd.gaugeno-1] # if len(station_id)==6: # seconds_rel_landfall, currents = get_actual_currents(station_id) # # axes = plt.gca() # #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, # landfall=landfall) # axes.plot(seconds_rel_landfall, currents, 'g') # # # Fix up plot - in particular fix time labels # axes.set_title(station_name) # axes.set_xlabel('Seconds relative to landfall') # axes.set_ylabel('Surface (m)') # axes.set_xlim([days2seconds(-2), days2seconds(1)]) # axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0, # days2seconds(1)]) # #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"]) # #axes.grid(True) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Speeds # plotfigure = plotdata.new_plotfigure(name='Currents', figno=400, \ # type='each_gauge') # plotfigure.show = True # plotfigure.clf_each_gauge = True # plotaxes = plotfigure.new_plotaxes() #plotaxes.afteraxes = current_afterxes # plotaxes.axescmd = 'subplot(122)' # try: # plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] # except: # pass # plotaxes.ylimits = surface_limits #plotaxes.title = 'Momenta' # plotaxes.afteraxes = surge.gauge_afteraxes # plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = calc_currents # plotitem.plotstyle = 'r-.' #plotitem = plotaxes.new_plotitem(plot_type='1d_plot') #plotitem.plot_var = 2 #plotitem.plotstyle = 'b-' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ amrdata = clawdata.ClawInputData(2) amrdata.read(os.path.join(plotdata.outdir, 'claw.data')) plotdata.clearfigures() # clear any old figures,axes,items data def set_drytol(current_data): # The drytol parameter is used in masking land and water and # affects what color map is used for cells with small water depth h. # The cell will be plotted as dry if h < drytol. # The best value to use often depends on the application and can # be set here (measured in meters): current_data.user['drytol'] = 1.e-2 # # Square island # current_data.user['island_x'] = [-52e3, -52e3, 52e3, 52e3, -52e3] # current_data.user['island_y'] = [-52e3, 52e3, 52e3, -52e3, -52e3] # Strip island current_data.user['island_x'] = [-52e3, -52e3, 52e3, 52e3, -52e3] current_data.user['island_y'] = [-102e3, 102e3, 102e3, -102e3, -102e3] plotdata.beforeframe = set_drytol # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: # surface_range = 1e-4 # speed_max = 1.e-5 surface_range = 1e-2 speed_max = 1.e-2 xlimits = [amrdata.lower[0], amrdata.upper[0]] ylimits = [amrdata.lower[1], amrdata.upper[1]] surface_limits = [-surface_range, surface_range] speed_limits = [0.0, speed_max] def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) def after_axes(cd): surge.days_figure_title(cd) addgauges(cd) plt.plot(cd.user['island_x'], cd.user['island_y'], 'k--') def after_axes_slice(cd, y_bounds=[-1, 1]): surge.days_figure_title(cd) for x in cd.user['island_x']: plt.plot([x, x], y_bounds, 'k--') #----------------------------------------- # Figure for pcolor plot #----------------------------------------- # Surface plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = after_axes surge.add_surface_elevation(plotaxes, bounds=surface_limits) surge.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_celledges_show = [1,1,1,1] # plotaxes.plotitem_dict['land'].amr_celledges_show = [1,1,1,1] # Speed plotfigure = plotdata.new_plotfigure(name='Speed', figno=1) plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = after_axes surge.add_speed(plotaxes, bounds=speed_limits) surge.add_land(plotaxes) # plotaxes.plotitem_dict['speed'].amr_celledges_show = [1,1,1,1] # plotaxes.plotitem_dict['land'].amr_celledges_show = [1,1,1,1] # ======================================================================== # Water Velocity Components - Entire Gulf # ======================================================================== plotfigure = plotdata.new_plotfigure( name='Velocity Components - Entire Domain', figno=2) plotfigure.kwargs['figsize'] = (16, 6) plotfigure.show = False # X-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(121)" plotaxes.title = 'Velocity, X-Component' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surge.water_u plotitem.pcolor_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.pcolor_cmin = -speed_limits[1] plotitem.pcolor_cmax = speed_limits[1] plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] surge.add_land(plotaxes) # Y-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(122)" plotaxes.title = 'Velocity, Y-Component' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surge.water_v plotitem.pcolor_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.pcolor_cmin = -speed_limits[1] plotitem.pcolor_cmax = speed_limits[1] plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] surge.add_land(plotaxes) # ======================================================================== # Water Momenta Components # ======================================================================== plotfigure = plotdata.new_plotfigure( name='Momentum Components - Entire Domain', figno=3) plotfigure.kwargs['figsize'] = (16, 6) plotfigure.show = False # X-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(121)" plotaxes.title = 'Momentum, X-Component' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = 1 plotitem.pcolor_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.pcolor_cmin = -speed_limits[1] * 100.0 plotitem.pcolor_cmax = speed_limits[1] * 100.0 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] surge.add_land(plotaxes) # Y-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(122)" plotaxes.title = 'Momentum, Y-Component' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = 2 plotitem.pcolor_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.pcolor_cmin = -speed_limits[1] * 100.0 plotitem.pcolor_cmax = speed_limits[1] * 100.0 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] surge.add_land(plotaxes) # ============ # Topography # ============ plotfigure = plotdata.new_plotfigure(name="Topography") plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Topography" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.topo cmap = colormaps.make_colormap({ -1: [0.3, 0.2, 0.1], -0.00001: [0.95, 0.9, 0.7], 0.00001: [.5, .7, 0], 1: [.2, .5, .2] }) plotitem.pcolor_cmap = cmap plotitem.pcolor_cmin = -100.0 plotitem.pcolor_cmax = 0.0 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [0, 0, 0] # ===================== # Slice through y = 0 # ===================== slice_index = 3 def slice_surface(cd): return cd.x[:, slice_index], cd.q[3, :, slice_index] def slice_momentum(cd): return cd.x[:, slice_index], cd.q[1, :, slice_index] def slice_velocity(cd): u = cd.q[1, :, slice_index] / cd.q[0, :, slice_index] return cd.x[:, slice_index], u plotfigure = plotdata.new_plotfigure(name="Slice eta, y=0") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface Slice y = 0" plotaxes.xlimits = xlimits plotaxes.ylimits = surface_range plotaxes.afteraxes = lambda cd: after_axes_slice(cd, surface_limits) plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data") plotitem.map_2d_to_1d = slice_surface plotitem.plot_var = 3 plotitem.plotstyle = 'k-o' plotitem.show = True plotfigure = plotdata.new_plotfigure(name="Slice u, y=0") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Velocity-x Slice y = 0" plotaxes.xlimits = xlimits plotaxes.ylimits = [-speed_limits[1], speed_limits[1]] plotaxes.afteraxes = lambda cd: after_axes_slice( cd, [-speed_limits[1], speed_limits[1]]) plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data") plotitem.map_2d_to_1d = slice_velocity plotitem.plot_var = 1 plotitem.plotstyle = 'k-o' plotitem.show = True plotfigure = plotdata.new_plotfigure(name="Slice hu, y=0") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = "hu Slice y = 0" plotaxes.xlimits = xlimits momentum_limits = [-speed_limits[1] * 1000.0, speed_limits[1] * 1000.0] plotaxes.ylimits = momentum_limits plotaxes.afteraxes = lambda cd: after_axes_slice(cd, momentum_limits) plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data") plotitem.map_2d_to_1d = slice_momentum plotitem.plot_var = 1 plotitem.plotstyle = 'k-o' plotitem.show = True #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Gauge Surface', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True def gauge_afteraxes(cd, label=None): surge.gauge_afteraxes(cd) plt.ylabel(label) def gaugetopo(current_data): q = current_data.q h = q[0, :] eta = q[3, :] topo = eta - h return topo # Surface plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.afteraxes = lambda cd: gauge_afteraxes(cd, label='Surface Height (m)') plotaxes.title = 'Surface' plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' try: plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] except: pass # Momenta plotfigure = plotdata.new_plotfigure(name='Gauge X-Momentum', figno=301, \ type='each_gauge') plotfigure.clf_each_gauge = True plotaxes = plotfigure.new_plotaxes() plotaxes.afteraxes = lambda cd: gauge_afteraxes( cd, label=r'X-Momentum ($m/s^2$)') plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'X Momentum' plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = True plotitem.plot_var = 1 try: plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] except: pass plotfigure = plotdata.new_plotfigure(name='Gauge Y-Momentum', figno=302, \ type='each_gauge') plotfigure.clf_each_gauge = True plotaxes = plotfigure.new_plotaxes() plotaxes.afteraxes = lambda cd: gauge_afteraxes( cd, label=r'Y-Momentum ($m/s^2$)') plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Y Momentum' plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = True plotitem.plot_var = 2 try: plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] except: pass #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = range(0, 36, 4) # list of frames to print plotdata.print_gaugenos = [1, 2, 3] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.format = 'ascii' # Format of output # plotdata.format = 'netcdf' return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' fig_num_counter = surge.figure_counter() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surge.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Calculate landfall time, off by a day, maybe leap year issue? if storm_num == 1: # Storm 1 landfall_dt = datetime.datetime(1997, 11, 15, 3) - datetime.datetime( 1997, 1, 1, 0) elif storm_num == 2: # Storm 2 landfall_dt = datetime.datetime(2008, 12, 17, 0) - datetime.datetime( 2008, 1, 1, 0) landfall = (landfall_dt.days) * 24.0 * 60**2 + landfall_dt.seconds # Set afteraxes function surge_afteraxes = lambda cd: surge.surge_afteraxes( cd, track, landfall, plot_direction=False) # Color limits surface_range = 5.0 speed_range = 3.0 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [-5.0, 5.0] # surface_contours = numpy.linspace(-surface_range, surface_range,11) surface_contours = [ -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 ] surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] surface_labels = [str(value) for value in surface_ticks] speed_limits = [0.0, speed_range] speed_contours = numpy.linspace(0.0, speed_range, 13) speed_ticks = [0, 1, 2, 3] speed_labels = [str(value) for value in speed_ticks] # wind_limits = [0,64] wind_limits = [0, 50] # wind_limits = [-0.002,0.002] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] # vorticity_limits = [-1.e-2,1.e-2] # def pcolor_afteraxes(current_data): # surge_afteraxes(current_data) # surge.gauge_locations(current_data,gaugenos=[6]) def afteraxes(current_data): surge_afteraxes(current_data) def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None): axes.plotitem_dict[item_name].colorbar_ticks = ticks axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels # ========================================================================== # ========================================================================== # Plot specifications # ========================================================================== # ========================================================================== regions = { "Full Domain (Grids)": [[clawdata.lower[0], clawdata.upper[0]], [clawdata.lower[1], clawdata.upper[1]], [1, 1, 1, 1, 1, 1, 1]], "Mumbai Regio (Grids)": [[70, 75], [17, 22], [1, 1, 1, 1, 1, 1, 1]], "Mumbai (Grids)": [[72.6, 73.15], [18.80, 19.25], [1, 1, 1, 1, 1, 1, 1]], "Full Domain (No Grids)": [[clawdata.lower[0], clawdata.upper[0]], [clawdata.lower[1], clawdata.upper[1]], [0, 0, 0, 0, 0, 0, 0]], "Mumbai Region (No Grids)": [[70, 75], [17, 22], [0, 0, 0, 0, 0, 0, 0]], "Mumbai (No Grids)": [[72.6, 73.15], [18.80, 19.25], [0, 0, 0, 0, 0, 0, 0]] } full_xlimits = regions['Full Domain (Grids)'][0] full_ylimits = regions['Full Domain (Grids)'][1] for (name, region_data) in regions.iteritems(): # # Surface # plotfigure = plotdata.new_plotfigure( name='Surface - %s' % name, figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = region_data[0] plotaxes.ylimits = region_data[1] plotaxes.afteraxes = afteraxes surge.add_surface_elevation(plotaxes, plot_type='pcolor', bounds=surface_limits) # surge.add_surface_elevation(plotaxes, plot_type='contourf', # contours=surface_contours) surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0) surge.add_bathy_contours(plotaxes) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) plotaxes.plotitem_dict['land'].amr_patchedges_show = region_data[2] plotaxes.plotitem_dict['surface'].amr_patchedges_show = region_data[2] # # Water Speed # plotfigure = plotdata.new_plotfigure( name='Currents - %s' % name, figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = region_data[0] plotaxes.ylimits = region_data[1] plotaxes.afteraxes = afteraxes # Speed surge.add_speed(plotaxes, plot_type='pcolor', bounds=speed_limits) # surge.add_speed(plotaxes, plot_type='contourf', contours=speed_contours) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # Land surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0) plotaxes.plotitem_dict['speed'].amr_patchedges_show = region_data[2] plotaxes.plotitem_dict['land'].amr_patchedges_show = region_data[2] # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction', figno=fig_num_counter.get_counter()) plotfigure.show = friction_data.variable_friction and False def friction_after_axes(cd): plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surge.add_friction(plotaxes, bounds=friction_bounds) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # ========================== # Hurricane Forcing fields # ========================== grids = [[0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1]] label = ["(No Grids)", "(Grids)"] for i in xrange(2): # Pressure field plotfigure = plotdata.new_plotfigure( name='Pressure %s' % label[i], figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "Pressure Field" plotaxes.afteraxes = afteraxes plotaxes.scaled = True surge.add_pressure(plotaxes, bounds=pressure_limits) surge.add_land(plotaxes) plotaxes.plotitem_dict['pressure'].amr_patchedges_show = grids[i] plotaxes.plotitem_dict['land'].amr_patchedges_show = grids[i] # Wind field plotfigure = plotdata.new_plotfigure( name='Wind Speed %s' % label[i], figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = full_xlimits plotaxes.ylimits = full_ylimits plotaxes.title = "Wind Field" plotaxes.afteraxes = afteraxes plotaxes.scaled = True surge.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor') surge.add_land(plotaxes) plotaxes.plotitem_dict['wind'].amr_patchedges_show = grids[i] plotaxes.plotitem_dict['land'].amr_patchedges_show = grids[i] # ===================== # Gauge Location Plot # ===================== gauge_xlimits = regions["Mumbai (Grids)"][0] gauge_ylimits = regions["Mumbai (Grids)"][1] # gauge_location_shrink = 0.75 def gauge_after_axes(cd): # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) # import pdb; pdb.set_trace() surge.gauge_locations(cd, gaugenos=[1, 2, 3]) plt.title("Gauge Locations") plotfigure = plotdata.new_plotfigure(name='Gauge Locations', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gauge_xlimits plotaxes.ylimits = gauge_ylimits plotaxes.afteraxes = gauge_after_axes surge.add_surface_elevation(plotaxes, plot_type='pcolor', bounds=surface_limits) # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf") add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) surge.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] # plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg') # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # plotfigure.kwargs['figsize'] = (16,10) def gauge_after_axes(cd): if cd.gaugeno in [1, 2, 3]: axes = plt.gca() # Add GeoClaw gauge data geoclaw_gauge = cd.gaugesoln axes.plot( seconds2days(geoclaw_gauge.t - date2seconds(gauge_landfall[1])), geoclaw_gauge.q[3, :], 'b--') # Fix up plot axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) axes.legend() plt.hold(False) # surge.gauge_afteraxes(cd) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' plotaxes.afteraxes = gauge_after_axes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: if article: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = [54, 60, 66, 72, 78, 84] # list of frames to print plotdata.print_gaugenos = [1, 2, 3] # list of gauges to print plotdata.print_fignos = [4, 5, 6, 7, 10, 3, 300] # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? else: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' # Import useful run data clawdata = data.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) dtopo_data = clawpack.geoclaw.data.DTopoData() dtopo_data.read(os.path.join(plotdata.outdir, 'dtopo.data')) friction_data = clawpack.geoclaw.surge.data.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos=[21401, 21413, 21418, 21419], format_string='ko', add_labels=True) #----------------------------------------- # Figure for pcolor plot #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='full domain', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True def fixup(current_data): import pylab #addgauges(current_data) t = current_data.t t = t / 3600. # hours pylab.title('Surface at %4.2f hours' % t, fontsize=20) pylab.xticks(fontsize=15) pylab.yticks(fontsize=15) #pylab.plot([205],[19.7],'wo',markersize=10) #pylab.text(200,22,'Hilo',color='k',fontsize=25) pylab.plot([139.7],[35.6],'yo',markersize=5) pylab.text(133.3,36.5,'Sendai',color='y',fontsize=15) addgauges(current_data) plotaxes.afteraxes = fixup # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) plotitem.pcolor_cmin = -0.1 plotitem.pcolor_cmax = 0.1 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 0 #plotaxes.xlimits = [138,155] #plotaxes.ylimits = [25,42] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = numpy.linspace(-5000,-100,6) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles':'solid','linewidths':2} plotitem.amr_contour_show = [1,0,0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figure for zoom plot #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Zoom', figno=1) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = [140,146] plotaxes.ylimits = [35,41] # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = colormaps.blue_white_red plotitem.pcolor_cmin = -10.0 plotitem.pcolor_cmax = 10.0 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 0 plotitem = plotaxes.new_plotitem(plot_type='2d_contour') #plotitem.show = False plotitem.plot_var = geoplot.surface plotitem.contour_levels = numpy.linspace(-13,13,14) plotitem.amr_contour_colors = ['k'] # color on each level #plotitem.kwargs = {'linestyles':'solid','linewidths':2} plotitem.amr_contour_show = [0,0,0,1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = numpy.linspace(-6,6,13) plotitem.amr_contour_colors = ['k'] # color on each level #plotitem.kwargs = {'linestyles':'solid','linewidths':2} plotitem.amr_contour_show = [0,0,0,1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' plotitem.kwargs = {'linewidth':2} # Plot comparison as red curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = (dart_data_path is not None) # plotitem.outdir = dart_data_path plotitem.plot_var = 3 plotitem.plotstyle = 'r-' plotitem.kwargs = {'linewidth':2} # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False def gaugetopo(current_data): q = current_data.q h = q[:,0] eta = q[:,3] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): t = current_data.t plt.plot([0,10800],[0,0],'k') def plot_dart(current_data): import pylab gaugeno = current_data.gaugeno try: dart = dartdata[gaugeno] pylab.plot(dart[:,0],dart[:,1],'k') pylab.legend(['GeoClaw','DART data']) except: if dart_data_path is None: pylab.legend(['GeoClaw']) else: pylab.legend(['GeoClaw','dart_data_path']) add_zeroline(current_data) try: pylab.xlim(tlimits[gaugeno]) except: pass plotaxes.afteraxes = plot_dart # ===================== # Plot Friction Field # ===================== plotfigure = plotdata.new_plotfigure('Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = r"Manning's $N$ Coefficient" plotaxes.scaled = True plotaxes.afteraxes = addgauges plotitem = plotaxes.new_plotitem(name='friction',plot_type='2d_pcolor') plotitem.plot_var = lambda cd: cd.aux[3,:,:] plotitem.pcolor_cmap = plt.get_cmap('YlOrRd') plotitem.colorbar_shrink = 0.9 plotitem.pcolor_cmin = 0.01 plotitem.pcolor_cmax = 0.1 plotitem.add_colorbar = True plotitem.colorbar_label = "Manning's-$n$ Coefficient" plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [0,0,0,0,0,0,0] plotitem.colorbar_label = r"$n$" # ========================== # Plot Fault Configuration # ========================== def plot_dtopo(plotdata): print "Creating html for other figures." with open('fault.html', 'w') as out_html: out_html.write("<html>\n") out_html.write(" <header>\n") out_html.write(" <title>Fault Specification</title>\n") out_html.write(" </header>\n") out_html.write(" <body>\n") out_html.write(" <h1>Fault Specification</h1>\n") out_html.write(" <img src='fault.png'>\n") out_html.write(" <img src='uplift.png'>\n") out_html.write(" </body>\n") out_html.write("</html>") # Need to save this in the run_faults section, cannot do yet # fault = dtopotools.Fault(path="./fault_params.txt") # fig = plt.figure() # axes = fig.add_subplot(1, 1, 1) # fault.plot_subfaults(axes, slip_color=True, cmin_slip=0.0, # cmax_slip=120.0) # fig.savefig('fault.png') dtopo = dtopotools.DTopography(path=dtopo_data.dtopofiles[0][3]) fig = plt.figure() axes = fig.add_subplot(1, 1, 1) dtopo.plot_dZ_colors(t=1.0, axes=axes) fig.savefig("uplift.png") plotfigure = plotdata.new_otherfigure("Fault", "fault.html") plotfigure.makefig = plot_dtopo #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = "binary" plotdata.verbose = False # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) #----------------------------------------- # Some global kml flags #----------------------------------------- plotdata.kml_name = "SouthChinaSea" #plotdata.kml_starttime = [2010,2,27,6,34,0] # Time of event in UTC [None] #plotdata.kml_tz_offset = 3 # Time zone offset (in hours) of event. [None] plotdata.kml_index_fname = "SouthChinaSea" # name for .kmz and .kml files ["_GoogleEarth"] # Set to a URL where KMZ file will be published. # plotdata.kml_publish = None # Colormap range cmin = -1.2 cmax = 1.2 cmap = geoplot.googleearth_transparent #----------------------------------------------------------- # Figure for KML files #---------------------------------------------------------- plotfigure = plotdata.new_plotfigure(name='Sea Surface',figno=1) plotfigure.show = True plotfigure.use_for_kml = True plotfigure.kml_use_for_initial_view = True # These override any axes limits set below in plotaxes clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir,'claw.data')) #ocean_xlimits = [clawdata.lower[0],clawdata.upper[0]] #ocean_ylimits = [clawdata.lower[1],clawdata.upper[1]] # 99 had roundoff and bombed! ocean_xlimits = [99.001,125] ocean_ylimits = [0,24] plotfigure.kml_xlimits = ocean_xlimits plotfigure.kml_ylimits = ocean_ylimits # Resolution (should be consistent with data) # Refinement levels : [2,6]; max level = 3; num_cells = [30,30] # rcl : resolution of the coarsest level in this figure #rcl = 100 # rcl*figsize = num_cells rcl = 50 # rcl*figsize = num_cells plotfigure.kml_figsize = [7.8,7.2] # replace 4 and 6 wtha ctual refinement ratios # then if still be too big (> 32K) then halve it #plotfigure.kml_dpi = rcl*4*6 # Resolve all three levels plotfigure.kml_dpi = rcl*1 # Resolve all three levels plotfigure.kml_tile_images = True # Tile images for faster loading. Requires GDAL [False] # Water plotaxes = plotfigure.new_plotaxes('kml') plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = cmap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax def kml_colorbar(filename): geoplot.kml_build_colorbar(filename,cmap,cmin,cmax) plotfigure.kml_colorbar = kml_colorbar #----------------------------------------------------------- # Figure for KML files (zoom) #---------------------------------------------------------- plotfigure = plotdata.new_plotfigure(name='Sea Surface (zoom)',figno=2) plotfigure.show = False plotfigure.use_for_kml = True plotfigure.kml_use_for_initial_view = False # Use large plot for view # Set Google Earth bounding box and figure size plotfigure.kml_xlimits = ocean_xlimits plotfigure.kml_ylimits = ocean_ylimits # zoom into fine grid region of this size plotfigure.kml_figsize = [10,14] # inches. # Resolution rcl = 10 # Over-resolve the coarsest level plotfigure.kml_dpi = rcl*2*6 # Resolve all three levels plotfigure.kml_tile_images = False # Tile images for faster loading. plotaxes = plotfigure.new_plotaxes('kml') plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = cmap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax def kml_colorbar(filename): geoplot.kml_build_colorbar(filename,cmap,cmin,cmax) plotfigure.kml_colorbar = kml_colorbar #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' # plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = True def gaugetopo(current_data): q = current_data.q h = q[0,:] eta = q[3,:] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend, xticks, floor, axis, xlabel t = current_data.t gaugeno = current_data.gaugeno if gaugeno == 32412: try: plot(TG32412[:,0], TG32412[:,1], 'r') legend(['GeoClaw','Obs'],loc='lower right') except: pass axis((0,t.max(),-0.3,0.3)) plot(t, 0*t, 'k') n = int(floor(t.max()/3600.) + 2) xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)]) xlabel('time (hours)') plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print #plotdata.print_framenos = range(0,5) # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = False # create html files of plots? plotdata.html_movie = None # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.kml = True return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'binary' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_range = 5.0 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [eta[0] - surface_range, eta[0] + surface_range] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = { "Entire Region": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (13, 10) }, "Caribbean Sub-region": { "xlimits": (-86, -58.0), "ylimits": (9, 28), "figsize": (16, 6) }, } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Entire Region']['xlimits'] plotaxes.ylimits = regions['Entire Region']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Entire Region']['xlimits'] plotaxes.ylimits = regions['Entire Region']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Entire Region']['xlimits'] plotaxes.ylimits = regions['Entire Region']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [clawdata.lower[0], clawdata.upper[0]] plotaxes.ylimits = [clawdata.lower[1], clawdata.upper[1]] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 #----------------------------------------- # Figures for fgmax plots #----------------------------------------- from clawpack.geoclaw import fgmax_tools fgmax_plotdir = '_plots' os.system('mkdir -p %s' % fgmax_plotdir) # Read fgmax data: fgno = 1 while (True): fg = fgmax_tools.FGmaxGrid() try: fg.read_fgmax_grids_data(fgno) fg.read_output(outdir=plotdata.outdir) fg.B0 = fg.B # no seafloor deformation in this problem fg.h_onshore = np.ma.masked_where(fg.B0 < 0., fg.h) plt.figure(figsize=(20, 20)) pc = plt.pcolormesh(fg.X, fg.Y, fg.h_onshore, cmap='hot_r') cb = plt.colorbar(pc, extend='max', shrink=0.7) cb.set_label('meters') plt.contour(fg.X, fg.Y, fg.B, [0], colors='g') plt.gca().set_aspect(1. / np.cos(48 * np.pi / 180.)) plt.ticklabel_format(useOffset=False) plt.xticks(rotation=20) plt.title('Maximum Onshore flow depth\nfgmax grid {fgno}') img_name = f'fgmax{str(fgno).zfill(4)}_h_onshore.png' plt.savefig(fname=f'{fgmax_plotdir}/{img_name}') otherfigure = plotdata.new_otherfigure( name=f'max depth on fgmax grid {fgno}', fname=img_name) fgno = fgno + 1 except: break # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-4.0, 4.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] ''' surface_limits = [-2.0, 2.0] speed_limits = [0.0, 3.0] wind_limits = [0, 70] pressure_limits = [990, 1010] friction_bounds = [0.01, 0.04] ''' def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== # surface region regions = { "Gulf": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 3.2) }, "LaTex Shelf": { "xlimits": (-94.5, -86), "ylimits": (27, 32), "figsize": (10, 5) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['wind'].amr_patchedges_show = [0] * 10 # added # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1.0, 2.5] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) gauge_id = ['8770822', '8768094', '8764227', '8761305', '8760922'] gauge_title = [ 'Texas Point, Sabine Pass, TX', 'Calcasieu Pass, LA', 'LAWMA, Amerada Pass, LA', 'Shell Beach, LA', 'Pilots Station East, S.W. Pass, LA' ] if (cd.gaugeno < 6): realData = util.fetch_noaa_tide_data(gauge_id[cd.gaugeno - 1], datetime.datetime(2019, 7, 10, hour=12), datetime.datetime(2019, 7, 16, hour=12), datum='MLLW') values = realData[1] - realData[2] times = [] for time in realData[0]: times.append( (time - numpy.datetime64("2019-07-13T15:00")).astype(float) / 1440) plt.plot(times, values, color='orange', label='real') axes.set_title('Gauge %s: %s' % (cd.gaugeno, gauge_title[cd.gaugeno - 1])) # i for i in gauge_title axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1.0, 2.5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # # All gauges def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Location") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [-95, -88.5] plotaxes.ylimits = [28, 31] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Gauge 01: Texas Point, Sabine Pass, TX [8770822] def gauge_location_afteraxes1(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[1], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 01") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 01 Location' plotaxes.scaled = True plotaxes.xlimits = [-93.84 - 0.2, -93.84 + 0.2] plotaxes.ylimits = [29.69 - 0.2, 29.69 + 0.2] plotaxes.afteraxes = gauge_location_afteraxes1 surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Gauge 02: Calcasieu Pass, LA [8768094] def gauge_location_afteraxes2(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[2], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 02") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 02 Location' plotaxes.scaled = True plotaxes.xlimits = [-93.34 - 0.2, -93.34 + 0.2] plotaxes.ylimits = [29.77 - 0.2, 29.77 + 0.2] plotaxes.afteraxes = gauge_location_afteraxes2 surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Gauge 03: LAWMA, Amerada Pass, LA [8764227] def gauge_location_afteraxes3(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[3], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 03") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 03 Location' plotaxes.scaled = True plotaxes.xlimits = [-91.34 - 0.2, -91.34 + 0.2] plotaxes.ylimits = [29.45 - 0.2, 29.45 + 0.2] plotaxes.afteraxes = gauge_location_afteraxes3 surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Gauge 04: Shell Beach, LA [8761305] def gauge_location_afteraxes4(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[4], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 04") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 04 Location' plotaxes.scaled = True plotaxes.xlimits = [-89.67 - 0.2, -89.67 + 0.2] plotaxes.ylimits = [29.87 - 0.2, 29.87 + 0.2] plotaxes.afteraxes = gauge_location_afteraxes4 surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Gauge 05: Pilots Station East, S.W. Pass, LA [8760922] def gauge_location_afteraxes5(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[5], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 05") plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 05 Location' plotaxes.scaled = True plotaxes.xlimits = [-89.41 - 0.2, -89.41 + 0.2] plotaxes.ylimits = [28.93 - 0.2, 28.93 + 0.2] plotaxes.afteraxes = gauge_location_afteraxes5 surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4, 5] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data # Import data objects clawdata = data.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) #----------------------------------------- # Figure for surface #----------------------------------------- extents = { "Full Domain": { 'extent': [ clawdata.lower[0], clawdata.upper[0], clawdata.lower[1], clawdata.upper[1] ], 'show_contours': False, 'show_patches': [1, 1, 1, 1], 'figsize': (6.4, 4.8) }, "Zoom 1": { 'extent': init_region, 'show_contours': True, 'show_patches': 0, 'figsize': (6.4 * 2.0, 4.8) } } for (name, param_dict) in extents.items(): plotfigure = plotdata.new_plotfigure(name='Surface %s' % name) plotfigure.kwargs['figsize'] = param_dict['figsize'] # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # plotitem.plot_var = geoplot.surface plotitem.plot_var = surface_or_depth # plotitem.plot_var = 0 plotitem.pcolor_cmap = surface_cmap plotitem.pcolor_cmin = -10.0 plotitem.pcolor_cmax = 10.0 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0, 0] plotitem.patchedges_show = param_dict['show_patches'] # Bathy contour plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = param_dict['show_contours'] plotitem.plot_var = geoplot.topo plotitem.contour_levels = numpy.arange(5000, 6000, 25) plotitem.amr_contour_colors = ['k'] # color on each level plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 1} plotitem.amr_contour_show = [0, 0, 0, 1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = param_dict['show_contours'] plotitem.plot_var = geoplot.topo plotitem.contour_levels = numpy.arange(4000, 5000, 25) plotitem.amr_contour_colors = ['k'] # color on each level plotitem.kwargs = {'linestyles': 'dashed', 'linewidths': 1} plotitem.amr_contour_show = [0, 0, 0, 1] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 4800 plotitem.pcolor_cmax = 5005 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.patchedges_show = param_dict['show_patches'] plotaxes.xlimits = param_dict['extent'][:2] plotaxes.ylimits = param_dict['extent'][2:] def draw_rect(rect, axes, style="r--"): """rect = [xlower, ylower, xupper, yupper""" xlower = rect[0] xupper = rect[1] ylower = rect[2] yupper = rect[3] axes.plot([xlower, xupper], [ylower, ylower], style) axes.plot([xupper, xupper], [ylower, yupper], style) axes.plot([xupper, xlower], [yupper, yupper], style) axes.plot([xlower, xlower], [yupper, ylower], style) def afteraxes(cd): addgauges(cd) draw_rect([491000, 493700, 3085250, 3086250], plt.gca()) plotaxes.afteraxes = afteraxes # ----------------------------------------- # Figures for gauges # ----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False # def gaugetopo(current_data): # q = current_data.q # h = q[0,:] # eta = q[3,:] # topo = eta - h # return topo # plotitem.plot_var = gaugetopo # plotitem.plotstyle = 'g-' # def add_zeroline(current_data): # from pylab import plot, legend, xticks, floor, axis, xlabel # t = current_data.t # gaugeno = current_data.gaugeno # if gaugeno == 32412: # try: # plot(TG32412[:,0], TG32412[:,1], 'r') # legend(['GeoClaw','Obs'],loc='lower right') # except: pass # axis((0,t.max(),-0.3,0.3)) # plot(t, 0*t, 'k') # n = int(floor(t.max()/3600.) + 2) # xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)]) # xlabel('time (hours)') # plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata, bathy_location=0.15, bathy_angle=0.0, bathy_left=-1.0, bathy_right=-0.2): """Setup the plotting data objects. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. returns plotdata object """ import os import numpy as np import matplotlib.pyplot as plt from clawpack.visclaw import geoplot, gaugetools import clawpack.clawutil.data as clawutil import clawpack.amrclaw.data as amrclaw import clawpack.geoclaw.data import clawpack.geoclaw.multilayer.plot as ml_plot # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) geodata = clawpack.geoclaw.data.GeoClawData() geodata.read(os.path.join(plotdata.outdir, 'geoclaw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data')) def transform_c2p(x, y, x0, y0, theta): return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta), (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta)) def transform_p2c(x, y, x0, y0, theta): return (x * np.cos(theta) + y * np.sin(theta) - x0, -x * np.sin(theta) + y * np.cos(theta) - y0) # Setup bathymetry reference lines with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') as bathy_geometry_file: bathy_location = float(bathy_geometry_file.readline()) bathy_angle = float(bathy_geometry_file.readline()) x = [0.0, 0.0] y = [0.0, 1.0] x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle) x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle) if abs(x1 - x2) < 10**-3: x = [x1, x1] y = [clawdata.lower[1], clawdata.upper[1]] else: m = (y1 - y2) / (x1 - x2) x[0] = (clawdata.lower[1] - y1) / m + x1 y[0] = clawdata.lower[1] x[1] = (clawdata.upper[1] - y1) / m + x1 y[1] = clawdata.upper[1] ref_lines = [((x[0], y[0]), (x[1], y[1]))] plotdata.clearfigures() plotdata.save_frames = False # ======================================================================== # Generic helper functions # ======================================================================== def pcolor_afteraxes(current_data): bathy_ref_lines(current_data) gauge_locations(current_data) def contour_afteraxes(current_data): # gauge_locations(current_data) # m_to_km_labels() plt.hold(True) pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 plt.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3], [-300e3, 300e3], 'y') plt.hold(False) wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def bathy_ref_lines(current_data): plt.hold(True) for ref_line in ref_lines: x1 = ref_line[0][0] y1 = ref_line[0][1] x2 = ref_line[1][0] y2 = ref_line[1][1] plt.plot([x1, x2], [y1, y2], 'y--', linewidth=1) plt.hold(False) def gauge_locations(current_data, gaugenos='all'): plt.hold(True) gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos=gaugenos, format_string='kx', add_labels=True) plt.hold(False) # ======================================================================== # Axis limits #xlimits = [amrdata.xlower,amrdata.xupper] xlimits = [-0.5, 0.5] #ylimits = [amrdata.ylower,amrdata.yupper] ylimits = [-0.5, 0.5] eta = [multilayer_data.eta[0], multilayer_data.eta[1]] top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03] internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015] # top_surface_limits = [eta[0]-0.3,eta[0]+0.3] # internal_surface_limits = [eta[1]-0.15,eta[1]+0.15] top_speed_limits = [0.0, 0.1] internal_speed_limits = [0.0, 0.03] # Single layer test limits # top_surface_limits = [eta[0]-2.5,eta[0]+2.5] # top_speed_limits = [0.0,6.0] # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06]) # ml_plot.add_surface_elevation(plotaxes,1) ml_plot.add_land(plotaxes) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5]) ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) # ml_plot.add_surface_elevation(plotaxes,2) ml_plot.add_land(plotaxes) # ======================================================================== # Depths # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Depths', figno=42) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Layer Depth' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1]) ml_plot.add_land(plotaxes) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Bottom Layer Depth' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7]) ml_plot.add_land(plotaxes) # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='speed', figno=1) plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.afteraxes = pcolor_afteraxes # add_speed(plotaxes,1,bounds=[0.00,0.2]) ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits) # add_speed(plotaxes,1) ml_plot.add_land(plotaxes) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_speed(plotaxes,2,bounds=[0.0,1e-10]) ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits) # add_speed(plotaxes,2) ml_plot.add_land(plotaxes) # Individual components plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 14)} # Top layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,1)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes, 1) ml_plot.add_land(plotaxes) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125]) ml_plot.add_y_velocity(plotaxes, 1) ml_plot.add_land(plotaxes) # Bottom layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,3)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes, 2) ml_plot.add_land(plotaxes) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,4)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6]) ml_plot.add_y_velocity(plotaxes, 2) ml_plot.add_land(plotaxes) # ======================================================================== # Profile Plots # ======================================================================== plotfigure = plotdata.new_plotfigure(name='profile', figno=4) plotfigure.show = False # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = [-2000, 20] plotaxes.title = "Profile of depth" plotaxes.afteraxes = profile_afteraxes slice_index = 30 # Internal surface def bathy_profile(current_data): return current_data.x[:, slice_index], b(current_data)[:, slice_index] def lower_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], eta2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], eta2(current_data)[ slice_index, :] def upper_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], eta1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], eta1(current_data)[ slice_index, :] def top_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], water_u1( current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], water_u1(current_data)[ slice_index, :] def bottom_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], water_u2( current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], water_u2(current_data)[ slice_index, :] # Bathy plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = bathy_profile plotitem.plot_var = 0 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'k' plotitem.show = True # Internal Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = lower_surface plotitem.plot_var = 7 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'b' plotitem.show = True # Upper Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = upper_surface plotitem.plot_var = 6 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = (0.2, 0.8, 1.0) plotitem.show = True # ======================================================================== # Combined Profile Plot # ======================================================================== # add_combined_profile_plot(plotdata,0.25,direction='y',figno=120) # add_combined_profile_plot(plotdata,0.8,direction='y',figno=121) # # add_velocities_profile_plot(plotdata,0.25,direction='y',figno=130) # add_velocities_profile_plot(plotdata,0.8,direction='y',figno=131) # ======================================================================== # Bathy Profile # ======================================================================== plotfigure = plotdata.new_plotfigure(name='bathy_profile', figno=20) plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.title = "Bathymetry Profile" plotaxes.scaled = 'equal' plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') plotitem.plot_var = ml_plot.b plotitem.imshow_cmin = -4000 plotitem.imshow_cmax = 10 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] plotitem.show = True # ======================================================================== # Figures for momentum # ======================================================================== plotfigure = plotdata.new_plotfigure(name='x-momentum', figno=13) plotfigure.show = False # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'X-Velocity' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # Water # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # # plotitem.plot_var = geoplot.surface # plotitem.plot_var = water_u # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) # # plotitem.pcolor_cmin = -1.e-10 # # plotitem.pcolor_cmax = 1.e-10 # # plotitem.pcolor_cmin = -2.5 # -3.0 # # plotitem.pcolor_cmax = 2.5 # 3.0 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1,1,1] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.show = True plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 80.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] plotfigure = plotdata.new_plotfigure(name='y-momentum', figno=14) plotfigure.show = False # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Y-Velocity' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # Water # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # # plotitem.plot_var = geoplot.surface # plotitem.plot_var = water_v # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) # # plotitem.pcolor_cmin = -1.e-10 # # plotitem.pcolor_cmax = 1.e-10 # # plotitem.pcolor_cmin = -2.5 # -3.0 # # plotitem.pcolor_cmax = 2.5 # 3.0 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1,1,1] # Land ml_plot.add_land(plotaxes) # ======================================================================== # Contour plot for surface # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: # Top Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes, plot_type='contour', surface=1, bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5]) ml_plot.add_land(plotaxes, plot_type='contour') # Internal Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes, plot_type='contour', surface=2, bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5]) ml_plot.add_land(plotaxes, plot_type='contour') # ======================================================================== # Contour plot for speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Current' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes # Surface plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = ml_plot.water_speed_depth_ave plotitem.kwargs = {'linewidths': 1} # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0] plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0] plotitem.amr_contour_show = [1, 1, 1] plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] plotitem.amr_contour_colors = 'k' # plotitem.amr_contour_colors = ['r','k','b'] # color on each level # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.show = True # Land plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.land plotitem.contour_nlevels = 40 plotitem.contour_min = 0.0 plotitem.contour_max = 100.0 plotitem.amr_contour_colors = ['g'] # color on each level plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = 0 plotitem.amr_patchedges_show = 0 plotitem.show = True # ======================================================================== # Vorticity Plot # ======================================================================== # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17) # plotfigure.show = False # plotaxes = plotfigure.new_plotaxes() # plotaxes.title = "Vorticity" # plotaxes.scaled = True # plotaxes.xlimits = xlimits # plotaxes.ylimits = ylimits # plotaxes.afteraxes = pcolor_afteraxes # # # Vorticity # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') # plotitem.plot_var = 9 # plotitem.imshow_cmap = plt.get_cmap('PRGn') # # plotitem.pcolor_cmap = plt.get_cmap('PuBu') # # plotitem.pcolor_cmin = 0.0 # # plotitem.pcolor_cmax = 6.0 # plotitem.imshow_cmin = -1.e-2 # plotitem.imshow_cmax = 1.e-2 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1] # # # Land # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # plotitem.plot_var = geoplot.land # plotitem.pcolor_cmap = geoplot.land_colors # plotitem.pcolor_cmin = 0.0 # plotitem.pcolor_cmax = 80.0 # plotitem.add_colorbar = False # plotitem.amr_celledges_show = [0,0,0] # ======================================================================== # Figures for gauges # ======================================================================== def plot_regression_gauges(cd, plot_var=(3, 7)): import clawpack.pyclaw.gauges as gauges import numpy fig = plt.gcf() gauge = gauges.GaugeSolution(cd.gaugeno, path="./regression_data") for (i, n) in enumerate(plot_var): fig.axes[i].plot(gauge.t, gauge.q[n, :], 'k-') # Top plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0.0, 1.0] # plotaxes.ylimits = top_surface_limits plotaxes.title = 'Top Surface' plotaxes.axescmd = "subplot(1, 2, 1)" # Plot surfaces: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'ro' # Bottom plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [0.0, 1.0] plotaxes.title = 'Bottom Surface' plotaxes.axescmd = "subplot(1, 2, 2)" plotaxes.afteraxes = plot_regression_gauges plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 7 plotitem.plotstyle = 'ro' # Plot topo as green curve: # plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = geoplot.gaugetopo # plotitem.plotstyle = 'g+' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 5}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 100] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = { "Atlantic": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8) }, "United Kingdom": { "xlimits": (-10.5, 0), "ylimits": (51.5, 60.0), "figsize": (8, 6) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 2] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-.25, .75] plotaxes.title = 'Surface' # -------- Failed attempt at comparing data on Clawpack ---------- #def get_actual_water_levels(gaugeno): # heights = open("surge_"+str(gaugeno)+".txt", "r") # surge = [] # for height in heights: # line = height.strip() # line = line.split(",") # line = float(line[0]) # surge.append(line) # # t = np.arange(-172800, 172800, 3600, dtype='float') # # return t, surge def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) #t, surge = get_actual_water_levels(cd.gaugeno) #axes.plot(t, surge, color="g", label="Observed") # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 2]) axes.set_ylim([-.25, .75]) axes.set_xticks([-2, -1, 0, 1, 2]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$", r"$2$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # # --------- For only one plot for location of all four gauges, uncomment ------- # def gauge_location_afteraxes(cd): # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) # surge_afteraxes(cd) # gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', # format_string='ko', add_labels=True) # # plotfigure = plotdata.new_plotfigure(name="Gauge Locations") # plotfigure.show = True # # # Set up for axes in this figure: # plotaxes = plotfigure.new_plotaxes() # plotaxes.title = 'Gauge Locations' # plotaxes.scaled = True # plotaxes.xlimits = [-7.0, -4.8] # plotaxes.ylimits = [55.0, 58.2] # plotaxes.afteraxes = gauge_location_afteraxes # surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) # surgeplot.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 # plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # individual gauge plots def gauge_1_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[1], format_string='ko', add_labels=True) def gauge_2_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[2], format_string='ko', add_labels=True) def gauge_3_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[3], format_string='ko', add_labels=True) def gauge_4_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[4], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 1") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 1' plotaxes.scaled = True plotaxes.xlimits = [-7.0, -6.0] plotaxes.ylimits = [55.0, 56.0] plotaxes.afteraxes = gauge_1_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 2") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 2' plotaxes.scaled = True plotaxes.xlimits = [-6.5, -5.5] plotaxes.ylimits = [56.0, 57.0] plotaxes.afteraxes = gauge_2_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 3") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 3' plotaxes.scaled = True plotaxes.xlimits = [-6.0, -5.0] plotaxes.ylimits = [57.5, 58.5] plotaxes.afteraxes = gauge_3_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 4") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 4' plotaxes.scaled = True plotaxes.xlimits = [-6.0, -5.0] plotaxes.ylimits = [58.0, 59.0] plotaxes.afteraxes = gauge_4_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'ascii' # Load data from output claw_data = clawdata.ClawInputData(2) claw_data.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track')) # Set afteraxes function surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, track, plot_direction=False) # Color limits surface_range = 1.0 speed_range = 1.0 # speed_range = 1.e-2 eta = physics.sea_level if not isinstance(eta,list): eta = [eta] surface_limits = [eta[0]-surface_range,eta[0]+surface_range] speed_limits = [0.0,speed_range] wind_limits = [0, 55] pressure_limits = [966, 1013] friction_bounds = [0.01, 0.04] vorticity_limits = [-1.e-2, 1.e-2] land_bounds = [-10, 50] # ========================================================================== # Plot specifications # ========================================================================== # Limits for plots regions = {'Full Domain': {"xlimits": [claw_data.lower[0], claw_data.upper[0]], "ylimits": [claw_data.lower[1], claw_data.upper[1]], "shrink": 1.0, "figsize": [6.4, 4.8]} } def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) for (name, region_dict) in regions.items(): # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = surge_afteraxes plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,0,0] plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,0,0] # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) # ======================================================================== # Hurricane forcing - Entire Atlantic # ======================================================================== # Friction field plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Manning's N Coefficients" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_friction(plotaxes,bounds=friction_bounds) # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes,bounds=pressure_limits) surgeplot.add_land(plotaxes, bounds=[-10, 500]) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow') surgeplot.add_land(plotaxes, bounds=[-10, 500]) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True stations = [('8518750', 'The Battery, NY'), ('8516945', 'Kings Point, NY'), ('8519483', 'Bergen Point West Reach, NY')] #('8531680','Sandy Hook, NY'), #('n03020','Narrows,NY')] landfall_time = np.datetime64('2012-10-29T23:30') begin_date = datetime.datetime(2012, 10, 28) end_date = datetime.datetime(2012, 10, 31,) def get_actual_water_levels(station_id): # Fetch water levels and tide predictions for given station date_time, water_level, tide = fetch_noaa_tide_data(station_id, begin_date, end_date) # Calculate times relative to landfall seconds_rel_landfall = (date_time - landfall_time) / np.timedelta64(1, 's') # Subtract tide predictions from measured water levels water_level -= tide return seconds_rel_landfall, water_level # def get_actual_current(station_id): # # Fetch currents for given station_name # date_time, water_level, tide, currents = fetch_noaa_tide_data(station_id, # begin_date, end_date) # # # calculate times relative to landfall_time # secs_rel_landfall = (date_time - landfall_time) / np.timedelta64(1, 's') # return secs_rel_landfall, currents # # def calc_currents(cd): # height = cd.q[0,:] # where_zero = np.where(height == 0)[0] # for index in where_zero: # height[index] = 1 # vel_magnitude = (cd.q[1,:]/height)**2 + (cd.q[2,:]/height)**2 # vel_magnitude = vel_magnitude**0.5 # return vel_magnitude def gauge_afteraxes(cd): station_id, station_name = stations[cd.gaugeno-1] seconds_rel_landfall, actual_level = get_actual_water_levels(station_id) axes = plt.gca() #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall) axes.plot(seconds_rel_landfall, actual_level, 'g') # Fix up plot - in particular fix time labels axes.set_title(station_name) axes.set_xlabel('Seconds relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([days2seconds(-2), days2seconds(1)]) axes.set_ylim([0, 4]) axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0, days2seconds(1)]) #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"]) #axes.grid(True) # def current_afterxes(cd): # station_id, station_name = stations[cd.gaugeno-1] # if len(station_id)==6: # seconds_rel_landfall, currents = get_actual_currents(station_id) # # axes = plt.gca() # #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall) # axes.plot(seconds_rel_landfall, currents, 'g') # # # Fix up plot - in particular fix time labels # axes.set_title(station_name) # axes.set_xlabel('Seconds relative to landfall') # axes.set_ylabel('Surface (m)') # axes.set_xlim([days2seconds(-2), days2seconds(1)]) # axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0, days2seconds(1)]) # #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"]) # #axes.grid(True) # # # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Speeds # plotfigure = plotdata.new_plotfigure(name='Currents', figno=400, \ # type='each_gauge') # plotfigure.show = True # plotfigure.clf_each_gauge = True # plotaxes = plotfigure.new_plotaxes() #plotaxes.afteraxes = current_afterxes # plotaxes.axescmd = 'subplot(122)' # try: # plotaxes.xlimits = [amrdata.t0, amrdata.tfinal] # except: # pass # plotaxes.ylimits = surface_limits #plotaxes.title = 'Momenta' # plotaxes.afteraxes = surge.gauge_afteraxes # plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = calc_currents # plotitem.plotstyle = 'r-.' #plotitem = plotaxes.new_plotitem(plot_type='1d_plot') #plotitem.plot_var = 2 #plotitem.plotstyle = 'b-' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'ascii' # Load data from output claw_data = clawdata.ClawInputData(2) claw_data.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function surge_afteraxes = lambda cd: surgeplot.surge_afteraxes( cd, track, plot_direction=False) def plot_coastline(cd): """Load fine coastline for plotting around NYC""" try: # Assumes that at path theres a fine topography file in NetCDF file format path = "/Users/mandli/Dropbox/research/data/topography/atlantic/sandy_bathy/ny_area.nc" topo_file = topotools.Topography(path, topo_type=4) topo_file.read(nc_params={ "x_var": "lon", "y_var": "lat", "z_var": "Band1" }) axes = plt.gca() axes.contour(topo_file.X, topo_file.Y, topo_file.Z, levels=[-0.001, 0.001], colors='k', linestyles='-') except: pass surge_afteraxes(cd) # Color limits surface_range = 4.5 speed_range = 1.0 # speed_range = 1.e-2 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [eta[0] - surface_range, eta[0] + surface_range] speed_limits = [0.0, speed_range] wind_limits = [0, 55] pressure_limits = [966, 1013] friction_bounds = [0.01, 0.04] vorticity_limits = [-1.e-2, 1.e-2] land_bounds = [-10, 50] # ========================================================================== # Plot specifications # ========================================================================== # Limits for plots regions = { 'Full Domain': { "xlimits": [claw_data.lower[0], claw_data.upper[0]], "ylimits": [claw_data.lower[1], claw_data.upper[1]], "shrink": 1.0, "figsize": [6.4, 4.8] }, 'Tri-State Region': { "xlimits": [-74.5, -71.0], "ylimits": [40.0, 41.5], "shrink": 1.0, "figsize": [6.4, 4.8] }, 'NYC': { "xlimits": [-74.2, -73.7], "ylimits": [40.4, 40.85], "shrink": 1.0, "figsize": [6.4, 4.8] } } def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) for (name, region_dict) in regions.items(): # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = plot_coastline # plotaxes.afteraxes = surge_afteraxes # plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0] plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0, 0, 0] # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = region_dict['xlimits'] plotaxes.ylimits = region_dict['ylimits'] plotaxes.afteraxes = plot_coastline surgeplot.add_speed(plotaxes, bounds=speed_limits, shrink=region_dict['shrink']) surgeplot.add_land(plotaxes, bounds=land_bounds) plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0] plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0] # ======================================================================== # Hurricane forcing - Entire Atlantic # ======================================================================== # Friction field plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Manning's N Coefficients" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds) # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes, bounds=[-10, 500]) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Full Domain']['xlimits'] plotaxes.ylimits = regions['Full Domain']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits, plot_type='imshow') surgeplot.add_land(plotaxes, bounds=[-10, 500]) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True stations = [('8518750', 'The Battery, NY'), ('8516945', 'Kings Point, NY'), ('8519483', 'Bergen Point West Reach, NY')] #('8531680','Sandy Hook, NY'), #('n03020','Narrows,NY')] landfall_time = np.datetime64('2012-10-29T23:30') begin_date = datetime.datetime(2012, 10, 28) end_date = datetime.datetime( 2012, 10, 31, ) def get_actual_water_levels(station_id): # Fetch water levels and tide predictions for given station date_time, water_level, tide = fetch_noaa_tide_data( station_id, begin_date, end_date) # Calculate times relative to landfall seconds_rel_landfall = (date_time - landfall_time) / np.timedelta64( 1, 's') # Subtract tide predictions from measured water levels water_level -= tide return seconds_rel_landfall, water_level def gauge_afteraxes(cd): station_id, station_name = stations[cd.gaugeno - 1] seconds_rel_landfall, actual_level = get_actual_water_levels( station_id) axes = plt.gca() #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall) axes.plot(seconds_rel_landfall, actual_level, 'g') # Fix up plot - in particular fix time labels axes.set_title(station_name) axes.set_xlabel('Seconds relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([days2seconds(-2), days2seconds(1)]) axes.set_ylim([0, 4]) axes.set_xticks( [days2seconds(-2), days2seconds(-1), 0, days2seconds(1)]) #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"]) #axes.grid(True) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] color_limits=[0,50] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = {"Atlantic": {"xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8)}, "Atlantic City, NJ": {"xlimits": (-78, -74), "ylimits": (32,36), "figsize": (10.5, 11.5)}, "ChesapeakeBay Shelf": {"xlimits": (-77, -75), "ylimits": (36, 38), "figsize": (5, 6)}, "Manhattan Shelf": {"xlimits": (-75,-73), "ylimits": (38,40), "figsize": (5,6)}, "Sandy Hook, NJ": {"xlimits": (-76,-73), "ylimits": (38,41), "figsize":(5,6)}, "New Haven CT": {"xlimits": (-77,-73), "ylimits": (39,41), "figsize":(5,6)}, "New London CT": {"xlimits": (-74,-70), "ylimits": (39,43), "figsize":(5,6)}, "Boston MA": {"xlimits": (-72,-68), "ylimits": (40,44), "figsize":(5,6)}} for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes,bounds=color_limits) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Atlantic']['xlimits'] plotaxes.ylimits = regions['Atlantic']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-3, 3] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [0,1.5] plotaxes.title = 'Surface' #Gauge Data from NOAA try: gauges = [np.loadtxt('gauge_data_1.txt'), np.loadtxt('gauge_data_2.txt'), np.loadtxt('gauge_data3.txt'), np.loadtxt('gauge_data_4.txt'), np.loadtxt('gauge_data_5.txt'), np.loadtxt('gauge_data_6.txt')] #Legend with Gauge Locations data_names = ["Duke Marine Lab, NC Data from NOAA", "Kiptopeke Beach, NC Data from NOAA", "Atlantic City, NJ Data from NOAA", "Sandy Hook, NJ Data from NOAA", "New London, CT Data from NOAA", "Boston, MA Data from NOAA"] except: print("Add gauge files to directory") def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-3, 3]) axes.set_ylim([0,1.5]) axes.set_xticks([-3, -2, -1, 0, 1, 2, 3]) axes.set_xticklabels([r"$-3$",r"$-2$",r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$"]) axes.grid(True) try: gauge_data=gauges[cd.gaugeno-1] axes.plot(gauge_data[:,0], gauge_data[:,1], label=data_names[cd.gaugeno-1]) axes.legend() except: print('Gauge Data Unavailable') plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [-81, -70] plotaxes.ylimits = [33,45] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 #--------------- # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4, 5, 6] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None, bathy_location=0.15, bathy_angle=0.0, bathy_left=-1.0, bathy_right=-0.2): """Setup the plotting data objects. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. returns plotdata object """ if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data')) def transform_c2p(x, y, x0, y0, theta): return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta), (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta)) def transform_p2c(x, y, x0, y0, theta): return (x * np.cos(theta) + y * np.sin(theta) - x0, -x * np.sin(theta) + y * np.cos(theta) - y0) # Setup bathymetry reference lines with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \ as bathy_geometry_file: bathy_location = float(bathy_geometry_file.readline()) bathy_angle = float(bathy_geometry_file.readline()) x = [0.0, 0.0] y = [0.0, 1.0] x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle) x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle) if abs(x1 - x2) < 10**-3: x = [x1, x1] y = [clawdata.lower[1], clawdata.upper[1]] else: m = (y1 - y2) / (x1 - x2) x[0] = (clawdata.lower[1] - y1) / m + x1 y[0] = clawdata.lower[1] x[1] = (clawdata.upper[1] - y1) / m + x1 y[1] = clawdata.upper[1] ref_lines = [((x[0], y[0]), (x[1], y[1]))] plotdata.clearfigures() plotdata.save_frames = False plotdata.format = 'ascii' # ======================================================================== # Generic helper functions def pcolor_afteraxes(current_data): bathy_ref_lines(current_data) def contour_afteraxes(current_data): axes = plt.gca() pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3], [-300e3, 300e3], 'y') wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def bathy_ref_lines(current_data): axes = plt.gca() for ref_line in ref_lines: x1 = ref_line[0][0] y1 = ref_line[0][1] x2 = ref_line[1][0] y2 = ref_line[1][1] axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1) # ======================================================================== # Axis limits xlimits = [-0.5, 0.5] ylimits = [-0.5, 0.5] eta = [multilayer_data.eta[0], multilayer_data.eta[1]] top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03] internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015] top_speed_limits = [0.0, 0.1] internal_speed_limits = [0.0, 0.03] # ======================================================================== # Surface Elevations plotfigure = plotdata.new_plotfigure(name='Surface') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06]) # ml_plot.add_surface_elevation(plotaxes,1) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5]) ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) # ml_plot.add_surface_elevation(plotaxes,2) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Depths # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Depths', figno=42) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Layer Depth' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1]) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Bottom Layer Depth' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7]) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Water Speed plotfigure = plotdata.new_plotfigure(name='speed') plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.afteraxes = pcolor_afteraxes ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits) ml_plot.add_land(plotaxes, 1) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_speed(plotaxes,2,bounds=[0.0,1e-10]) ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits) # add_speed(plotaxes,2) ml_plot.add_land(plotaxes, 2) # Individual components plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 14)} # Top layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,1)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes, 1) ml_plot.add_land(plotaxes, 1) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,2)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125]) ml_plot.add_y_velocity(plotaxes, 1) ml_plot.add_land(plotaxes, 1) # Bottom layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,3)' plotaxes.afteraxes = pcolor_afteraxes # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10]) ml_plot.add_x_velocity(plotaxes, 2) ml_plot.add_land(plotaxes, 2) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,4)' plotaxes.afteraxes = pcolor_afteraxes # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6]) ml_plot.add_y_velocity(plotaxes, 2) ml_plot.add_land(plotaxes, 2) # ======================================================================== # Profile Plots # Note that these are not currently plotted by default - set # `plotfigure.show = True` is you want this to be plotted plotfigure = plotdata.new_plotfigure(name='profile') plotfigure.show = False # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = [-1.1, 0.1] plotaxes.title = "Profile of depth" plotaxes.afteraxes = profile_afteraxes slice_index = 30 # Internal surface def bathy_profile(current_data): return current_data.x[:, slice_index], b(current_data)[:, slice_index] def lower_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta2(current_data)[slice_index, :] def upper_surface(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ eta1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ eta1(current_data)[slice_index, :] def top_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u1(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u1(current_data)[slice_index, :] def bottom_speed(current_data): if multilayer_data.init_type == 2: return current_data.x[:, slice_index], \ water_u2(current_data)[:, slice_index] elif multilayer_data.init_type == 6: return current_data.y[slice_index, :], \ water_u2(current_data)[slice_index, :] # Bathy plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = bathy_profile plotitem.plot_var = 0 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'k' plotitem.show = True # Internal Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = lower_surface plotitem.plot_var = 7 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = 'b' plotitem.show = True # Upper Interface plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data') plotitem.map_2d_to_1d = upper_surface plotitem.plot_var = 6 plotitem.amr_plotstyle = ['-', '+', 'x'] plotitem.color = (0.2, 0.8, 1.0) plotitem.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Y-Velocity' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = pcolor_afteraxes # Water # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # # plotitem.plot_var = geoplot.surface # plotitem.plot_var = water_v # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'}) # # plotitem.pcolor_cmin = -1.e-10 # # plotitem.pcolor_cmax = 1.e-10 # # plotitem.pcolor_cmin = -2.5 # -3.0 # # plotitem.pcolor_cmax = 2.5 # 3.0 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1,1,1] # Land ml_plot.add_land(plotaxes, 1) # ======================================================================== # Contour plot for surface # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: # Top Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes, plot_type='contour', surface=1, bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5]) ml_plot.add_land(plotaxes, 1, plot_type='contour') # Internal Surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes ml_plot.add_surface_elevation(plotaxes, plot_type='contour', surface=2, bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5]) ml_plot.add_land(plotaxes, 2, plot_type='contour') # ======================================================================== # Contour plot for speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Current' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = contour_afteraxes # Surface plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = ml_plot.water_speed_depth_ave plotitem.kwargs = {'linewidths': 1} # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0] plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0] plotitem.amr_contour_show = [1, 1, 1] plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] plotitem.amr_contour_colors = 'k' # plotitem.amr_contour_colors = ['r','k','b'] # color on each level # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.show = True # Land plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.plot_var = geoplot.land plotitem.contour_nlevels = 40 plotitem.contour_min = 0.0 plotitem.contour_max = 100.0 plotitem.amr_contour_colors = ['g'] # color on each level plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = 0 plotitem.amr_patchedges_show = 0 plotitem.show = True # ======================================================================== # Grid Cells # ======================================================================== # Figure for grid cells plotfigure = plotdata.new_plotfigure(name='cells', figno=2) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.title = 'Grid patches' plotaxes.scaled = True # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='2d_patch') plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee'] plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] # ======================================================================== # Vorticity Plot # ======================================================================== # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17) # plotfigure.show = False # plotaxes = plotfigure.new_plotaxes() # plotaxes.title = "Vorticity" # plotaxes.scaled = True # plotaxes.xlimits = xlimits # plotaxes.ylimits = ylimits # plotaxes.afteraxes = pcolor_afteraxes # # # Vorticity # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') # plotitem.plot_var = 9 # plotitem.imshow_cmap = plt.get_cmap('PRGn') # # plotitem.pcolor_cmap = plt.get_cmap('PuBu') # # plotitem.pcolor_cmin = 0.0 # # plotitem.pcolor_cmax = 6.0 # plotitem.imshow_cmin = -1.e-2 # plotitem.imshow_cmax = 1.e-2 # plotitem.add_colorbar = True # plotitem.amr_celledges_show = [0,0,0] # plotitem.amr_patchedges_show = [1] # # # Land # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') # plotitem.plot_var = geoplot.land # plotitem.pcolor_cmap = geoplot.land_colors # plotitem.pcolor_cmin = 0.0 # plotitem.pcolor_cmax = 80.0 # plotitem.add_colorbar = False # plotitem.amr_celledges_show = [0,0,0] # ======================================================================== # Figures for gauges # Top plotfigure = plotdata.new_plotfigure(name='Surface & topo', type='each_gauge', figno=301) plotfigure.show = True plotfigure.clf_each_gauge = True plotfigure.kwargs = {'figsize': (14, 4)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = top_surface_limits plotaxes.title = 'Top Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 6 plotitem.plotstyle = 'b-' # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.xlimits = [0.0, 1.0] plotaxes.ylimits = internal_surface_limits plotaxes.title = 'Bottom Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 7 plotitem.plotstyle = 'b-' # ========================================================================= # Other plots # Gauge Locations - Enable to see where gauges are located def locations_afteraxes(current_data, gaugenos='all'): gaugetools.plot_gauge_locations(current_data.plotdata, gaugenos=gaugenos, format_string='kx', add_labels=True) pcolor_afteraxes(current_data) plotfigure = plotdata.new_plotfigure(name='Gauge Locations') plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1, 2, 1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1, 2, 2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.afteraxes = locations_afteraxes ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) ml_plot.add_land(plotaxes, 2) # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = surgedata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = surgedata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Calculate landfall time, off by a day, maybe leap year issue? landfall_dt = datetime.datetime(2008, 9, 13, 7) - datetime.datetime( 2008, 1, 1, 0) landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds # Color limits surface_range = 5.0 speed_range = 3.0 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [eta[0] - surface_range, eta[0] + surface_range] # surface_contours = numpy.linspace(-surface_range, surface_range,11) surface_contours = [ -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 ] speed_limits = [0.0, speed_range] speed_contours = numpy.linspace(0.0, speed_range, 13) wind_limits = [0, 64] # wind_limits = [-0.002,0.002] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] # vorticity_limits = [-1.e-2,1.e-2] # ========================================================================== # ========================================================================== # Plot specifications # ========================================================================== # ========================================================================== #----------------------------------------- # Some global kml flags #----------------------------------------- plotdata.kml_name = "Ike" plotdata.kml_starttime = [2008, 9, 3, 15, 0, 0] # Time of event in UTC [None] plotdata.kml_tz_offset = 5 # Time zone offset (in hours) of event. [None] plotdata.kml_index_fname = "Ike" # name for .kmz and .kml files ["_GoogleEarth"] # Set to path where KMZ files will be stored; KML file will then # link to this path. # plotdata.kml_publish = 'http://www.domain.edu/path/to/kmz/files' # ======================================================================== # Entire Gulf # ======================================================================== gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]] gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]] gulf_shrink = 1.0 # -------------------------- # Surface - entire gulf # -------------------------- plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain', figno=0) plotfigure.show = True plotfigure.use_for_kml = True plotfigure.kml_use_for_initial_view = True # These override axes limits set below in plotitems plotfigure.kml_xlimits = gulf_xlimits plotfigure.kml_ylimits = gulf_ylimits # Resolution - needs to be set carefully for the transparent colormap rcl = 40 plotfigure.kml_dpi = rcl * 2 plotfigure.kml_figsize = [11.6, 9.6] plotfigure.kml_tile_images = False # Tile images for faster loading. Requires GDAL [False] plotaxes = plotfigure.new_plotaxes() plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.googleearth_transparent plotitem.pcolor_cmin = -surface_range plotitem.pcolor_cmax = surface_range def kml_colorbar(filename): cmin = -surface_range cmax = surface_range geoplot.kml_build_colorbar(filename, geoplot.googleearth_transparent, cmin, cmax) plotfigure.kml_colorbar = kml_colorbar # -------------------------- # Water Speed - entire gulf # -------------------------- plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain', figno=1) plotfigure.show = True plotfigure.use_for_kml = True plotfigure.kml_use_for_initial_view = False # These override axes limits set below in plotitems plotfigure.kml_xlimits = gulf_xlimits plotfigure.kml_ylimits = gulf_ylimits plotfigure.kml_figsize = [11.6, 9.6] plotfigure.kml_dpi = 80 # size not so important with contourf plotfigure.kml_tile_images = False # Tile images for faster loading. Requires GDAL [False] # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf') plotitem.plot_var = geoplot.surface_or_depth plotitem.contour_levels = speed_contours plotitem.fill_cmin = min(speed_contours) plotitem.fill_cmax = max(speed_contours) cmap = plt.get_cmap('OrRd') cmap._rgba_under = (0.0, 0.0, 0.0, 0.0) plotitem.fill_cmap = cmap def cbar_speeds(filename): cmin = min(speed_contours) cmax = max(speed_contours) geoplot.kml_build_colorbar(filename, cmap, cmin, cmax) plotfigure.kml_colorbar = cbar_speeds # ======================================================================== # Houston/Galveston # ======================================================================== houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)] houston_ylimits = [29.1, 29.0 + 55.0 / 60.0] houston_shrink = 0.9 #No need to worry about fitting the plot exactly if we are not using # the transparent colormap with pcolor. #num_cells = [116, 96] #dx = (gulf_xlimits[1] - float(gulf_xlimits[0]))/num_cells[0] # = 0.25 #dy = (gulf_ylimits[1] - float(gulf_ylimits[0]))/num_cells[1] # = 0.25 #houston_xlimits = [gulf_xlimits[0] + 14*dx, gulf_xlimits[0] + 21*dx] # [-95.25, -94.5] #houston_ylimits = [gulf_ylimits[0] + 82*dy, gulf_ylimits[0] + 88*dy] # [-95.25, -94.5] #figsize = [(21-14)*dx,(88-82)*dy] # relative to [11.6, 9.6] occupied by larger grid figsize = [ houston_xlimits[1] - houston_xlimits[0], houston_ylimits[1] - houston_ylimits[0] ] dpi = 400 # -------------------------------------- # Surface Elevations - Houston/Galveston # -------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston', figno=2) plotfigure.show = True plotfigure.use_for_kml = True plotfigure.kml_xlimits = houston_xlimits plotfigure.kml_ylimits = houston_ylimits plotfigure.kml_dpi = dpi # data is not more resolve than this plotfigure.kml_figsize = figsize plotfigure.kml_tile_images = False # pcolor for water. plotaxes = plotfigure.new_plotaxes() plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf') plotitem.contour_levels = surface_contours plotitem.fill_cmin = min(surface_contours) plotitem.fill_cmax = max(surface_contours) # what is the colormap used here? #plotfigure.kml_colorbar = cbar_houston # -------------------------------- # Water Speed - Houston/Galveston # -------------------------------- plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston', figno=3) plotfigure.show = True plotfigure.use_for_kml = True # These override axes limits set below in plotitems plotfigure.kml_xlimits = houston_xlimits plotfigure.kml_ylimits = houston_ylimits plotfigure.kml_figsize = figsize plotfigure.kml_dpi = dpi # data is not more resolve than this plotfigure.kml_tile_images = False # Tile images for faster loading. Requires GDAL [False] # Water plotaxes = plotfigure.new_plotaxes() plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf') plotitem.plot_var = geoplot.surface_or_depth plotitem.contour_levels = speed_contours plotitem.fill_cmin = min(speed_contours) plotitem.fill_cmax = max(speed_contours) cmap = plt.get_cmap('OrRd') cmap._rgba_under = (0.0, 0.0, 0.0, 0.0) plotitem.fill_cmap = cmap # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # plotfigure.kwargs['figsize'] = (16,10) def gauge_after_axes(cd): if cd.gaugeno in [1, 2, 3, 4]: axes = plt.gca() # # Add Kennedy gauge data # kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]] # axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])), # kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-', # label='Gauge Data') # Add GeoClaw gauge data geoclaw_gauge = cd.gaugesoln axes.plot(seconds2days(geoclaw_gauge.t - date2seconds(gauge_landfall[1])), geoclaw_gauge.q[3, :] + gauge_surface_offset[0], 'b--', label="GeoClaw") # Add ADCIRC gauge data # ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']] # axes.plot(seconds2days(ADCIRC_gauge[:,0] - gauge_landfall[2]), # ADCIRC_gauge[:,1] + gauge_surface_offset[1], 'r-.', label="ADCIRC") # Fix up plot axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) axes.legend() plt.hold(False) surgeplot.gauge_afteraxes(cd) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] #plotaxes.xlabel = "Days from landfall" #plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' plotaxes.afteraxes = gauge_after_axes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = [0, 1, 2, 3] # list of figures to print plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.html = False # create html files of plots? plotdata.latex = False # create latex file of plots? plotdata.kml = True return plotdata
def setplot(plotdata): r"""Setplot function for surge plotting""" plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' fig_num_counter = surge.figure_counter() # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surge.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Calculate landfall time, off by a day, maybe leap year issue? landfall_dt = datetime.datetime(2008, 9, 13, 7) - datetime.datetime( 2008, 1, 1, 0) landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds # Set afteraxes function surge_afteraxes = lambda cd: surge.surge_afteraxes( cd, track, landfall, plot_direction=False) # Color limits surface_range = 5.0 speed_range = 3.0 eta = physics.sea_level if not isinstance(eta, list): eta = [eta] surface_limits = [eta[0] - surface_range, eta[0] + surface_range] # surface_contours = numpy.linspace(-surface_range, surface_range,11) surface_contours = [ -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 ] surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] surface_labels = [str(value) for value in surface_ticks] speed_limits = [0.0, speed_range] speed_contours = numpy.linspace(0.0, speed_range, 13) speed_ticks = [0, 1, 2, 3] speed_labels = [str(value) for value in speed_ticks] wind_limits = [0, 64] # wind_limits = [-0.002,0.002] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] # vorticity_limits = [-1.e-2,1.e-2] # def pcolor_afteraxes(current_data): # surge_afteraxes(current_data) # surge.gauge_locations(current_data,gaugenos=[6]) def contour_afteraxes(current_data): surge_afteraxes(current_data) def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None): axes.plotitem_dict[item_name].colorbar_ticks = ticks axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels # ========================================================================== # ========================================================================== # Plot specifications # ========================================================================== # ========================================================================== # ======================================================================== # Entire Gulf # ======================================================================== gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]] gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]] gulf_shrink = 0.9 def gulf_after_axes(cd): if article: plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) else: plt.subplots_adjust(left=0.05, bottom=0.07, right=1.00, top=0.93) surge_afteraxes(cd) # # Surface # plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes surge.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=gulf_shrink) surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0) # surge.add_bathy_contours(plotaxes) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 1, 1, 1, 1, 1, 1, 1, 1 ] # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes # Speed surge.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=gulf_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # Land surge.add_land(plotaxes) surge.add_bathy_contours(plotaxes) # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction', figno=fig_num_counter.get_counter()) plotfigure.show = friction_data.variable_friction and True def friction_after_axes(cd): plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surge.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # ======================================================================== # LaTex Shelf # ======================================================================== latex_xlimits = [-97.5, -88.5] latex_ylimits = [27.5, 30.5] latex_shrink = 1.0 def latex_after_axes(cd): if article: plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86) # else: # plt.subplots_adjust(right=1.0) surge_afteraxes(cd) # # Surface # plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf', figno=fig_num_counter.get_counter()) plotfigure.show = True if article: plotfigure.kwargs = {'figsize': (8, 2.7)} #, 'facecolor':'none'} else: plotfigure.kwargs = {'figsize': (9, 2.7)} #, 'facecolor':'none'} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = latex_xlimits plotaxes.ylimits = latex_ylimits plotaxes.afteraxes = latex_after_axes surge.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=latex_shrink) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall) else: add_custom_colorbar_ticks_to_axes( plotaxes, 'surface', [-5, -2.5, 0, 2.5, 5.0], ["-5.0", "-2.5", " 0", " 2.5", " 5.0"]) # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd') # surge.add_surface_elevation(plotaxes,plot_type='contour') surge.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf', figno=fig_num_counter.get_counter()) plotfigure.show = True if article: plotfigure.kwargs = {'figsize': (8, 2.7)} #, 'facecolor':'none'} else: plotfigure.kwargs = {'figsize': (9, 2.7)} #, 'facecolor':'none'} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = latex_xlimits plotaxes.ylimits = latex_ylimits plotaxes.afteraxes = latex_after_axes surge.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=latex_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # surge.add_surface_elevation(plotaxes,plot_type='contour') surge.add_land(plotaxes) # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0] plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # ======================================================================== # Houston/Galveston # ======================================================================== houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)] houston_ylimits = [29.1, 29.0 + 55.0 / 60.0] houston_shrink = 0.9 def houston_after_axes(cd): if article: plt.subplots_adjust(left=0.05, bottom=0.07, right=0.99, top=0.92) else: plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) # surge.gauge_locations(cd) # # Surface Elevations # plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston', figno=fig_num_counter.get_counter()) plotfigure.show = True # if article: # plotfigure.kwargs['figsize'] = # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = houston_xlimits plotaxes.ylimits = houston_ylimits plotaxes.afteraxes = houston_after_axes surge.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=houston_shrink) if article: plotaxes.plotitem_dict['surface'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) surge.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # surge.add_bathy_contours(plotaxes) # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # # Water Speed # plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents' plotaxes.scaled = True plotaxes.xlimits = houston_xlimits plotaxes.ylimits = houston_ylimits plotaxes.afteraxes = houston_after_axes surge.add_speed(plotaxes, plot_type='contourf', contours=speed_contours, shrink=houston_shrink) if article: plotaxes.plotitem_dict['speed'].add_colorbar = False else: add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) surge.add_land(plotaxes) # surge.add_bathy_contours(plotaxes) # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,1,1,1,1,1] # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,1,1,1,1,1] plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # ========================== # Hurricane Forcing fields # ========================== # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure', figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Pressure Field" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True surge.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink) surge.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed', figno=fig_num_counter.get_counter()) plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Wind Field" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True surge.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor', shrink=gulf_shrink) surge.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \ type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # plotfigure.kwargs['figsize'] = (16,10) def gauge_after_axes(cd): if cd.gaugeno in [1, 2, 3, 4]: axes = plt.gca() # Add Kennedy gauge data kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]] axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])), kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-', label='Gauge Data') # Add GeoClaw gauge data geoclaw_gauge = cd.gaugesoln axes.plot(seconds2days(geoclaw_gauge.t - date2seconds(gauge_landfall[1])), geoclaw_gauge.q[3, :] + gauge_surface_offset[0], 'b--', label="GeoClaw") # Add ADCIRC gauge data ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']] axes.plot(seconds2days(ADCIRC_gauge[:, 0] - gauge_landfall[2]), ADCIRC_gauge[:, 1] + gauge_surface_offset[1], 'r-.', label="ADCIRC") # Fix up plot axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 1]) axes.set_ylim([-1, 5]) axes.set_xticks([-2, -1, 0, 1]) axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"]) axes.grid(True) axes.legend() plt.hold(False) # surge.gauge_afteraxes(cd) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 1] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 5] plotaxes.title = 'Surface' plotaxes.afteraxes = gauge_after_axes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # ===================== # Gauge Location Plot # ===================== gauge_xlimits = [-95.5, -94] gauge_ylimits = [29.0, 30.0] gauge_location_shrink = 0.75 def gauge_after_axes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) surge.gauge_locations(cd, gaugenos=[1, 2, 3, 4]) plt.title("Gauge Locations") plotfigure = plotdata.new_plotfigure(name='Gauge Locations', figno=fig_num_counter.get_counter()) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Surface' plotaxes.scaled = True plotaxes.xlimits = gauge_xlimits plotaxes.ylimits = gauge_ylimits plotaxes.afteraxes = gauge_after_axes surge.add_surface_elevation(plotaxes, plot_type='contourf', contours=surface_contours, shrink=gauge_location_shrink) # surge.add_surface_elevation(plotaxes, plot_type="contourf") add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) surge.add_land(plotaxes) # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0] # plotaxes.plotitem_dict['surface'].add_colorbar = False # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet') # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg') # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0 # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0 plotaxes.plotitem_dict['surface'].amr_patchedges_show = [ 0, 0, 0, 0, 0, 0, 0 ] plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0] # ============================================================== # Debugging Plots, only really work if using interactive plots # ============================================================== # # Water Velocity Components # plotfigure = plotdata.new_plotfigure( name='Velocity Components - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = False # X-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(121)" plotaxes.title = 'Velocity, X-Component' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surge.water_u plotitem.pcolor_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.pcolor_cmin = -speed_limits[1] plotitem.pcolor_cmax = speed_limits[1] plotitem.colorbar_shrink = gulf_shrink plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] surge.add_land(plotaxes) # Y-Component plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = "subplot(122)" plotaxes.title = 'Velocity, Y-Component' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surge.water_v plotitem.pcolor_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.pcolor_cmin = -speed_limits[1] plotitem.pcolor_cmax = speed_limits[1] plotitem.colorbar_shrink = gulf_shrink plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1] surge.add_land(plotaxes) # # Depth # plotfigure = plotdata.new_plotfigure(name='Depth - Entire Domain', figno=fig_num_counter.get_counter()) plotfigure.show = False # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'depth' plotaxes.scaled = True plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.afteraxes = gulf_after_axes plotitem = plotaxes.new_plotitem(plot_type='2d_imshow') plotitem.plot_var = 0 plotitem.imshow_cmap = colormaps.make_colormap({ 1.0: 'r', 0.5: 'w', 0.0: 'b' }) plotitem.imshow_cmin = 0 plotitem.imshow_cmax = 100 plotitem.colorbar_shrink = gulf_shrink plotitem.add_colorbar = True plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 1, 1, 1, 1] # Surge field plotfigure = plotdata.new_plotfigure(name='Surge Field', figno=fig_num_counter.get_counter()) plotfigure.show = ((surge_data.wind_forcing or surge_data.pressure_forcing) and False) plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Storm Surge Source Term S" plotaxes.afteraxes = gulf_after_axes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surge.pressure_field + 1 plotitem.pcolor_cmap = plt.get_cmap('PuBu') plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 1e-3 plotitem.add_colorbar = True plotitem.colorbar_shrink = gulf_shrink plotitem.colorbar_label = "Source Strength" plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 0, 0] surge.add_land(plotaxes) plotfigure = plotdata.new_plotfigure(name='Friction/Coriolis Source', figno=fig_num_counter.get_counter()) plotfigure.show = False plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = gulf_xlimits plotaxes.ylimits = gulf_ylimits plotaxes.title = "Friction/Coriolis Source" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = surge.pressure_field + 2 plotitem.pcolor_cmap = plt.get_cmap('PuBu') plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 1e-3 plotitem.add_colorbar = True plotitem.colorbar_shrink = gulf_shrink plotitem.colorbar_label = "Source Strength" plotitem.amr_celledges_show = [0, 0, 0] plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 0, 0] surge.add_land(plotaxes) #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: if article: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = [54, 60, 66, 72, 78, 84] # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = [4, 5, 6, 7, 10, 3, 300] # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = False # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? else: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ import os import numpy as np import matplotlib.pyplot as plt from clawpack.visclaw import geoplot, gaugetools, colormaps import clawpack.clawutil.data as clawutil import clawpack.amrclaw.data as amrclaw import clawpack.geoclaw.data import clawpack.geoclaw.multilayer.plot as ml_plot if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() from numpy import linspace plotdata.clearfigures() # clear any old figures,axes,items data plotdata.save_frames = False # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) amrdata = amrclaw.AmrclawInputData(clawdata) amrdata.read(os.path.join(plotdata.outdir, 'amr.data')) geodata = clawpack.geoclaw.data.GeoClawData() geodata.read(os.path.join(plotdata.outdir, 'geoclaw.data')) multilayer_data = clawpack.geoclaw.data.MultilayerData() multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data')) # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) # ======================================================================== # Generic helper functions # ======================================================================== def pcolor_afteraxes(current_data): # bathy_ref_lines(current_data) gauge_locations(current_data) def contour_afteraxes(current_data): # gauge_locations(current_data) # m_to_km_labels() plt.hold(True) pos = -80.0 * (23e3 / 180) + 500e3 - 5e3 plt.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3], [-300e3, 300e3], 'y') plt.hold(False) wind_contours(current_data) bathy_ref_lines(current_data) def profile_afteraxes(current_data): pass def gauge_locations(current_data, gaugenos='all'): plt.hold(True) gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos=gaugenos, format_string='kx', add_labels=True) plt.hold(False) # ======================================================================== # Axis limits # xlimits = [amrdata.xlower,amrdata.xupper] xlimits = [-100.0, 100.0] # ylimits = [amrdata.ylower,amrdata.yupper] ylimits = [-100.0, 100.0] eta = [multilayer_data.eta[0], multilayer_data.eta[1]] top_surface_limits = [eta[0] - 10, eta[0] + 10] internal_surface_limits = [eta[1] - 5, eta[1] + 5] depth_limits = [0.0, 0.4] top_speed_limits = [0.0, 0.1] internal_speed_limits = [0.0, 0.03] # ======================================================================== # Surface Elevations # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) plotfigure.show = True plotfigure.kwargs = {'figsize': (14, 4)} # Top surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Top Surface' plotaxes.axescmd = 'subplot(1,2,1)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits ml_plot.add_inundation(plotaxes, 1, bounds=depth_limits) ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits) ml_plot.add_land(plotaxes, 1) # Bottom surface plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Internal Surface' plotaxes.axescmd = 'subplot(1,2,2)' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits ml_plot.add_inundation(plotaxes, 2, bounds=depth_limits) ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits) ml_plot.add_colorbar = True ml_plot.add_land(plotaxes, 2) # ======================================================================== # Figure for cross section # ======================================================================== plotfigure = plotdata.new_plotfigure(name='cross-section', figno=4) plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.title = 'Cross section at y=0' ml_plot.add_cross_section(plotaxes, 1) ml_plot.add_cross_section(plotaxes, 2) ml_plot.add_land_cross_section(plotaxes) # ======================================================================== # Water Speed # ======================================================================== plotfigure = plotdata.new_plotfigure(name='speed', figno=1) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 4)} # Top layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Top Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,1)' ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits) ml_plot.add_land(plotaxes, 1) # Bottom layer speed plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Currents - Bottom Layer' plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(1,2,2)' ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits) ml_plot.add_land(plotaxes, 2) # Individual components plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401) plotfigure.show = False plotfigure.kwargs = {'figsize': (14, 14)} # Top layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,1)' ml_plot.add_x_velocity(plotaxes, 1) ml_plot.add_land(plotaxes, 1) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Top Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,2)' ml_plot.add_y_velocity(plotaxes, 1) ml_plot.add_land(plotaxes, 1) # Bottom layer plotaxes = plotfigure.new_plotaxes() plotaxes.title = "X-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,3)' ml_plot.add_x_velocity(plotaxes, 2) ml_plot.add_land(plotaxes, 2) plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Y-Velocity - Bottom Layer" plotaxes.scaled = True plotaxes.xlimits = xlimits plotaxes.ylimits = ylimits plotaxes.axescmd = 'subplot(2,2,4)' ml_plot.add_y_velocity(plotaxes, 2) ml_plot.add_land(plotaxes, 2) #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False def gaugetopo(current_data): q = current_data.q h = q[0, :] eta = q[3, :] topo = eta - h return topo plotitem.plot_var = gaugetopo plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend, xticks, floor, axis, xlabel t = current_data.t gaugeno = current_data.gaugeno if gaugeno == 32412: try: plot(TG32412[:, 0], TG32412[:, 1], 'r') legend(['GeoClaw', 'Obs'], loc='lower right') except: pass axis((0, t.max(), -0.3, 0.3)) plot(t, 0 * t, 'k') n = int(floor(t.max() / 3600.) + 2) xticks([3600 * i for i in range(n)], ['%i' % i for i in range(n)]) xlabel('time (hours)') #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'ascii' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [-5.0, 5.0] speed_limits = [0.0, 3.0] wind_limits = [0, 64] pressure_limits = [935, 1013] friction_bounds = [0.01, 0.04] def friction_after_axes(cd): plt.title(r"Manning's $n$ Coefficient") # ========================================================================== # Plot specifications # ========================================================================== regions = { "Gulf": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (6.4, 4.8) }, "Long Island": { "xlimits": (-74.5, -71.5), "ylimits": (40, 41.5), "figsize": (8, 2.7) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # # Friction field # plotfigure = plotdata.new_plotfigure(name='Friction') plotfigure.show = friction_data.variable_friction and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] # plotaxes.title = "Manning's N Coefficient" plotaxes.afteraxes = friction_after_axes plotaxes.scaled = True surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9) plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['friction'].colorbar_label = "$n$" # # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Gulf']['xlimits'] plotaxes.ylimits = regions['Gulf']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2, 3.75] # plotaxes.xlabel = "Days from landfall" # plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [0, 4] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # fetch real data noaaArr = [ "8557380", "8639348", "8662245", "2695540", "8531680", "8510560" ] gaugeNumber = cd.gaugeno if (gaugeNumber < 7): # only looking at gauge 1-6 because rest of data not from NOAA Gauges realData = geoutil.fetch_noaa_tide_data( noaaArr[gaugeNumber - 1], datetime.datetime(2015, 9, 30, hour=12), datetime.datetime(2015, 10, 6, hour=6)) values = realData[1] - realData[2] # de-tide NOAA data times = [] for time in realData[0]: times.append( (time - numpy.datetime64("2015-10-02T12:00")).astype(float) / 1440) plt.plot(times, values, color="g", label="real") # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2, 3.75]) axes.set_ylim([0, 4]) axes.set_xticks([-2, -1, 0, 1, 2, 3]) axes.set_xticklabels( [r"$-2$", r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') # plotitem.plot_var = 3 # plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_1_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[1], format_string='ko', add_labels=True) def gauge_2_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[2], format_string='ko', add_labels=True) def gauge_3_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[3], format_string='ko', add_labels=True) def gauge_4_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[4], format_string='ko', add_labels=True) def gauge_5_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[5], format_string='ko', add_labels=True) def gauge_6_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[6], format_string='ko', add_labels=True) def gauge_7_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[8], format_string='ko', add_labels=True) def gauge_8_afteraxes(cd): plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos=[9], format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge 1") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 1' plotaxes.scaled = True plotaxes.xlimits = [-75.5, -74.75] plotaxes.ylimits = [38.25, 39.25] plotaxes.afteraxes = gauge_1_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 2") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 2' plotaxes.scaled = True plotaxes.xlimits = [-76.75, -75.5] plotaxes.ylimits = [36.5, 37.5] plotaxes.afteraxes = gauge_2_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 3") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 3' plotaxes.scaled = True plotaxes.xlimits = [-79.5, -79] plotaxes.ylimits = [33, 33.5] plotaxes.afteraxes = gauge_3_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 4") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 4' plotaxes.scaled = True plotaxes.xlimits = [-65.25, -64.25] plotaxes.ylimits = [31.75, 32.5] plotaxes.afteraxes = gauge_4_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 5") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 5' plotaxes.scaled = True plotaxes.xlimits = [-74.5, -73.5] plotaxes.ylimits = [40, 40.75] plotaxes.afteraxes = gauge_5_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 6") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 6' plotaxes.scaled = True plotaxes.xlimits = [-72.5, -71.5] plotaxes.ylimits = [40.5, 41.5] plotaxes.afteraxes = gauge_6_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 7") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 7' plotaxes.scaled = True plotaxes.xlimits = [-75.5, -74] plotaxes.ylimits = [23, 24.5] plotaxes.afteraxes = gauge_7_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 plotfigure = plotdata.new_plotfigure(name="Gauge 8") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge 8' plotaxes.scaled = True plotaxes.xlimits = [-74.75, -73.5] plotaxes.ylimits = [21.75, 23.25] plotaxes.afteraxes = gauge_8_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2, 3, 4, 5, 6, 7, 8] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata
def setplot(plotdata=None): """""" if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() # clear any old figures,axes,items data plotdata.clearfigures() plotdata.format = 'binary' # Load data from output clawdata = clawutil.ClawInputData(2) clawdata.read(os.path.join(plotdata.outdir, 'claw.data')) physics = geodata.GeoClawData() physics.read(os.path.join(plotdata.outdir, 'geoclaw.data')) surge_data = geodata.SurgeData() surge_data.read(os.path.join(plotdata.outdir, 'surge.data')) friction_data = geodata.FrictionData() friction_data.read(os.path.join(plotdata.outdir, 'friction.data')) # Load storm track track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track')) # Set afteraxes function def surge_afteraxes(cd): surgeplot.surge_afteraxes(cd, track, plot_direction=False, kwargs={"markersize": 4}) # Color limits surface_limits = [physics.sea_level - 5.0, physics.sea_level + 5.0] surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] surface_labels = [str(value) for value in surface_ticks] speed_limits = [0.0, 3.0] speed_ticks = [0, 1, 2, 3] speed_labels = [str(value) for value in speed_ticks] wind_limits = [0, 66] pressure_limits = [909, 1013] friction_bounds = [0.01, 0.04] def add_custom_colorbar_ticks_to_axes(axes, item_name, ticks, tick_labels=None): """Adjust colorbar ticks and labels""" axes.plotitem_dict[item_name].colorbar_ticks = ticks axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels def gulf_after_axes(cd): # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) surge_afteraxes(cd) def latex_after_axes(cd): # plt.subplot_adjust() surge_afteraxes(cd) def friction_after_axes(cd): # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96) plt.title(r"Manning's $n$ Coefficient") # surge_afteraxes(cd) # ========================================================================== # Plot specifications # ========================================================================== regions = { "Coast": { "xlimits": (clawdata.lower[0], clawdata.upper[0]), "ylimits": (clawdata.lower[1], clawdata.upper[1]), "figsize": (8, 7.5) }, "Zhapo Station": { "xlimits": (111.71666667, 111.91666667), "ylimits": (21.48333333, 21.68333333), "figsize": (6, 6) }, "Landfall": { "xlimits": (112.26, 112.86), "ylimits": (21.3, 21.7), "figsize": (6, 4) }, "Quarry Bay": { "xlimits": (114.11333333, 114.31333333), "ylimits": (22.19111111, 22.39111111), "figsize": (6, 6) } } for (name, region_dict) in regions.items(): # Surface Figure plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Surface" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks, surface_labels) # Speed Figure plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name) plotfigure.kwargs = {"figsize": region_dict['figsize']} plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Currents" plotaxes.xlimits = region_dict["xlimits"] plotaxes.ylimits = region_dict["ylimits"] plotaxes.afteraxes = surge_afteraxes surgeplot.add_speed(plotaxes, bounds=speed_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks, speed_labels) # Hurricane Forcing fields # # Pressure field plotfigure = plotdata.new_plotfigure(name='Pressure') plotfigure.show = surge_data.pressure_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Coast']['xlimits'] plotaxes.ylimits = regions['Coast']['ylimits'] plotaxes.title = "Pressure Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_pressure(plotaxes, bounds=pressure_limits) surgeplot.add_land(plotaxes) # Wind field plotfigure = plotdata.new_plotfigure(name='Wind Speed') plotfigure.show = surge_data.wind_forcing and True plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = regions['Coast']['xlimits'] plotaxes.ylimits = regions['Coast']['ylimits'] plotaxes.title = "Wind Field" plotaxes.afteraxes = surge_afteraxes plotaxes.scaled = True surgeplot.add_wind(plotaxes, bounds=wind_limits) surgeplot.add_land(plotaxes) # ======================================================================== # Figures for gauges # ======================================================================== plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300, type='each_gauge') plotfigure.show = True plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = [-2.25, 0.75] #plotaxes.xlabel = "Days from landfall" #plotaxes.ylabel = "Surface (m)" plotaxes.ylimits = [-1, 4] plotaxes.title = 'Surface' def gauge_afteraxes(cd): axes = plt.gca() surgeplot.plot_landfall_gauge(cd.gaugesoln, axes) # Fix up plot - in particular fix time labels axes.set_title('Station %s' % cd.gaugeno) axes.set_xlabel('Days relative to landfall') axes.set_ylabel('Surface (m)') axes.set_xlim([-2.25, 0.75]) axes.set_ylim([-1, 4]) axes.set_xticks([-2.25, -1.25, -0.25, 0.75]) axes.set_xticklabels([r"$-2.25$", r"$-1.25$", r"$-0.25$", r"$0.75$"]) axes.grid(True) plotaxes.afteraxes = gauge_afteraxes # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') #plotitem.plot_var = 3 #plotitem.plotstyle = 'b-' # # Gauge Location Plot # def gauge_location_afteraxes(cd): #plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97) plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.92) surge_afteraxes(cd) gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all', format_string='ko', add_labels=True) plotfigure = plotdata.new_plotfigure(name="Gauge Locations") plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = 'Gauge Locations' plotaxes.scaled = True plotaxes.xlimits = [111.0, 115.0] plotaxes.ylimits = [21.0, 22.5] plotaxes.afteraxes = gauge_location_afteraxes surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits) surgeplot.add_land(plotaxes) plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10 plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10 # ----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = [1, 2] # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # parallel plotting return plotdata