Пример #1
0
def setplot(plotdata=None,
            bathy_location=0.15,
            bathy_angle=0.0,
            bathy_left=-1.0,
            bathy_right=-0.2):
    """Setup the plotting data objects.

    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    returns plotdata object

    """

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    def transform_c2p(x, y, x0, y0, theta):
        return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta),
                (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta))

    def transform_p2c(x, y, x0, y0, theta):
        return (x * np.cos(theta) + y * np.sin(theta) - x0,
                -x * np.sin(theta) + y * np.cos(theta) - y0)

    # Setup bathymetry reference lines
    with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \
            as bathy_geometry_file:
        bathy_location = float(bathy_geometry_file.readline())
        bathy_angle = float(bathy_geometry_file.readline())
    x = [0.0, 0.0]
    y = [0.0, 1.0]
    x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle)
    x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle)

    if abs(x1 - x2) < 10**-3:
        x = [x1, x1]
        y = [clawdata.lower[1], clawdata.upper[1]]
    else:
        m = (y1 - y2) / (x1 - x2)
        x[0] = (clawdata.lower[1] - y1) / m + x1
        y[0] = clawdata.lower[1]
        x[1] = (clawdata.upper[1] - y1) / m + x1
        y[1] = clawdata.upper[1]
    ref_lines = [((x[0], y[0]), (x[1], y[1]))]

    plotdata.clearfigures()
    plotdata.save_frames = False

    # ========================================================================
    #  Generic helper functions
    def pcolor_afteraxes(current_data):
        bathy_ref_lines(current_data)

    def contour_afteraxes(current_data):
        axes = plt.gca()
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                  [-300e3, 300e3], 'y')
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def bathy_ref_lines(current_data):
        axes = plt.gca()
        for ref_line in ref_lines:
            x1 = ref_line[0][0]
            y1 = ref_line[0][1]
            x2 = ref_line[1][0]
            y2 = ref_line[1][1]
            axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1)

    # ========================================================================
    # Axis limits
    xlimits = [-0.5, 0.5]
    ylimits = [-0.5, 0.5]
    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]
    top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03]
    internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # ========================================================================
    #  Surface Elevations
    plotfigure = plotdata.new_plotfigure(name='Surface')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Water Speed
    plotfigure = plotdata.new_plotfigure(name='speed')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    ml_plot.add_land(plotaxes)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Profile Plots
    #  Note that these are not currently plotted by default - set
    # `plotfigure.show = True` is you want this to be plotted
    plotfigure = plotdata.new_plotfigure(name='profile')
    plotfigure.show = False

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-1.1, 0.1]
    plotaxes.title = "Profile of depth"
    plotaxes.afteraxes = profile_afteraxes

    slice_index = 30

    # Internal surface
    def bathy_profile(current_data):
        return current_data.x[:, slice_index], b(current_data)[:, slice_index]

    def lower_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta2(current_data)[slice_index, :]

    def upper_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta1(current_data)[slice_index, :]

    def top_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u1(current_data)[slice_index, :]

    def bottom_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u2(current_data)[slice_index, :]

    # Bathy
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = bathy_profile
    plotitem.plot_var = 0
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'k'
    plotitem.show = True

    # Internal Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = lower_surface
    plotitem.plot_var = 7
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'b'
    plotitem.show = True

    # Upper Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = upper_surface
    plotitem.plot_var = 6
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # ========================================================================
    #  Figures for gauges

    # Top
    plotfigure = plotdata.new_plotfigure(name='Surface & topo',
                                         type='each_gauge',
                                         figno=301)
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = top_surface_limits
    plotaxes.title = 'Top Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 6
    plotitem.plotstyle = 'b-'

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = internal_surface_limits
    plotaxes.title = 'Bottom Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 7
    plotitem.plotstyle = 'b-'

    # =========================================================================
    #  Other plots

    # Gauge Locations - Enable to see where gauges are located
    def locations_afteraxes(current_data, gaugenos='all'):
        gaugetools.plot_gauge_locations(current_data.plotdata,
                                        gaugenos=gaugenos,
                                        format_string='kx',
                                        add_labels=True)
        pcolor_afteraxes(current_data)

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations')
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_land(plotaxes)

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
Пример #2
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd, track, plot_direction=False,
                                             kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-4.0, 4.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]
    color_limits = [0, 20]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {"Atlantic": {"xlimits": (clawdata.lower[0], clawdata.upper[0]),
                        "ylimits": (clawdata.lower[1], clawdata.upper[1]),
                        "figsize": (6.4, 4.8)},
               "Bahamas": {"xlimits": (-81, -75),
                               "ylimits": (23.0, 26.0),
                               "figsize": (8, 4)},
               "Haiti": {"xlimits": (-73, -71),
                               "ylimits": (18.0, 20.0),
                               "figsize": (4, 4)},
               "Cuba": {"xlimits": (-80, -75),
                               "ylimits": (15.0, 25.0),
                               "figsize": (4 ,8)},
               "Florida": {"xlimits": (-82, -79),
                               "ylimits": (23.0, 26.0),
                               "figsize": (4 ,4)}}

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================

    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-3, 5]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-2, 3]
    plotaxes.title = 'Surface'

    try:
        # comparison water level files
        gauges = [np.loadtxt('gauge_data_1.txt'), np.loadtxt('gauge_data_2.txt'),
                  np.loadtxt('gauge_data_3.txt'), np.loadtxt('gauge_data_4.txt')]

        # origin of comparison data (for legend)
        data_names = ["Difference in Water level of Virginia Key, Biscanay Bay, Florida from NOAA",
                      "Difference in Water level of Key West, Florida from NOAA",
                      "Difference in Water level of Mona Island, Puerto Rico from NOAA",
                      "Difference in Water level of Magueyes Island, Puerto Rico from NOAA",
                      "Flood Height of Rum Cay, the Bahamas from local newspaper, Bahamas Press",
                      "Flood Height of Cat Island, the Bahamas from local newspaper, The Tribune"]

    except:
        pass

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        # axes.legend()
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-3, 5])
        axes.set_ylim([-2, 3])
        axes.set_xticks([-3, -2, -1, 0, 1, 2, 3, 4, 5])
        axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$", r"$4$", r"$5$"])
        axes.grid(True)

        try:

            # gauge 5 and 6 are in the Bahamas, and there's no water level data,
            # comparison data is estimate flood heights from newspapers
            if(cd.gaugeno == 5 or cd.gaugeno == 6):
                if(cd.gaugeno == 5):
            	    axes.axhline(y=4*0.3040, color = 'r', label = data_names[4]) # flood height was 4 feet
                else:
                    axes.axhline(y=5*0.3040, color = 'r', label = data_names[5]) # flood height was 5 feet

            # the rest have NOAA water level files
            else:
                # read water level data
                gauge_data = gauges[cd.gaugeno - 1]

                axes.plot(gauge_data[:, 1], gauge_data[:, 0], label = data_names[cd.gaugeno - 1])

            axes.legend()
        except:
            pass

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all',
                                        format_string='ko', add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [-82, -64]
    plotaxes.ylimits = [16.0, 27.0]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4, 5, 6]   # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # parallel plotting

    return plotdata
Пример #3
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data

    fig_num_counter = surge.plot.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = surge.data.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = surge.data.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surge.plot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2013, 10, 5, 0) - datetime.datetime(
        2013, 1, 1, 0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.plot.surge_afteraxes(
        cd, track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]

    wind_limits = [0, 64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.plot.gauge_locations(current_data,gaugenos=[6])

    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]]
    gulf_shrink = 0.9

    def gulf_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)

    #
    #  Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    surge.plot.add_surface_elevation(plotaxes,
                                     plot_type='contourf',
                                     contours=surface_contours,
                                     shrink=gulf_shrink)
    surge.plot.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)
    # surge.plot.add_bathy_contours(plotaxes)
    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        1, 1, 1, 1, 1, 1, 1, 1
    ]

    #
    #  Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    # Speed
    surge.plot.add_speed(plotaxes,
                         plot_type='contourf',
                         contours=speed_contours,
                         shrink=gulf_shrink)
    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)

    # Land
    surge.plot.add_land(plotaxes)
    surge.plot.add_bathy_contours(plotaxes)

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and True

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.plot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    # ========================================================================
    #  LaTex Shelf
    # ========================================================================
    latex_xlimits = [-97.5, -88.5]
    latex_ylimits = [27.5, 30.5]
    latex_shrink = 1.0

    def latex_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86)
        else:
            plt.subplots_adjust(right=1.0)
        surge_afteraxes(cd)

    #
    # Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7), 'facecolor': 'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7), 'facecolor': 'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.plot.add_surface_elevation(plotaxes,
                                     plot_type='contourf',
                                     contours=surface_contours,
                                     shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
        # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall)
    else:
        add_custom_colorbar_ticks_to_axes(
            plotaxes, 'surface', [-5, -2.5, 0, 2.5, 5.0],
            ["-5.0", "-2.5", " 0", " 2.5", " 5.0"])
    # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd')
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surge.plot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7), 'facecolor': 'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7), 'facecolor': 'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.plot.add_speed(plotaxes,
                         plot_type='contourf',
                         contours=speed_contours,
                         shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surge.plot.add_land(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ==========================
    #  Hurricane Forcing fields
    # ==========================

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.plot.add_pressure(plotaxes,
                            bounds=pressure_limits,
                            shrink=gulf_shrink)
    surge.plot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.plot.add_wind(plotaxes,
                        bounds=wind_limits,
                        plot_type='pcolor',
                        shrink=gulf_shrink)
    surge.plot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    plotfigure.kwargs['figsize'] = (16, 10)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    # plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = [-95.5, -94]
    gauge_ylimits = [29.0, 30.0]
    gauge_location_shrink = 0.75

    def gauge_after_axes(cd):
        # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        surge.plot.gauge_locations(cd, gaugenos=[1, 2, 3, 4])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes

    surge.plot.add_surface_elevation(plotaxes,
                                     plot_type='contourf',
                                     contours=surface_contours,
                                     shrink=gauge_location_shrink)
    # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                      surface_labels)
    surge.plot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = [54, 60, 66, 72, 78,
                                   84]  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = [4, 5, 6, 7, 10, 3,
                                 300]  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = False  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    else:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = 'all'  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = 'all'  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = True  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Пример #4
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""
    

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track'))

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, track, 
                                                           plot_direction=False)

    # Color limits
    surface_range = 1.5
    speed_range = 1.0
    # speed_range = 1.e-2

    eta = physics.sea_level
    if not isinstance(eta,list):
        eta = [eta]
    surface_limits = [eta[0]-surface_range,eta[0]+surface_range]
    speed_limits = [0.0,speed_range]
    
    wind_limits = [0, 55]
    pressure_limits = [966, 1013]
    friction_bounds = [0.01, 0.04]
    vorticity_limits = [-1.e-2, 1.e-2]
    land_bounds = [-10, 50]
    
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # Limits for plots
    regions = {'Full Domain': {"xlimits": [clawdata.lower[0], clawdata.upper[0]],
                               "ylimits": [clawdata.lower[1], clawdata.upper[1]],
                               "shrink": 1.0, 
                               "figsize": [6.4, 4.8]},
               'Tri-State Region': {"xlimits": [-74.5,-71.0], 
                                    "ylimits": [40.0,41.5], 
                                    "shrink": 1.0,
                                    "figsize": [6.4, 4.8]},
                'NYC': {"xlimits": [-74.2,-73.8], 
                        "ylimits": [40.55,40.85], 
                        "shrink": 1.0, 
                        "figsize": [6.4, 4.8]}
               }
    
    for (name, region_dict) in regions.items():
        # ========================================================================
        #  Surface Elevations
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Surface'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = surge_afteraxes
    
        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits, 
                                    shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)
        
        # plotaxes.plotitem_dict['land'].amr_patchedges_show = 
        # plotaxes.plotitem_dict['surface'].amr_patchedges_show = 


        # ========================================================================
        #  Water Speed
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Currents'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits, 
                        shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)


    # ========================================================================
    # Hurricane forcing - Entire Atlantic
    # ========================================================================
    # Friction field
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Manning's N Coefficients"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes,bounds=friction_bounds)

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = True
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    surgeplot.add_pressure(plotaxes,bounds=pressure_limits)
    surgeplot.add_land(plotaxes, bounds=[-10, 500])
    
    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = True
    
    plotaxes = plotfigure.new_plotaxes()

    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow')
    surgeplot.add_land(plotaxes, bounds=[-10, 500])

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface, Speeds',
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Surface and Topography
    plotaxes = plotfigure.new_plotaxes()
    # plotaxes.axescmd = 'subplot(121)'
    try:
        plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
    except:
        pass
    plotaxes.ylimits = surface_limits
    plotaxes.title = 'Surface'
    # plotaxes.afteraxes = surgeplot.gauge_afteraxes
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Speeds
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(122)'
    try:
        plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
    except:
        pass
    plotaxes.ylimits = surface_limits
    plotaxes.title = 'Momenta'
    # plotaxes.afteraxes = surge.gauge_afteraxes

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 1
    plotitem.plotstyle = 'r-'
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 2
    plotitem.plotstyle = 'b-'

    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata
Пример #5
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Gulf": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (6.4, 4.8)
        },
        "Texas Gulf Coast": {
            "xlimits": (-99.2, -94.2),
            "ylimits": (26.4, 30.4),
            "figsize": (6, 6)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()

    #Time Conversions
    def days2seconds(days):
        return days * 60.0**2 * 24.0

    stations = [('8773037', 'Seadrift'), ('8773701', 'Port OConnor'),
                ('8774230', 'Aransas Wildlife Refuge'),
                ('8775237', 'Port Aransas'), ('8775296', 'USS Lexington')]

    landfall_time = numpy.datetime64('2017-08-25T10:00')
    begin_date = datetime.datetime(2017, 8, 24)
    end_date = datetime.datetime(2017, 8, 28)

    def get_actual_water_levels(station_id):
        # Fetch water levels and tide predictions for given station
        date_time, water_level, tide = fetch_noaa_tide_data(
            station_id, begin_date, end_date)

        # Calculate times relative to landfall
        seconds_rel_landfall = (date_time - landfall_time) / numpy.timedelta64(
            1, 's')
        # Subtract tide predictions from measured water levels
        water_level -= tide

        return seconds_rel_landfall, water_level

    def gauge_afteraxes(cd):

        station_id, station_name = stations[cd.gaugeno - 1]
        seconds_rel_landfall, actual_level = get_actual_water_levels(
            station_id)

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)
        axes.plot(seconds_rel_landfall, actual_level, 'g')

        # Fix up plot - in particular fix time labels
        axes.set_title(station_name)
        axes.set_xlabel('Seconds relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([days2seconds(-1), days2seconds(3)])
        axes.set_ylim([-1, 5])
        axes.set_xticks([
            -days2seconds(-1), 0,
            days2seconds(1),
            days2seconds(2),
            days2seconds(3)
        ])
        #axes.set_xticklabels([r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$"])
        #axes.grid(True)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=False)

    #Plot for gauge location 1
    plotfigure = plotdata.new_plotfigure(name="Gauge Location 1")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Location 1'
    plotaxes.scaled = True
    plotaxes.xlimits = [-96.83, -96.63]
    plotaxes.ylimits = [28.33, 28.43]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    #Plot for gauge location 2

    plotfigure = plotdata.new_plotfigure(name="Gauge Location 2")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Location 2'
    plotaxes.scaled = True
    plotaxes.xlimits = [-96.48, -96.28]
    plotaxes.ylimits = [28.40, 28.50]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    #Plot for gauge location 3

    plotfigure = plotdata.new_plotfigure(name="Gauge Location 3")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Location 3'
    plotaxes.scaled = True
    plotaxes.xlimits = [-96.85, -96.65]
    plotaxes.ylimits = [28.17, 28.27]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    #Plot for gauge location 4

    plotfigure = plotdata.new_plotfigure(name="Gauge Location 4")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Location 4'
    plotaxes.scaled = True
    plotaxes.xlimits = [-97.15, -96.95]
    plotaxes.ylimits = [27.79, 27.89]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    #Plot for gauge location 5

    plotfigure = plotdata.new_plotfigure(name="Gauge Location 5")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Location 5'
    plotaxes.scaled = True
    plotaxes.xlimits = [-97.48, -97.28]
    plotaxes.ylimits = [27.75, 27.85]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4, 5]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
Пример #6
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Gulf": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (6.4, 4.8)
        },
        "LaTex Shelf": {
            "xlimits": (-97.5, -88.5),
            "ylimits": (27.5, 30.5),
            "figsize": (8, 2.7)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 1])
        axes.set_ylim([-1, 5])
        axes.set_xticks([-2, -1, 0, 1])
        axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [-95.5, -94]
    plotaxes.ylimits = [29.0, 30.0]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
Пример #7
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""
    
    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surgeplot.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir,'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir,'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir,'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir,'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir,'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008, 8, 1, 12) - datetime.datetime(2008,1,1,0)
    landfall = landfall_dt.days * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, 
                                        track, landfall, plot_direction=False)

    # Limits for plots
    full_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    full_ylimits = [clawdata.lower[1], clawdata.upper[1]]

    # Color limits
    surface_range = 1.0
    speed_range = 2.0

    xlimits = full_xlimits
    ylimits = full_ylimits
    eta = physics.sea_level
    if not isinstance(eta,list):
        eta = [eta]
    surface_limits = [eta[0]-surface_range,eta[0]+surface_range]
    speed_limits = [0.0,speed_range]
    
    wind_limits = [0,55]
    pressure_limits = [966,1013]

    ref_lines = []


    # ==========================================================================
    #  Generic helper functions
    # ==========================================================================
    def pcolor_afteraxes(current_data):
        surge_afteraxes(current_data)
        # surgeplot.gauge_locations(current_data)
        
    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)
        
    def bathy_ref_lines(current_data):
        pass
    #     plt.hold(True)
    #     y = [amrdata.ylower,amrdata.yupper]
    #     for ref_line in ref_lines:
    #         plt.plot([ref_line,ref_line],y,'y--')
    #     plt.hold(False)

    
    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Surface Elevations - Entire Domain
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes,topo_min=-10.0,topo_max=5.0)


    # ========================================================================
    #  Water Speed - Entire Domain
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Speed
    surgeplot.add_speed(plotaxes,bounds=speed_limits)

    # Land
    surgeplot.add_land(plotaxes)


    # ========================================================================
    # Hurricane forcing - Entire Domain
    # ========================================================================
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure', figno=2)
    plotfigure.show = surge_data.pressure_forcing
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    surgeplot.add_pressure(plotaxes,bounds=pressure_limits)
    # add_pressure(plotaxes)
    surgeplot.add_land(plotaxes)
    
    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed',figno=4)
    plotfigure.show = surge_data.wind_forcing
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow')
    # add_wind(plotaxes,bounds=wind_limits,plot_type='contour')
    # add_wind(plotaxes,bounds=wind_limits,plot_type='quiver')
    surgeplot.add_land(plotaxes)
    
    # Wind field components
    plotfigure = plotdata.new_plotfigure(name='Wind Components',figno=5)
    plotfigure.show = surge_data.wind_forcing and False
    plotfigure.kwargs = {'figsize':(16,6)}
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "X-Component of Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = surgeplot.wind_x
    plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.imshow_cmin = -wind_limits[1]
    plotitem.imshow_cmax = wind_limits[1]
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Y-Component of Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = surgeplot.wind_y
    plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.imshow_cmin = -wind_limits[1]
    plotitem.imshow_cmax = wind_limits[1]
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    # plotaxes.xlimits = [0.0,amrdata.tfinal]
    # plotaxes.ylimits = [0,150.0]
    plotaxes.ylimits = surface_limits
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = surgeplot.gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'r-'
    
    # =================
    #  Plot bathymetry
    # =================
    plotfigure = plotdata.new_plotfigure(name='Bathymetry', figno=301)
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Bathymetry"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = geoplot.topo
    # plotitem.pcolor_cmap = geoplot.seafloor_colormap
    plotitem.pcolor_cmin = -3000.0
    plotitem.pcolor_cmax = 300.0
    plotitem.add_colorbar = True

    surgeplot.add_land(plotaxes)


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    # plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
    #                 type='each_gauge')
    # plotfigure.clf_each_gauge = True
    # 
    # # Set up for axes in this figure:
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.xlimits = 'auto'
    # plotaxes.ylimits = 'auto'
    # plotaxes.title = 'Surface'
    # 
    # # Plot surface as blue curve:
    # plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'
    # 
    # # Plot topo as green curve:
    # plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.show = False
    # 
    # def gaugetopo(current_data):
    #     q = current_data.q
    #     h = q[0,:]
    #     eta = q[3,:]
    #     topo = eta - h
    #     return topo
    #     
    # plotitem.plot_var = gaugetopo
    # plotitem.plotstyle = 'g-'
    # 
    # def add_zeroline(current_data):
    #     from pylab import plot, legend, xticks, floor
    #     t = current_data.t
    #     #legend(('surface','topography'),loc='lower left')
    #     plot(t, 0*t, 'k')
    #     n = int(floor(t.max()/3600.) + 2)
    #     xticks([3600*i for i in range(n)])
    # 
    # plotaxes.afteraxes = add_zeroline


    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    # plotdata.print_framenos = [45,46,47,48]
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata
Пример #8
0
def setplot(plotdata):
    #--------------------------
    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.

    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'
    #plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))

    ocean_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    ocean_ylimits = [clawdata.lower[1], clawdata.upper[1]]

    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))

    probdata = clawutil.ClawData()

    #probdata.read('setprob.data', force=True)
    #theta_island = probdata.theta_island

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    def mynewafteraxes(current_data):
        addgauges(current_data)
        bigfont(current_data)

    #-----------------------------------------
    # Some global KML settings
    #-----------------------------------------
    #plotdata.kml_publish = 'http://math.boisestate.edu/~calhoun/visclaw/GoogleEarth/kmz/' #public html
    plotdata.kml_publish = None
    plotdata.kml_name = "NYC Asteroid"  # name appears in Google Earth display only
    plotdata.kml_index_fname = "NYC_Asteroid"  # name for .kmz and .kml files ["_GoogleEarth"]

    # specify beginning of slider time. if not used, assumes Jan. 1 1970
    plotdata.kml_starttime = [2115, 4, 29, 7, 32,
                              0]  # Asteroid hits at 1:32AM, 4/29/2115 (UTC)
    plotdata.kml_tz_offset = 6  # off set to UTC
    # for todays date as the default use

    kml_cmin = -0.005  #colorbar min and max
    kml_cmax = 0.005
    kml_dpi = 400  # only used if individual figures dpi not set
    kml_cmap = geoplot.googleearth_lightblue

    #    kml_cmap = geoplot.googleearth_darkblue
    #    kml_cmap = geoplot.googleearth_transparent
    #    kml_cmap = geoplot.googleearth_white

    def kml_colorbar(filename):
        #cmin = -0.01
        #cmax = 0.01
        geoplot.kml_build_colorbar(filename, kml_cmap, kml_cmin, kml_cmax)

    #-----------------------------------------
    # Figure for pcolor plot for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    #plotaxes.afteraxes = addgauges

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.show = True
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    #plotitem.plot_var = 0/1/2 or plot that entry into q instead of a function
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -.8
    plotitem.pcolor_cmax = .8
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.show = True
    # plotitem.pcolor_cmap = colormaps.all_white  # to print better in B&W
    plotitem.pcolor_cmap = geoplot.land_colors
    #plotitem.pcolor_cmap = geoplot.googleearth_transparent
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0, 0, 0]
    #plotitem.patchedges_show = 1
    plotitem.amr_patchedges_show = [0, 0, 0]
    #plotaxes.xlimits = [-85,-55]
    #plotaxes.ylimits = [25,45]
    plotaxes.xlimits = ocean_xlimits
    plotaxes.ylimits = ocean_ylimits
    #plotaxes.xlimits = [-75,-70]
    #plotaxes.ylimits = [38,43]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = True
    plotitem.plot_var = geoplot.topo
    #plotitem.contour_levels = [-500,-250,-100, -50, 0, 50]
    plotitem.contour_levels = linspace(-1000, -400, 3)
    plotitem.amr_contour_colors = ['g']  # color on each level
    #plotitem.kwargs = {'linestyles':'dashed','linewidths':2,'colors' : 'red' }
    plotitem.kwargs = {
        'linestyles': 'dashed',
        'linewidths': 1,
        'colors': 'magenta'
    }
    plotitem.amr_contour_show = [1, 1, 1]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    #-----------------------------------------------------------
    # Figure for KML files - Sea Surface Height
    #----------------------------------------------------------
    #plotfigure = plotdata.new_plotfigure(name='Sea Surface',figno=1)
    #plotfigure.show = True

    #plotfigure.use_for_kml = True
    #plotfigure.kml_use_for_initial_view = True

    # These overide any values set in the plotitems below
    #plotfigure.kml_xlimits = [-80,-55]
    #plotfigure.kml_ylimits = [25, 45]

    # Resolution
    #plotfigure.kml_dpi = 300
    #plotfigure.kml_tile_images = False

    def kml_colorbar_transparent(filename):
        #cmin = -0.01
        #cmax = 0.01
        geoplot.kml_build_colorbar(filename, geoplot.googleearth_transparent,
                                   kml_cmin, kml_cmax)

    #plotfigure.kml_colorbar = kml_colorbar_transparent

    # Set up for axes in this figure:
    #plotaxes = plotfigure.new_plotaxes('kml')
    #plotaxes.scaled = True

    # Water
    #plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.show = True
    #plotitem.plot_var = geoplot.surface_or_depth
    #plotitem.pcolor_cmap = geoplot.googleearth_transparent
    #plotitem.pcolor_cmin = kml_cmin
    #plotitem.pcolor_cmax = kml_cmax
    #plotitem.amr_celledges_show = [0,0,0]
    #plotitem.patchedges_show = 0

    #plotfigure.kml_colorbar = kml_colorbar

    #-----------------------------------------
    # Figure for speeds
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Speeds', figno=10)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Speed'
    plotaxes.scaled = True

    #def fixup(current_data):
    #    import pylab
    #    addgauges(current_data)
    #    t = current_data.t
    #    t = t / 3600.  # hours
    #    pylab.title('Speed at %4.2f hours' % t, fontsize=20)
    #    pylab.xticks(fontsize=15)
    #    pylab.yticks(fontsize=15)
    #plotaxes.afteraxes = fixup

    def speed(current_data):
        from pylab import where, sqrt
        q = current_data.q
        h = q[0, :]
        dry_tol = 0.001
        u = q[1, :]  # this is just to initialize
        v = q[2, :]  # to correct size
        s = 0 * q[2, :]  # to correct size

        nq = len(q[1, :])
        [n, m] = h.shape
        for ii in range(0, n):
            for jj in range(0, m):
                if h[ii, jj] > dry_tol:
                    u[ii, jj] = q[1, ii, jj] / h[ii, jj]
                    v[ii, jj] = q[2, ii, jj] / h[ii, jj]
                    s[ii,
                      jj] = sqrt(u[ii, jj] * u[ii, jj] + v[ii, jj] * v[ii, jj])
                else:
                    u[ii, jj] = 0.
                    v[ii, jj] = 0.
                    s[ii, jj] = 0
        #print("max of u = " + str(max(u)))

        #u = where(h>dry_tol, q[1,:]/h, 0.)
        #v = where(h>dry_tol, q[2,:]/h, 0.)
        #s = sqrt(u**2 + v**2)
        #s = sqrt(u*2+v*v) #try not dividing or using where
        return s

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.show = False
    plotitem.plot_var = speed
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    #plotitem.pcolor_cmap = \
    #       colormaps.make_colormap({0:[1,1,1],0.5:[0.5,0.5,1],1:[1,0.3,0.3]})
    plotitem.pcolor_cmin = 0.
    plotitem.pcolor_cmax = .10
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    #plotitem.patchedges_show = 1
    plotitem.amr_patchedges_show = [0, 0, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0
    plotaxes.xlimits = ocean_xlimits
    plotaxes.ylimits = ocean_ylimits

    #-----------------------------------------
    # Figure for zoom around NYC
    #-----------------------------------------
    zoomWanted = True
    if zoomWanted:
        plotfigure = plotdata.new_plotfigure(name='Zoom1', figno=7)

        # add another figure
        #plotfigure.use_for_kml = True
        #plotfigure.kml_use_for_initial_view = False

        # These overide any values set in the plotitems below
        #plotfigure.kml_xlimits =  [-74.5, -73.5]
        #plotfigure.kml_ylimits = [40.4,40.9]

        # Resolution
        #plotfigure.kml_dpi = 300
        #plotfigure.kml_tile_images = True

        #plotfigure.kml_colorbar = kml_colorbar   # defined above

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes('zoom on nyc')
        plotaxes.title = 'Surface elevation'
        plotaxes.scaled = True
        manhattan_island = -73.5
        xisland, yisland = latlong(1600e3, manhattan_island, 40., Rearth)
        #plotaxes.xlimits = [xisland-0.6, xisland+0.6]
        #plotaxes.xlimits = [manhattan_island-1, manhattan_island+1]
        #plotaxes.ylimits = [40.15,41.5]
        plotaxes.xlimits = [-74.5, -72.5]  # really zoom in on lower manhattan]
        plotaxes.ylimits = [40.25, 41.5]
        plotaxes.afteraxes = addgauges

        def bigfont(current_data):
            import pylab
            t = current_data.t
            pylab.title("Surface at t = %8.1f" % t, fontsize=20)
            pylab.xticks(fontsize=15)
            pylab.yticks(fontsize=15)

        #plotaxes.afteraxes = bigfont
        #plotaxes.afteraxes = mynewafteraxes   # after axes functions mess with GE plots

        # Water
        plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
        plotitem.show = False
        #plotitem.plot_var = geoplot.surface
        plotitem.plot_var = geoplot.surface_or_depth
        #plotitem.pcolor_cmap = geoplot.tsunami_colormap
        plotitem.pcolor_cmap = kml_cmap
        #plotitem.pcolor_cmin = kml_cmin   # same as above
        #plotitem.pcolor_cmax = kml_cmax
        plotitem.pcolor_cmin = -.2
        plotitem.pcolor_cmax = .2
        plotitem.add_colorbar = True
        plotitem.amr_celledges_show = [0, 0, 0]
        plotitem.patchedges_show = 0

        # Land
        plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
        plotitem.show = False
        plotitem.plot_var = geoplot.land
        # plotitem.pcolor_cmap = colormaps.all_white  # to print better in B&W
        plotitem.pcolor_cmap = geoplot.land_colors
        plotitem.pcolor_cmin = 0.0
        plotitem.pcolor_cmax = 100.0
        plotitem.add_colorbar = False
        plotitem.amr_celledges_show = [0, 0, 0, 0, 0]
        plotitem.patchedges_show = 0

        # contour lines:
        plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
        plotitem.show = False
        plotitem.plot_var = geoplot.surface
        plotitem.contour_levels = [-0.8, -0.4, 0.4, 0.8]
        plotitem.amr_contour_colors = ['k']  # color on each level
        plotitem.kwargs = {'linewidths': 1}
        plotitem.amr_contour_show = [0, 0, 0, 1, 1]
        plotitem.celledges_show = 0
        plotitem.patchedges_show = 0

        # add contour lines of bathy if desired:
        plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
        plotitem.show = False
        plotitem.plot_var = geoplot.topo
        plotitem.contour_levels = linspace(-30, -10, 3)
        plotitem.amr_contour_colors = ['m']  # color on each level
        plotitem.kwargs = {'linestyles': 'dashed', 'linewidths': 1}
        plotitem.amr_contour_show = [1, 1, 1]
        plotitem.celledges_show = 0
        plotitem.patchedges_show = 0

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    #plotaxes.xlimits = [0000, 6500]
    #plotaxes.ylimits = [-.10, .15]
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    #plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    def gaugedpress(current_data):
        q = current_data.q
        #dpress = (q[4,:] - 101300)/101300
        dpress = q[4, :]  # already output as relative:  dp/amb_pr
        return dpress

    def gs(current_data):
        q = current_data.q
        # different than speed function because q is function of time, not
        # x,y at the gauges.
        from numpy import where, sqrt
        h = q[0, :]
        #print('shape of h ' +  str(h.shape))
        dry_tol = 0.001
        u = where(h > dry_tol, q[1, :] / h, 0.)
        v = where(h > dry_tol, q[2, :] / h, 0.)
        ssq = sqrt(u * u + v * v)
        #s = sqrt(u**2 + v**2)
        s = sqrt(ssq)
        return ssq

    #plotitem.plot_var = gaugetopo
    #plotitem.plotstyle = 'g-'

    # Plot relative delta pressure as red curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = gaugedpress
    plotitem.plotstyle = 'r-'

    # add speed to this plot since cant get new one going
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = gs
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend
        t = current_data.t
        #       legend(('surface','topography','dp'),loc='lower left')
        legend(('surface', 'dp', 'speed'), loc='upper right')
        #plot(t, 0*t, 'k')

    plotaxes.afteraxes = add_zeroline

    # -------------------------------
    # Figure for speed at gauges
    #--------------------------------

    #    plotfigure = plotdata.new_plotfigure(name='Speed at gauges', figno=310, \
    #                    type='each_gauge')
    #

    #
    #    # Set up for axes in this figure:
    #    plotaxes = plotfigure.new_plotaxes()
    #    plotaxes.xlimits = 'auto'
    #    plotaxes.ylimits = 'auto'
    #    #plotaxes.xlimits = [0000, 7000]
    #    #plotaxes.ylimits = 'auto'
    #    plotaxes.title = 'Speed'
    #
    #    # Plot surface as blue curve:
    #    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    #    #plotitem.plot_var = speed
    #    plotitem.plot_var = gs  #gauge_speed
    #    plotitem.plotstyle = 'b-'
    #
    #    plotfigure.show = True
    #

    #-----------------------------------------
    # Figure for bathy alone
    #-----------------------------------------
    def bathy(current_data):
        return current_data.aux[0, :, :]

    plotfigure = plotdata.new_plotfigure(name='bathymetry', figno=3)
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Bathymetry'
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = bathy
    plotitem.pcolor_cmin = -3000.00
    plotitem.pcolor_cmax = 500
    plotitem.add_colorbar = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = linspace(-2000, 2000, 21)
    plotitem.amr_contour_colors = ['k']  # color on each level

    #plotitem.contour_levels = [-1000 -500,-250,-100, -5, 5]

    #-----------------------------------------
    # Figure for grids alone
    #-----------------------------------------
    #plotfigure = plotdata.new_plotfigure(name='grids', figno=2)
    #plotfigure.show = False

    # Set up for axes in this figure:
    #plotaxes = plotfigure.new_plotaxes()
    #plotaxes.xlimits = [0,1]
    #plotaxes.ylimits = [0,1]
    #plotaxes.title = 'grids'
    #plotaxes.scaled = True

    # Set up for item on these axes:
    #plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    #plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    #plotitem.amr_celledges_show = [0,0,0]
    #plotitem.amr_patchedges_show = [0,0,0]

    def normalized_pressure(current_data):
        pressure_index = 6  #7 in fortran, but python is 0 based
        return current_data.aux[
            pressure_index, :, :] / surge_data.ambient_pressure

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure', figno=33)
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes('normalized_pressure')
    plotaxes.xlimits = ocean_xlimits
    plotaxes.ylimits = ocean_ylimits
    plotaxes.title = 'Pressure Field'
    plotaxes.scaled = True
    plotaxes.afteraxes = addgauges

    pressure_limits = [.99, 1.10]
    #pressure_limits = [.999*surge_data.ambient_pressure / 100.0,
    #                   1.001 * surge_data.ambient_pressure / 100.0]
    #pressure_limits = [-.000001*surge_data.ambient_pressure,
    #                   .000001 * surge_data.ambient_pressure]

    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    #plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem = plotaxes.plotitem_dict['pressure']
    plotitem.show = False
    plotitem.plot_var = normalized_pressure
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    plotaxes.plotitem_dict['land'].amr_celledges_show = [0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    #plotdata.print_framenos = [30,50,70]          # list of frames to print
    #plotdata.print_framenos = [1]          # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    #plotdata.print_fignos = [0,7,10,33,300]  # list of figures to print
    #plotdata.print_fignos = [0,7,10,300]  # list of figures to print
    plotdata.print_fignos = [0, 300]  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    plotdata.kml = False

    return plotdata
Пример #9
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data
    # plotdata.format = 'binary'
    plotdata.format = 'ascii'

    # Load data from output
    claw_data = clawdata.ClawInputData(2)
    claw_data.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(
        cd, track, plot_direction=False)

    # Color limits
    surface_range = 4.5
    speed_range = 1.0
    # speed_range = 1.e-2

    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    speed_limits = [0.0, speed_range]

    wind_limits = [0, 55]
    pressure_limits = [966, 1013]
    friction_bounds = [0.01, 0.04]
    vorticity_limits = [-1.e-2, 1.e-2]
    land_bounds = [-10, 50]

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # Limits for plots
    regions = {
        'Full Domain': {
            "xlimits": [claw_data.lower[0], claw_data.upper[0]],
            "ylimits": [claw_data.lower[1], claw_data.upper[1]],
            "shrink": 1.0,
            "figsize": [6.4, 4.8]
        },
        'Mumbai Region': {
            "xlimits": [70, 75],
            "ylimits": [17, 22],
            "shrink": 1.0,
            "figsize": [6.4, 4.8]
        },
        'Mumbai': {
            "xlimits": [72.6, 73.15],
            "ylimits": [18.80, 19.25],
            "shrink": 1.0,
            "figsize": [6.4, 4.8]
        }
    }

    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    for (name, region_dict) in regions.items():
        # ========================================================================
        #  Surface Elevations
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name)
        plotfigure.show = True

        #plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
        #plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Surface'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = surge_afteraxes
        plotaxes.afteraxes = gauge_location_afteraxes

        surgeplot.add_surface_elevation(plotaxes,
                                        bounds=surface_limits,
                                        shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)

        plotaxes.plotitem_dict['land'].amr_patchedges_show = [1, 0, 0]
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1, 0, 0]

        # ========================================================================
        #  Water Speed
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Currents'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes,
                            bounds=speed_limits,
                            shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)

    # ========================================================================
    # Hurricane forcing - Entire Atlantic
    # ========================================================================
    # Friction field
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Manning's N Coefficients"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds)

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes, bounds=[-10, 500])

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()

    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_wind(plotaxes, bounds=wind_limits, plot_type='imshow')
    surgeplot.add_land(plotaxes, bounds=[-10, 500])
    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([0, 6])
        axes.set_xticks([0, 1, 2, 3, 4, 5, 6])
        axes.set_xticklabels(
            [r"$0$", r"$1$", r"$2$", r"$3$", r"$4$", r"$5$", r"$6$"])
        #axes.set_ylim([-1, 5])
        axes.grid(True)

#    def gauge_afteraxes(cd):
#        station_id, station_name = stations[cd.gaugeno-1]
#        seconds_rel_landfall, actual_level = get_actual_water_levels(station_id)
#
#        axes = plt.gca()
#        #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall)
#        axes.plot(seconds_rel_landfall, actual_level, 'g')
#
#        # Fix up plot - in particular fix time labels
#        axes.set_title(station_name)
#        axes.set_xlabel('Seconds relative to landfall')
#        axes.set_ylabel('Surface (m)')
#        axes.set_xlim([days2seconds(-2), days2seconds(1)])
#        axes.set_ylim([0, 4])
#        axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0,
#days2seconds(1)])
#axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"])
#axes.grid(True)

#     def current_afterxes(cd):
#         station_id, station_name = stations[cd.gaugeno-1]
#         if len(station_id)==6:
#             seconds_rel_landfall, currents = get_actual_currents(station_id)
#
#             axes = plt.gca()
#             #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes,
#             landfall=landfall)
#             axes.plot(seconds_rel_landfall, currents, 'g')
#
#             # Fix up plot - in particular fix time labels
#             axes.set_title(station_name)
#             axes.set_xlabel('Seconds relative to landfall')
#             axes.set_ylabel('Surface (m)')
#             axes.set_xlim([days2seconds(-2), days2seconds(1)])
#             axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0,
#             days2seconds(1)])
#             #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"])
#             #axes.grid(True)

# Set up for axes in this figure:

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Speeds

    #    plotfigure = plotdata.new_plotfigure(name='Currents', figno=400, \
    #                        type='each_gauge')
    #    plotfigure.show = True
    #    plotfigure.clf_each_gauge = True

    #    plotaxes = plotfigure.new_plotaxes()
    #plotaxes.afteraxes = current_afterxes
    # plotaxes.axescmd = 'subplot(122)'
    # try:
    #     plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
    # except:
    #     pass
    # plotaxes.ylimits = surface_limits
    #plotaxes.title = 'Momenta'
    # plotaxes.afteraxes = surge.gauge_afteraxes

    #    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    #    plotitem.plot_var = calc_currents
    #    plotitem.plotstyle = 'r-.'
    #plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    #plotitem.plot_var = 2
    #plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Пример #10
0
def setplot(plotdata):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    amrdata = clawdata.ClawInputData(2)
    amrdata.read(os.path.join(plotdata.outdir, 'claw.data'))

    plotdata.clearfigures()  # clear any old figures,axes,items data

    def set_drytol(current_data):
        # The drytol parameter is used in masking land and water and
        # affects what color map is used for cells with small water depth h.
        # The cell will be plotted as dry if h < drytol.
        # The best value to use often depends on the application and can
        # be set here (measured in meters):
        current_data.user['drytol'] = 1.e-2

        # # Square island
        # current_data.user['island_x'] = [-52e3, -52e3, 52e3, 52e3, -52e3]
        # current_data.user['island_y'] = [-52e3, 52e3, 52e3, -52e3, -52e3]

        # Strip island
        current_data.user['island_x'] = [-52e3, -52e3, 52e3, 52e3, -52e3]
        current_data.user['island_y'] = [-102e3, 102e3, 102e3, -102e3, -102e3]

    plotdata.beforeframe = set_drytol

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    # surface_range = 1e-4
    # speed_max = 1.e-5

    surface_range = 1e-2
    speed_max = 1.e-2

    xlimits = [amrdata.lower[0], amrdata.upper[0]]
    ylimits = [amrdata.lower[1], amrdata.upper[1]]
    surface_limits = [-surface_range, surface_range]
    speed_limits = [0.0, speed_max]

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
        gaugenos='all', format_string='ko', add_labels=True)

    def after_axes(cd):
        surge.days_figure_title(cd)
        addgauges(cd)
        plt.plot(cd.user['island_x'], cd.user['island_y'], 'k--')

    def after_axes_slice(cd, y_bounds=[-1, 1]):
        surge.days_figure_title(cd)
        for x in cd.user['island_x']:
            plt.plot([x, x], y_bounds, 'k--')

    #-----------------------------------------
    # Figure for pcolor plot
    #-----------------------------------------
    # Surface
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)

    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = after_axes

    surge.add_surface_elevation(plotaxes, bounds=surface_limits)
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_celledges_show = [1,1,1,1]
    # plotaxes.plotitem_dict['land'].amr_celledges_show = [1,1,1,1]

    # Speed
    plotfigure = plotdata.new_plotfigure(name='Speed', figno=1)

    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = after_axes

    surge.add_speed(plotaxes, bounds=speed_limits)
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_celledges_show = [1,1,1,1]
    # plotaxes.plotitem_dict['land'].amr_celledges_show = [1,1,1,1]

    # ========================================================================
    #  Water Velocity Components - Entire Gulf
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(
        name='Velocity Components - Entire Domain', figno=2)
    plotfigure.kwargs['figsize'] = (16, 6)
    plotfigure.show = False

    # X-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.title = 'Velocity, X-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.water_u
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    surge.add_land(plotaxes)

    # Y-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.title = 'Velocity, Y-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.water_v
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    surge.add_land(plotaxes)

    # ========================================================================
    #  Water Momenta Components
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(
        name='Momentum Components - Entire Domain', figno=3)
    plotfigure.kwargs['figsize'] = (16, 6)
    plotfigure.show = False

    # X-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.title = 'Momentum, X-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 1
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1] * 100.0
    plotitem.pcolor_cmax = speed_limits[1] * 100.0
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    surge.add_land(plotaxes)

    # Y-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.title = 'Momentum, Y-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 2
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1] * 100.0
    plotitem.pcolor_cmax = speed_limits[1] * 100.0
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    surge.add_land(plotaxes)

    # ============
    #  Topography
    # ============
    plotfigure = plotdata.new_plotfigure(name="Topography")
    plotfigure.show = False
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Topography"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.topo
    cmap = colormaps.make_colormap({
        -1: [0.3, 0.2, 0.1],
        -0.00001: [0.95, 0.9, 0.7],
        0.00001: [.5, .7, 0],
        1: [.2, .5, .2]
    })
    plotitem.pcolor_cmap = cmap
    plotitem.pcolor_cmin = -100.0
    plotitem.pcolor_cmax = 0.0
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    # =====================
    #  Slice through y = 0
    # =====================
    slice_index = 3

    def slice_surface(cd):
        return cd.x[:, slice_index], cd.q[3, :, slice_index]

    def slice_momentum(cd):
        return cd.x[:, slice_index], cd.q[1, :, slice_index]

    def slice_velocity(cd):
        u = cd.q[1, :, slice_index] / cd.q[0, :, slice_index]
        return cd.x[:, slice_index], u

    plotfigure = plotdata.new_plotfigure(name="Slice eta, y=0")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Surface Slice y = 0"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = surface_range
    plotaxes.afteraxes = lambda cd: after_axes_slice(cd, surface_limits)

    plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data")
    plotitem.map_2d_to_1d = slice_surface
    plotitem.plot_var = 3
    plotitem.plotstyle = 'k-o'
    plotitem.show = True

    plotfigure = plotdata.new_plotfigure(name="Slice u, y=0")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Velocity-x Slice y = 0"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-speed_limits[1], speed_limits[1]]
    plotaxes.afteraxes = lambda cd: after_axes_slice(
        cd, [-speed_limits[1], speed_limits[1]])

    plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data")
    plotitem.map_2d_to_1d = slice_velocity
    plotitem.plot_var = 1
    plotitem.plotstyle = 'k-o'
    plotitem.show = True

    plotfigure = plotdata.new_plotfigure(name="Slice hu, y=0")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "hu Slice y = 0"
    plotaxes.xlimits = xlimits
    momentum_limits = [-speed_limits[1] * 1000.0, speed_limits[1] * 1000.0]
    plotaxes.ylimits = momentum_limits
    plotaxes.afteraxes = lambda cd: after_axes_slice(cd, momentum_limits)

    plotitem = plotaxes.new_plotitem(plot_type="1d_from_2d_data")
    plotitem.map_2d_to_1d = slice_momentum
    plotitem.plot_var = 1
    plotitem.plotstyle = 'k-o'
    plotitem.show = True

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Gauge Surface', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    def gauge_afteraxes(cd, label=None):
        surge.gauge_afteraxes(cd)
        plt.ylabel(label)

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    # Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.afteraxes = lambda cd: gauge_afteraxes(cd,
                                                    label='Surface Height (m)')
    plotaxes.title = 'Surface'
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'
    try:
        plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
    except:
        pass

    # Momenta
    plotfigure = plotdata.new_plotfigure(name='Gauge X-Momentum', figno=301, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: gauge_afteraxes(
        cd, label=r'X-Momentum ($m/s^2$)')
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'X Momentum'
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = True
    plotitem.plot_var = 1
    try:
        plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
    except:
        pass

    plotfigure = plotdata.new_plotfigure(name='Gauge Y-Momentum', figno=302, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: gauge_afteraxes(
        cd, label=r'Y-Momentum ($m/s^2$)')
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Y Momentum'
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = True
    plotitem.plot_var = 2
    try:
        plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
    except:
        pass

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = range(0, 36, 4)  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.format = 'ascii'  # Format of output
    # plotdata.format = 'netcdf'

    return plotdata
Пример #11
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surge.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surge.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    if storm_num == 1:
        # Storm 1
        landfall_dt = datetime.datetime(1997, 11, 15, 3) - datetime.datetime(
            1997, 1, 1, 0)
    elif storm_num == 2:
        # Storm 2
        landfall_dt = datetime.datetime(2008, 12, 17, 0) - datetime.datetime(
            2008, 1, 1, 0)

    landfall = (landfall_dt.days) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.surge_afteraxes(
        cd, track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [-5.0, 5.0]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]

    # wind_limits = [0,64]
    wind_limits = [0, 50]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.gauge_locations(current_data,gaugenos=[6])

    def afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================
    regions = {
        "Full Domain (Grids)": [[clawdata.lower[0], clawdata.upper[0]],
                                [clawdata.lower[1], clawdata.upper[1]],
                                [1, 1, 1, 1, 1, 1, 1]],
        "Mumbai Regio (Grids)": [[70, 75], [17, 22], [1, 1, 1, 1, 1, 1, 1]],
        "Mumbai (Grids)": [[72.6, 73.15], [18.80, 19.25],
                           [1, 1, 1, 1, 1, 1, 1]],
        "Full Domain (No Grids)": [[clawdata.lower[0], clawdata.upper[0]],
                                   [clawdata.lower[1], clawdata.upper[1]],
                                   [0, 0, 0, 0, 0, 0, 0]],
        "Mumbai Region (No Grids)": [[70, 75], [17, 22], [0, 0, 0, 0, 0, 0,
                                                          0]],
        "Mumbai (No Grids)": [[72.6, 73.15], [18.80, 19.25],
                              [0, 0, 0, 0, 0, 0, 0]]
    }
    full_xlimits = regions['Full Domain (Grids)'][0]
    full_ylimits = regions['Full Domain (Grids)'][1]

    for (name, region_data) in regions.iteritems():

        #
        #  Surface
        #
        plotfigure = plotdata.new_plotfigure(
            name='Surface - %s' % name, figno=fig_num_counter.get_counter())
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Surface'
        plotaxes.scaled = True
        plotaxes.xlimits = region_data[0]
        plotaxes.ylimits = region_data[1]
        plotaxes.afteraxes = afteraxes

        surge.add_surface_elevation(plotaxes,
                                    plot_type='pcolor',
                                    bounds=surface_limits)
        # surge.add_surface_elevation(plotaxes, plot_type='contourf',
        #                                        contours=surface_contours)
        surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)
        surge.add_bathy_contours(plotaxes)

        if article:
            plotaxes.plotitem_dict['surface'].add_colorbar = False
        else:
            add_custom_colorbar_ticks_to_axes(plotaxes, 'surface',
                                              surface_ticks, surface_labels)
        plotaxes.plotitem_dict['land'].amr_patchedges_show = region_data[2]
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = region_data[2]

        #
        #  Water Speed
        #
        plotfigure = plotdata.new_plotfigure(
            name='Currents - %s' % name, figno=fig_num_counter.get_counter())
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Currents'
        plotaxes.scaled = True
        plotaxes.xlimits = region_data[0]
        plotaxes.ylimits = region_data[1]
        plotaxes.afteraxes = afteraxes

        # Speed
        surge.add_speed(plotaxes, plot_type='pcolor', bounds=speed_limits)
        # surge.add_speed(plotaxes, plot_type='contourf', contours=speed_contours)
        if article:
            plotaxes.plotitem_dict['speed'].add_colorbar = False
        else:
            add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                              speed_labels)

        # Land
        surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)

        plotaxes.plotitem_dict['speed'].amr_patchedges_show = region_data[2]
        plotaxes.plotitem_dict['land'].amr_patchedges_show = region_data[2]

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and False

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.add_friction(plotaxes, bounds=friction_bounds)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    # ==========================
    #  Hurricane Forcing fields
    # ==========================
    grids = [[0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1]]
    label = ["(No Grids)", "(Grids)"]
    for i in xrange(2):
        # Pressure field
        plotfigure = plotdata.new_plotfigure(
            name='Pressure %s' % label[i], figno=fig_num_counter.get_counter())
        plotfigure.show = surge_data.pressure_forcing and True

        plotaxes = plotfigure.new_plotaxes()
        plotaxes.xlimits = full_xlimits
        plotaxes.ylimits = full_ylimits
        plotaxes.title = "Pressure Field"
        plotaxes.afteraxes = afteraxes
        plotaxes.scaled = True

        surge.add_pressure(plotaxes, bounds=pressure_limits)
        surge.add_land(plotaxes)
        plotaxes.plotitem_dict['pressure'].amr_patchedges_show = grids[i]
        plotaxes.plotitem_dict['land'].amr_patchedges_show = grids[i]

        # Wind field
        plotfigure = plotdata.new_plotfigure(
            name='Wind Speed %s' % label[i],
            figno=fig_num_counter.get_counter())
        plotfigure.show = surge_data.wind_forcing and True

        plotaxes = plotfigure.new_plotaxes()
        plotaxes.xlimits = full_xlimits
        plotaxes.ylimits = full_ylimits
        plotaxes.title = "Wind Field"
        plotaxes.afteraxes = afteraxes
        plotaxes.scaled = True

        surge.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor')
        surge.add_land(plotaxes)
        plotaxes.plotitem_dict['wind'].amr_patchedges_show = grids[i]
        plotaxes.plotitem_dict['land'].amr_patchedges_show = grids[i]

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = regions["Mumbai (Grids)"][0]
    gauge_ylimits = regions["Mumbai (Grids)"][1]

    # gauge_location_shrink = 0.75
    def gauge_after_axes(cd):
        # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        # import pdb; pdb.set_trace()
        surge.gauge_locations(cd, gaugenos=[1, 2, 3])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes
    surge.add_surface_elevation(plotaxes,
                                plot_type='pcolor',
                                bounds=surface_limits)
    # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                      surface_labels)
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):
        if cd.gaugeno in [1, 2, 3]:
            axes = plt.gca()

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(
                seconds2days(geoclaw_gauge.t -
                             date2seconds(gauge_landfall[1])),
                geoclaw_gauge.q[3, :], 'b--')

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2, 1])
            axes.set_ylim([-1, 5])
            axes.set_xticks([-2, -1, 0, 1])
            axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        # surge.gauge_afteraxes(cd)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = [54, 60, 66, 72, 78,
                                   84]  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3]  # list of gauges to print
        plotdata.print_fignos = [4, 5, 6, 7, 10, 3,
                                 300]  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = False  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    else:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = 'all'  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3]  # list of gauges to print
        plotdata.print_fignos = 'all'  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = True  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Пример #12
0
def setplot(plotdata):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """ 

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'


    # Import useful run data
    clawdata = data.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    dtopo_data = clawpack.geoclaw.data.DTopoData()
    dtopo_data.read(os.path.join(plotdata.outdir, 'dtopo.data'))
    friction_data = clawpack.geoclaw.surge.data.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos=[21401, 21413, 21418, 21419], format_string='ko', add_labels=True)
    

    #-----------------------------------------
    # Figure for pcolor plot
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='full domain', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True

    def fixup(current_data):
        import pylab
        #addgauges(current_data)
        t = current_data.t
        t = t / 3600.  # hours
        pylab.title('Surface at %4.2f hours' % t, fontsize=20)
        pylab.xticks(fontsize=15)
        pylab.yticks(fontsize=15)
        #pylab.plot([205],[19.7],'wo',markersize=10)
        #pylab.text(200,22,'Hilo',color='k',fontsize=25)
        pylab.plot([139.7],[35.6],'yo',markersize=5)
        pylab.text(133.3,36.5,'Sendai',color='y',fontsize=15)
        addgauges(current_data)

    plotaxes.afteraxes = fixup

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.pcolor_cmin = -0.1
    plotitem.pcolor_cmax = 0.1
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 0

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 0
    #plotaxes.xlimits = [138,155]
    #plotaxes.ylimits = [25,42]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = numpy.linspace(-5000,-100,6)
    plotitem.amr_contour_colors = ['y']  # color on each level
    plotitem.kwargs = {'linestyles':'solid','linewidths':2}
    plotitem.amr_contour_show = [1,0,0]  
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0


    #-----------------------------------------
    # Figure for zoom plot
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Zoom', figno=1)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = [140,146]
    plotaxes.ylimits = [35,41]


    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = colormaps.blue_white_red
    plotitem.pcolor_cmin = -10.0
    plotitem.pcolor_cmax = 10.0
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 0

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.patchedges_show = 0

    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    #plotitem.show = False
    plotitem.plot_var = geoplot.surface
    plotitem.contour_levels = numpy.linspace(-13,13,14)
    plotitem.amr_contour_colors = ['k']  # color on each level
    #plotitem.kwargs = {'linestyles':'solid','linewidths':2}
    plotitem.amr_contour_show = [0,0,0,1]  
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = numpy.linspace(-6,6,13)
    plotitem.amr_contour_colors = ['k']  # color on each level
    #plotitem.kwargs = {'linestyles':'solid','linewidths':2}
    plotitem.amr_contour_show = [0,0,0,1]  
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'
    plotitem.kwargs = {'linewidth':2}

    # Plot comparison as red curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = (dart_data_path is not None)
    # plotitem.outdir = dart_data_path
    plotitem.plot_var = 3
    plotitem.plotstyle = 'r-'
    plotitem.kwargs = {'linewidth':2}

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    def gaugetopo(current_data):
        q = current_data.q
        h = q[:,0]
        eta = q[:,3]
        topo = eta - h
        return topo
        
    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        t = current_data.t
        plt.plot([0,10800],[0,0],'k')

    def plot_dart(current_data):
        import pylab
        gaugeno = current_data.gaugeno
        try:
            dart = dartdata[gaugeno]
            pylab.plot(dart[:,0],dart[:,1],'k')    
            pylab.legend(['GeoClaw','DART data'])
        except:
            if dart_data_path is None:
                pylab.legend(['GeoClaw'])
            else:
                pylab.legend(['GeoClaw','dart_data_path'])
        add_zeroline(current_data)
        try:
            pylab.xlim(tlimits[gaugeno])
        except:
            pass


    plotaxes.afteraxes = plot_dart


    # =====================
    #  Plot Friction Field
    # =====================
    plotfigure = plotdata.new_plotfigure('Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = r"Manning's $N$ Coefficient"
    plotaxes.scaled = True
    plotaxes.afteraxes = addgauges

    plotitem = plotaxes.new_plotitem(name='friction',plot_type='2d_pcolor')
    plotitem.plot_var = lambda cd: cd.aux[3,:,:]
    plotitem.pcolor_cmap = plt.get_cmap('YlOrRd')
    plotitem.colorbar_shrink = 0.9
    plotitem.pcolor_cmin = 0.01
    plotitem.pcolor_cmax = 0.1   
    plotitem.add_colorbar = True
    plotitem.colorbar_label = "Manning's-$n$ Coefficient"
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [0,0,0,0,0,0,0]
    plotitem.colorbar_label = r"$n$"

    # ==========================
    #  Plot Fault Configuration
    # ==========================
    def plot_dtopo(plotdata):

        print "Creating html for other figures."
        with open('fault.html', 'w') as out_html:
            out_html.write("<html>\n")
            out_html.write("    <header>\n")
            out_html.write("        <title>Fault Specification</title>\n")
            out_html.write("    </header>\n")
            out_html.write("    <body>\n")
            out_html.write("        <h1>Fault Specification</h1>\n")
            out_html.write("        <img src='fault.png'>\n")
            out_html.write("        <img src='uplift.png'>\n")
            out_html.write("    </body>\n")
            out_html.write("</html>")

        # Need to save this in the run_faults section, cannot do yet
        # fault = dtopotools.Fault(path="./fault_params.txt")
        # fig = plt.figure()
        # axes = fig.add_subplot(1, 1, 1)
        # fault.plot_subfaults(axes, slip_color=True, cmin_slip=0.0, 
                                                    # cmax_slip=120.0)
        # fig.savefig('fault.png')

        dtopo = dtopotools.DTopography(path=dtopo_data.dtopofiles[0][3])
        fig = plt.figure()
        axes = fig.add_subplot(1, 1, 1)
        dtopo.plot_dZ_colors(t=1.0, axes=axes)
        fig.savefig("uplift.png")


    plotfigure = plotdata.new_otherfigure("Fault", "fault.html")
    plotfigure.makefig = plot_dtopo


    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata
Пример #13
0
def setplot(plotdata):
#--------------------------

    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    """


    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = "binary"

    plotdata.verbose = False

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)


    #-----------------------------------------
    # Some global kml flags
    #-----------------------------------------
    plotdata.kml_name = "SouthChinaSea"
    #plotdata.kml_starttime = [2010,2,27,6,34,0]  # Time of event in UTC [None]
    #plotdata.kml_tz_offset = 3    # Time zone offset (in hours) of event. [None]

    plotdata.kml_index_fname = "SouthChinaSea"  # name for .kmz and .kml files ["_GoogleEarth"]

    # Set to a URL where KMZ file will be published.
    # plotdata.kml_publish = None

    # Colormap range
    cmin = -1.2
    cmax = 1.2
    cmap = geoplot.googleearth_transparent

    #-----------------------------------------------------------
    # Figure for KML files
    #----------------------------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Sea Surface',figno=1)
    plotfigure.show = True

    plotfigure.use_for_kml = True
    plotfigure.kml_use_for_initial_view = True

    # These override any axes limits set below in plotaxes
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir,'claw.data'))

    #ocean_xlimits = [clawdata.lower[0],clawdata.upper[0]]
    #ocean_ylimits = [clawdata.lower[1],clawdata.upper[1]]
    #  99 had roundoff and bombed!
    ocean_xlimits = [99.001,125]
    ocean_ylimits = [0,24]

    plotfigure.kml_xlimits = ocean_xlimits
    plotfigure.kml_ylimits = ocean_ylimits

    # Resolution (should be consistent with data)
    # Refinement levels : [2,6]; max level = 3; num_cells = [30,30]
    # rcl : resolution of the coarsest level in this figure
    #rcl = 100    # rcl*figsize = num_cells
    rcl = 50    # rcl*figsize = num_cells
    plotfigure.kml_figsize = [7.8,7.2]
    # replace 4 and 6 wtha ctual refinement ratios
    # then if still be too big (> 32K) then halve it
    #plotfigure.kml_dpi = rcl*4*6      # Resolve all three levels
    plotfigure.kml_dpi = rcl*1         # Resolve all three levels
    plotfigure.kml_tile_images = True     # Tile images for faster loading.  Requires GDAL [False]


    # Water
    plotaxes = plotfigure.new_plotaxes('kml')
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = cmap
    plotitem.pcolor_cmin = cmin
    plotitem.pcolor_cmax = cmax

    def kml_colorbar(filename):
        geoplot.kml_build_colorbar(filename,cmap,cmin,cmax)

    plotfigure.kml_colorbar = kml_colorbar

    #-----------------------------------------------------------
    # Figure for KML files (zoom)
    #----------------------------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Sea Surface (zoom)',figno=2)
    plotfigure.show = False

    plotfigure.use_for_kml = True
    plotfigure.kml_use_for_initial_view = False  # Use large plot for view

    # Set Google Earth bounding box and figure size
    plotfigure.kml_xlimits = ocean_xlimits
    plotfigure.kml_ylimits = ocean_ylimits
    # zoom into fine grid region of this size
    plotfigure.kml_figsize = [10,14]  # inches.

    # Resolution
    rcl = 10    # Over-resolve the coarsest level
    plotfigure.kml_dpi = rcl*2*6       # Resolve all three levels
    plotfigure.kml_tile_images = False  # Tile images for faster loading.


    plotaxes = plotfigure.new_plotaxes('kml')
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = cmap
    plotitem.pcolor_cmin = cmin
    plotitem.pcolor_cmax = cmax

    def kml_colorbar(filename):
        geoplot.kml_build_colorbar(filename,cmap,cmin,cmax)

    plotfigure.kml_colorbar = kml_colorbar


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    # plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = True

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0,:]
        eta = q[3,:]
        topo = eta - h
        return topo

    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend, xticks, floor, axis, xlabel
        t = current_data.t
        gaugeno = current_data.gaugeno

        if gaugeno == 32412:
            try:
                plot(TG32412[:,0], TG32412[:,1], 'r')
                legend(['GeoClaw','Obs'],loc='lower right')
            except: pass
            axis((0,t.max(),-0.3,0.3))

        plot(t, 0*t, 'k')
        n = int(floor(t.max()/3600.) + 2)
        xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)])
        xlabel('time (hours)')

    plotaxes.afteraxes = add_zeroline


    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'         # list of frames to print
    #plotdata.print_framenos = range(0,5)      # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'           # list of figures to print
    plotdata.html = False                     # create html files of plots?
    plotdata.html_movie = None                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = False                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    plotdata.kml = True

    return plotdata
Пример #14
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'binary'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_range = 5.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Entire Region": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (13, 10)
        },
        "Caribbean Sub-region": {
            "xlimits": (-86, -58.0),
            "ylimits": (9, 28),
            "figsize": (16, 6)
        },
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Entire Region']['xlimits']
    plotaxes.ylimits = regions['Entire Region']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Entire Region']['xlimits']
    plotaxes.ylimits = regions['Entire Region']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Entire Region']['xlimits']
    plotaxes.ylimits = regions['Entire Region']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 1])
        axes.set_ylim([-1, 5])
        axes.set_xticks([-2, -1, 0, 1])
        axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [clawdata.lower[0], clawdata.upper[0]]
    plotaxes.ylimits = [clawdata.lower[1], clawdata.upper[1]]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    #-----------------------------------------
    # Figures for fgmax plots
    #-----------------------------------------

    from clawpack.geoclaw import fgmax_tools
    fgmax_plotdir = '_plots'
    os.system('mkdir -p %s' % fgmax_plotdir)
    # Read fgmax data:
    fgno = 1
    while (True):
        fg = fgmax_tools.FGmaxGrid()
        try:
            fg.read_fgmax_grids_data(fgno)

            fg.read_output(outdir=plotdata.outdir)

            fg.B0 = fg.B  # no seafloor deformation in this problem
            fg.h_onshore = np.ma.masked_where(fg.B0 < 0., fg.h)
            plt.figure(figsize=(20, 20))

            pc = plt.pcolormesh(fg.X, fg.Y, fg.h_onshore, cmap='hot_r')
            cb = plt.colorbar(pc, extend='max', shrink=0.7)
            cb.set_label('meters')
            plt.contour(fg.X, fg.Y, fg.B, [0], colors='g')

            plt.gca().set_aspect(1. / np.cos(48 * np.pi / 180.))
            plt.ticklabel_format(useOffset=False)
            plt.xticks(rotation=20)
            plt.title('Maximum Onshore flow depth\nfgmax grid {fgno}')
            img_name = f'fgmax{str(fgno).zfill(4)}_h_onshore.png'
            plt.savefig(fname=f'{fgmax_plotdir}/{img_name}')
            otherfigure = plotdata.new_otherfigure(
                name=f'max depth on fgmax grid {fgno}', fname=img_name)
            fgno = fgno + 1
        except:
            break

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits

    surface_limits = [-4.0, 4.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]
    '''
    surface_limits = [-2.0, 2.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 70]
    pressure_limits = [990, 1010]
    friction_bounds = [0.01, 0.04]
    '''

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # surface region
    regions = {
        "Gulf": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (6.4, 3.2)
        },
        "LaTex Shelf": {
            "xlimits": (-94.5, -86),
            "ylimits": (27, 32),
            "figsize": (10, 5)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['wind'].amr_patchedges_show = [0] * 10  # added

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1.0, 2.5]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):
        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)
        gauge_id = ['8770822', '8768094', '8764227', '8761305', '8760922']
        gauge_title = [
            'Texas Point, Sabine Pass, TX', 'Calcasieu Pass, LA',
            'LAWMA, Amerada Pass, LA', 'Shell Beach, LA',
            'Pilots Station East, S.W. Pass, LA'
        ]
        if (cd.gaugeno < 6):
            realData = util.fetch_noaa_tide_data(gauge_id[cd.gaugeno - 1],
                                                 datetime.datetime(2019,
                                                                   7,
                                                                   10,
                                                                   hour=12),
                                                 datetime.datetime(2019,
                                                                   7,
                                                                   16,
                                                                   hour=12),
                                                 datum='MLLW')
            values = realData[1] - realData[2]
            times = []
            for time in realData[0]:
                times.append(
                    (time - numpy.datetime64("2019-07-13T15:00")).astype(float)
                    / 1440)
        plt.plot(times, values, color='orange', label='real')

        axes.set_title('Gauge %s: %s' %
                       (cd.gaugeno,
                        gauge_title[cd.gaugeno - 1]))  # i for i in gauge_title
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 1])
        axes.set_ylim([-1.0, 2.5])
        axes.set_xticks([-2, -1, 0, 1])
        axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #

    # All gauges
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Location")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [-95, -88.5]
    plotaxes.ylimits = [28, 31]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # Gauge 01: Texas Point, Sabine Pass, TX [8770822]
    def gauge_location_afteraxes1(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[1],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 01")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 01 Location'
    plotaxes.scaled = True
    plotaxes.xlimits = [-93.84 - 0.2, -93.84 + 0.2]
    plotaxes.ylimits = [29.69 - 0.2, 29.69 + 0.2]
    plotaxes.afteraxes = gauge_location_afteraxes1
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # Gauge 02: Calcasieu Pass, LA [8768094]
    def gauge_location_afteraxes2(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[2],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 02")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 02 Location'
    plotaxes.scaled = True
    plotaxes.xlimits = [-93.34 - 0.2, -93.34 + 0.2]
    plotaxes.ylimits = [29.77 - 0.2, 29.77 + 0.2]
    plotaxes.afteraxes = gauge_location_afteraxes2
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # Gauge 03: LAWMA, Amerada Pass, LA [8764227]
    def gauge_location_afteraxes3(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[3],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 03")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 03 Location'
    plotaxes.scaled = True
    plotaxes.xlimits = [-91.34 - 0.2, -91.34 + 0.2]
    plotaxes.ylimits = [29.45 - 0.2, 29.45 + 0.2]
    plotaxes.afteraxes = gauge_location_afteraxes3
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # Gauge 04: Shell Beach, LA [8761305]
    def gauge_location_afteraxes4(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[4],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 04")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 04 Location'
    plotaxes.scaled = True
    plotaxes.xlimits = [-89.67 - 0.2, -89.67 + 0.2]
    plotaxes.ylimits = [29.87 - 0.2, 29.87 + 0.2]
    plotaxes.afteraxes = gauge_location_afteraxes4
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # Gauge 05: Pilots Station East, S.W. Pass, LA [8760922]
    def gauge_location_afteraxes5(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[5],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 05")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 05 Location'
    plotaxes.scaled = True
    plotaxes.xlimits = [-89.41 - 0.2, -89.41 + 0.2]
    plotaxes.ylimits = [28.93 - 0.2, 28.93 + 0.2]
    plotaxes.afteraxes = gauge_location_afteraxes5
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4, 5]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
Пример #16
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Import data objects
    clawdata = data.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    #-----------------------------------------
    # Figure for surface
    #-----------------------------------------
    extents = {
        "Full Domain": {
            'extent': [
                clawdata.lower[0], clawdata.upper[0], clawdata.lower[1],
                clawdata.upper[1]
            ],
            'show_contours':
            False,
            'show_patches': [1, 1, 1, 1],
            'figsize': (6.4, 4.8)
        },
        "Zoom 1": {
            'extent': init_region,
            'show_contours': True,
            'show_patches': 0,
            'figsize': (6.4 * 2.0, 4.8)
        }
    }

    for (name, param_dict) in extents.items():
        plotfigure = plotdata.new_plotfigure(name='Surface %s' % name)
        plotfigure.kwargs['figsize'] = param_dict['figsize']

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes('pcolor')
        plotaxes.title = 'Surface'
        plotaxes.scaled = True

        # Water
        plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
        # plotitem.plot_var = geoplot.surface
        plotitem.plot_var = surface_or_depth
        # plotitem.plot_var = 0
        plotitem.pcolor_cmap = surface_cmap
        plotitem.pcolor_cmin = -10.0
        plotitem.pcolor_cmax = 10.0
        plotitem.add_colorbar = True
        plotitem.amr_celledges_show = [0, 0, 0, 0]
        plotitem.patchedges_show = param_dict['show_patches']

        # Bathy contour
        plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
        plotitem.show = param_dict['show_contours']
        plotitem.plot_var = geoplot.topo
        plotitem.contour_levels = numpy.arange(5000, 6000, 25)
        plotitem.amr_contour_colors = ['k']  # color on each level
        plotitem.kwargs = {'linestyles': 'solid', 'linewidths': 1}
        plotitem.amr_contour_show = [0, 0, 0, 1]
        plotitem.celledges_show = 0
        plotitem.patchedges_show = 0

        plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
        plotitem.show = param_dict['show_contours']
        plotitem.plot_var = geoplot.topo
        plotitem.contour_levels = numpy.arange(4000, 5000, 25)
        plotitem.amr_contour_colors = ['k']  # color on each level
        plotitem.kwargs = {'linestyles': 'dashed', 'linewidths': 1}
        plotitem.amr_contour_show = [0, 0, 0, 1]
        plotitem.celledges_show = 0
        plotitem.patchedges_show = 0

        # Land
        plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
        plotitem.plot_var = geoplot.land
        plotitem.pcolor_cmap = geoplot.land_colors
        plotitem.pcolor_cmin = 4800
        plotitem.pcolor_cmax = 5005
        plotitem.add_colorbar = False
        plotitem.amr_celledges_show = [0, 0, 0]
        plotitem.patchedges_show = param_dict['show_patches']
        plotaxes.xlimits = param_dict['extent'][:2]
        plotaxes.ylimits = param_dict['extent'][2:]

        def draw_rect(rect, axes, style="r--"):
            """rect = [xlower, ylower, xupper, yupper"""
            xlower = rect[0]
            xupper = rect[1]
            ylower = rect[2]
            yupper = rect[3]
            axes.plot([xlower, xupper], [ylower, ylower], style)
            axes.plot([xupper, xupper], [ylower, yupper], style)
            axes.plot([xupper, xlower], [yupper, yupper], style)
            axes.plot([xlower, xlower], [yupper, ylower], style)

        def afteraxes(cd):
            addgauges(cd)
            draw_rect([491000, 493700, 3085250, 3086250], plt.gca())

        plotaxes.afteraxes = afteraxes

    # -----------------------------------------
    # Figures for gauges
    # -----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    # def gaugetopo(current_data):
    #     q = current_data.q
    #     h = q[0,:]
    #     eta = q[3,:]
    #     topo = eta - h
    #     return topo

    # plotitem.plot_var = gaugetopo
    # plotitem.plotstyle = 'g-'

    # def add_zeroline(current_data):
    #     from pylab import plot, legend, xticks, floor, axis, xlabel
    #     t = current_data.t
    #     gaugeno = current_data.gaugeno

    # if gaugeno == 32412:
    #     try:
    #         plot(TG32412[:,0], TG32412[:,1], 'r')
    #         legend(['GeoClaw','Obs'],loc='lower right')
    #     except: pass
    #     axis((0,t.max(),-0.3,0.3))

    # plot(t, 0*t, 'k')
    # n = int(floor(t.max()/3600.) + 2)
    # xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)])
    # xlabel('time (hours)')

    # plotaxes.afteraxes = add_zeroline

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
Пример #17
0
def setplot(plotdata,
            bathy_location=0.15,
            bathy_angle=0.0,
            bathy_left=-1.0,
            bathy_right=-0.2):
    """Setup the plotting data objects.

    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    returns plotdata object

    """

    import os

    import numpy as np
    import matplotlib.pyplot as plt

    from clawpack.visclaw import geoplot, gaugetools

    import clawpack.clawutil.data as clawutil
    import clawpack.amrclaw.data as amrclaw
    import clawpack.geoclaw.data

    import clawpack.geoclaw.multilayer.plot as ml_plot

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    geodata = clawpack.geoclaw.data.GeoClawData()
    geodata.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    def transform_c2p(x, y, x0, y0, theta):
        return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta),
                (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta))

    def transform_p2c(x, y, x0, y0, theta):
        return (x * np.cos(theta) + y * np.sin(theta) - x0,
                -x * np.sin(theta) + y * np.cos(theta) - y0)

    # Setup bathymetry reference lines
    with open(os.path.join(plotdata.outdir, "bathy_geometry.data"),
              'r') as bathy_geometry_file:
        bathy_location = float(bathy_geometry_file.readline())
        bathy_angle = float(bathy_geometry_file.readline())
    x = [0.0, 0.0]
    y = [0.0, 1.0]
    x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle)
    x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle)

    if abs(x1 - x2) < 10**-3:
        x = [x1, x1]
        y = [clawdata.lower[1], clawdata.upper[1]]
    else:
        m = (y1 - y2) / (x1 - x2)
        x[0] = (clawdata.lower[1] - y1) / m + x1
        y[0] = clawdata.lower[1]
        x[1] = (clawdata.upper[1] - y1) / m + x1
        y[1] = clawdata.upper[1]
    ref_lines = [((x[0], y[0]), (x[1], y[1]))]

    plotdata.clearfigures()

    plotdata.save_frames = False

    # ========================================================================
    #  Generic helper functions
    # ========================================================================
    def pcolor_afteraxes(current_data):
        bathy_ref_lines(current_data)
        gauge_locations(current_data)

    def contour_afteraxes(current_data):
        # gauge_locations(current_data)
        # m_to_km_labels()
        plt.hold(True)
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        plt.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                 [-300e3, 300e3], 'y')
        plt.hold(False)
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def bathy_ref_lines(current_data):
        plt.hold(True)
        for ref_line in ref_lines:
            x1 = ref_line[0][0]
            y1 = ref_line[0][1]
            x2 = ref_line[1][0]
            y2 = ref_line[1][1]
            plt.plot([x1, x2], [y1, y2], 'y--', linewidth=1)
        plt.hold(False)

    def gauge_locations(current_data, gaugenos='all'):
        plt.hold(True)
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos=gaugenos, format_string='kx', add_labels=True)
        plt.hold(False)

    # ========================================================================
    # Axis limits
    #xlimits = [amrdata.xlower,amrdata.xupper]
    xlimits = [-0.5, 0.5]
    #ylimits = [amrdata.ylower,amrdata.yupper]
    ylimits = [-0.5, 0.5]
    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]
    top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03]
    internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015]
    # top_surface_limits = [eta[0]-0.3,eta[0]+0.3]
    # internal_surface_limits = [eta[1]-0.15,eta[1]+0.15]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # Single layer test limits
    # top_surface_limits = [eta[0]-2.5,eta[0]+2.5]
    # top_speed_limits = [0.0,6.0]

    # ========================================================================
    #  Surface Elevations
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06])
    # ml_plot.add_surface_elevation(plotaxes,1)
    ml_plot.add_land(plotaxes)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5])
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,2)
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depths', figno=42)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1])
    ml_plot.add_land(plotaxes)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Bottom Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7])
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Water Speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,1,bounds=[0.00,0.2])
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    # add_speed(plotaxes,1)
    ml_plot.add_land(plotaxes)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,2,bounds=[0.0,1e-10])
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    # add_speed(plotaxes,2)
    ml_plot.add_land(plotaxes)

    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 14)}

    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125])
    ml_plot.add_y_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes)

    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6])
    ml_plot.add_y_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Profile Plots
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='profile', figno=4)
    plotfigure.show = False

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-2000, 20]
    plotaxes.title = "Profile of depth"
    plotaxes.afteraxes = profile_afteraxes

    slice_index = 30

    # Internal surface
    def bathy_profile(current_data):
        return current_data.x[:, slice_index], b(current_data)[:, slice_index]

    def lower_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:,
                                  slice_index], eta2(current_data)[:,
                                                                   slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], eta2(current_data)[
                slice_index, :]

    def upper_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:,
                                  slice_index], eta1(current_data)[:,
                                                                   slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], eta1(current_data)[
                slice_index, :]

    def top_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index], water_u1(
                current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], water_u1(current_data)[
                slice_index, :]

    def bottom_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index], water_u2(
                current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], water_u2(current_data)[
                slice_index, :]

    # Bathy
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = bathy_profile
    plotitem.plot_var = 0
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'k'
    plotitem.show = True

    # Internal Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = lower_surface
    plotitem.plot_var = 7
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'b'
    plotitem.show = True

    # Upper Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = upper_surface
    plotitem.plot_var = 6
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # ========================================================================
    #  Combined Profile Plot
    # ========================================================================
    # add_combined_profile_plot(plotdata,0.25,direction='y',figno=120)
    # add_combined_profile_plot(plotdata,0.8,direction='y',figno=121)
    #
    # add_velocities_profile_plot(plotdata,0.25,direction='y',figno=130)
    # add_velocities_profile_plot(plotdata,0.8,direction='y',figno=131)

    # ========================================================================
    #  Bathy Profile
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='bathy_profile', figno=20)
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.title = "Bathymetry Profile"
    plotaxes.scaled = 'equal'

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = ml_plot.b
    plotitem.imshow_cmin = -4000
    plotitem.imshow_cmax = 10
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]
    plotitem.show = True

    # ========================================================================
    # Figures for momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='x-momentum', figno=13)
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'X-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_u
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.show = True
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 80.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    plotfigure = plotdata.new_plotfigure(name='y-momentum', figno=14)
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Y-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_v
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Contour plot for surface
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:

    # Top Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=1,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, plot_type='contour')

    # Internal Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=2,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, plot_type='contour')

    # ========================================================================
    #  Contour plot for speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Current'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes

    # Surface
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = ml_plot.water_speed_depth_ave
    plotitem.kwargs = {'linewidths': 1}
    # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0]
    plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0]
    plotitem.amr_contour_show = [1, 1, 1]
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]
    plotitem.amr_contour_colors = 'k'
    # plotitem.amr_contour_colors = ['r','k','b']  # color on each level
    # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.show = True

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.land
    plotitem.contour_nlevels = 40
    plotitem.contour_min = 0.0
    plotitem.contour_max = 100.0
    plotitem.amr_contour_colors = ['g']  # color on each level
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = 0
    plotitem.amr_patchedges_show = 0
    plotitem.show = True

    # ========================================================================
    #  Vorticity Plot
    # ========================================================================
    # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17)
    # plotfigure.show = False
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.title = "Vorticity"
    # plotaxes.scaled = True
    # plotaxes.xlimits = xlimits
    # plotaxes.ylimits = ylimits
    # plotaxes.afteraxes = pcolor_afteraxes
    #
    # # Vorticity
    # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    # plotitem.plot_var = 9
    # plotitem.imshow_cmap = plt.get_cmap('PRGn')
    # # plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    # # plotitem.pcolor_cmin = 0.0
    # # plotitem.pcolor_cmax = 6.0
    # plotitem.imshow_cmin = -1.e-2
    # plotitem.imshow_cmax = 1.e-2
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1]
    #
    # # Land
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # plotitem.plot_var = geoplot.land
    # plotitem.pcolor_cmap = geoplot.land_colors
    # plotitem.pcolor_cmin = 0.0
    # plotitem.pcolor_cmax = 80.0
    # plotitem.add_colorbar = False
    # plotitem.amr_celledges_show = [0,0,0]

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    def plot_regression_gauges(cd, plot_var=(3, 7)):
        import clawpack.pyclaw.gauges as gauges
        import numpy

        fig = plt.gcf()
        gauge = gauges.GaugeSolution(cd.gaugeno, path="./regression_data")
        for (i, n) in enumerate(plot_var):
            fig.axes[i].plot(gauge.t, gauge.q[n, :], 'k-')

    # Top
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0.0, 1.0]
    # plotaxes.ylimits = top_surface_limits
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = "subplot(1, 2, 1)"

    # Plot surfaces:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'ro'

    # Bottom
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.title = 'Bottom Surface'
    plotaxes.axescmd = "subplot(1, 2, 2)"
    plotaxes.afteraxes = plot_regression_gauges

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 7
    plotitem.plotstyle = 'ro'

    # Plot topo as green curve:
    # plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.plot_var = geoplot.gaugetopo
    # plotitem.plotstyle = 'g+'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Пример #18
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 5})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 100]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Atlantic": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (6.4, 4.8)
        },
        "United Kingdom": {
            "xlimits": (-10.5, 0),
            "ylimits": (51.5, 60.0),
            "figsize": (8, 6)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 2]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-.25, .75]
    plotaxes.title = 'Surface'

    # -------- Failed attempt at comparing data on Clawpack ----------
    #def get_actual_water_levels(gaugeno):
    #    heights = open("surge_"+str(gaugeno)+".txt", "r")
    #    surge = []
    #    for height in heights:
    #        line = height.strip()
    #        line = line.split(",")
    #        line = float(line[0])
    #        surge.append(line)
    #
    #    t = np.arange(-172800, 172800, 3600, dtype='float')
    #
    #    return t, surge

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        #t, surge = get_actual_water_levels(cd.gaugeno)
        #axes.plot(t, surge, color="g", label="Observed")

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 2])
        axes.set_ylim([-.25, .75])
        axes.set_xticks([-2, -1, 0, 1, 2])
        axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$", r"$2$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    # Gauge Location Plot
    #

    # --------- For only one plot for location of all four gauges, uncomment -------
    # def gauge_location_afteraxes(cd):
    #     plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
    #     surge_afteraxes(cd)
    #     gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all',
    #                                     format_string='ko', add_labels=True)
    #
    # plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    # plotfigure.show = True
    #
    # # Set up for axes in this figure:
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.title = 'Gauge Locations'
    # plotaxes.scaled = True
    # plotaxes.xlimits = [-7.0, -4.8]
    # plotaxes.ylimits = [55.0, 58.2]
    # plotaxes.afteraxes = gauge_location_afteraxes
    # surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    # surgeplot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # individual gauge plots
    def gauge_1_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[1],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_2_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[2],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_3_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[3],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_4_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[4],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 1")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 1'
    plotaxes.scaled = True
    plotaxes.xlimits = [-7.0, -6.0]
    plotaxes.ylimits = [55.0, 56.0]
    plotaxes.afteraxes = gauge_1_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 2")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 2'
    plotaxes.scaled = True
    plotaxes.xlimits = [-6.5, -5.5]
    plotaxes.ylimits = [56.0, 57.0]
    plotaxes.afteraxes = gauge_2_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 3")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 3'
    plotaxes.scaled = True
    plotaxes.xlimits = [-6.0, -5.0]
    plotaxes.ylimits = [57.5, 58.5]
    plotaxes.afteraxes = gauge_3_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 4")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 4'
    plotaxes.scaled = True
    plotaxes.xlimits = [-6.0, -5.0]
    plotaxes.ylimits = [58.0, 59.0]
    plotaxes.afteraxes = gauge_4_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
Пример #19
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""


    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'ascii'

    # Load data from output
    claw_data = clawdata.ClawInputData(2)
    claw_data.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track'))

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, track,
                                                           plot_direction=False)

    # Color limits
    surface_range = 1.0
    speed_range = 1.0
    # speed_range = 1.e-2

    eta = physics.sea_level
    if not isinstance(eta,list):
        eta = [eta]
    surface_limits = [eta[0]-surface_range,eta[0]+surface_range]
    speed_limits = [0.0,speed_range]

    wind_limits = [0, 55]
    pressure_limits = [966, 1013]
    friction_bounds = [0.01, 0.04]
    vorticity_limits = [-1.e-2, 1.e-2]
    land_bounds = [-10, 50]


    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # Limits for plots
    regions = {'Full Domain': {"xlimits": [claw_data.lower[0], claw_data.upper[0]],
                               "ylimits": [claw_data.lower[1], claw_data.upper[1]],
                               "shrink": 1.0,
                               "figsize": [6.4, 4.8]}
               }
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all',
                                        format_string='ko', add_labels=True)

    for (name, region_dict) in regions.items():
        # ========================================================================
        #  Surface Elevations
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Surface'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = surge_afteraxes
        plotaxes.afteraxes = gauge_location_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits,
                                    shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)

        plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,0,0]
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,0,0]


        # ========================================================================
        #  Water Speed
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Currents'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits,
                        shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)



    # ========================================================================
    # Hurricane forcing - Entire Atlantic
    # ========================================================================
    # Friction field
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Manning's N Coefficients"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes,bounds=friction_bounds)

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_pressure(plotaxes,bounds=pressure_limits)
    surgeplot.add_land(plotaxes, bounds=[-10, 500])

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()

    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow')
    surgeplot.add_land(plotaxes, bounds=[-10, 500])
    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    stations = [('8518750', 'The Battery, NY'),
                ('8516945', 'Kings Point, NY'),
                ('8519483', 'Bergen Point West Reach, NY')]
                #('8531680','Sandy Hook, NY'),
                #('n03020','Narrows,NY')]

    landfall_time = np.datetime64('2012-10-29T23:30')
    begin_date = datetime.datetime(2012, 10, 28)
    end_date = datetime.datetime(2012, 10, 31,)

    def get_actual_water_levels(station_id):
        # Fetch water levels and tide predictions for given station
        date_time, water_level, tide = fetch_noaa_tide_data(station_id,
                begin_date, end_date)

        # Calculate times relative to landfall
        seconds_rel_landfall = (date_time - landfall_time) / np.timedelta64(1, 's')
        # Subtract tide predictions from measured water levels
        water_level -= tide

        return seconds_rel_landfall, water_level

    # def get_actual_current(station_id):
    #     # Fetch currents for given station_name
    #     date_time, water_level, tide, currents = fetch_noaa_tide_data(station_id,
    #             begin_date, end_date)
    #
    #     # calculate times relative to landfall_time
    #     secs_rel_landfall = (date_time - landfall_time) / np.timedelta64(1, 's')
    #     return secs_rel_landfall, currents
    #
    # def calc_currents(cd):
    #     height = cd.q[0,:]
    #     where_zero = np.where(height == 0)[0]
    #     for index in where_zero:
    #         height[index] = 1
    #     vel_magnitude = (cd.q[1,:]/height)**2 + (cd.q[2,:]/height)**2
    #     vel_magnitude = vel_magnitude**0.5
    #     return vel_magnitude

    def gauge_afteraxes(cd):
        station_id, station_name = stations[cd.gaugeno-1]
        seconds_rel_landfall, actual_level = get_actual_water_levels(station_id)

        axes = plt.gca()
        #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall)
        axes.plot(seconds_rel_landfall, actual_level, 'g')

        # Fix up plot - in particular fix time labels
        axes.set_title(station_name)
        axes.set_xlabel('Seconds relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([days2seconds(-2), days2seconds(1)])
        axes.set_ylim([0, 4])
        axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0, days2seconds(1)])
        #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"])
        #axes.grid(True)

    # def current_afterxes(cd):
    #     station_id, station_name = stations[cd.gaugeno-1]
    #     if len(station_id)==6:
    #         seconds_rel_landfall, currents = get_actual_currents(station_id)
    #
    #         axes = plt.gca()
    #         #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall)
    #         axes.plot(seconds_rel_landfall, currents, 'g')
    #
    #         # Fix up plot - in particular fix time labels
    #         axes.set_title(station_name)
    #         axes.set_xlabel('Seconds relative to landfall')
    #         axes.set_ylabel('Surface (m)')
    #         axes.set_xlim([days2seconds(-2), days2seconds(1)])
    #         axes.set_xticks([ days2seconds(-2), days2seconds(-1), 0, days2seconds(1)])
    #         #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"])
    #         #axes.grid(True)
    #
    #


    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'


    # Speeds

#    plotfigure = plotdata.new_plotfigure(name='Currents', figno=400, \
#                        type='each_gauge')
#    plotfigure.show = True
#    plotfigure.clf_each_gauge = True

#    plotaxes = plotfigure.new_plotaxes()
    #plotaxes.afteraxes = current_afterxes
   # plotaxes.axescmd = 'subplot(122)'
   # try:
   #     plotaxes.xlimits = [amrdata.t0, amrdata.tfinal]
   # except:
   #     pass
   # plotaxes.ylimits = surface_limits
    #plotaxes.title = 'Momenta'
    # plotaxes.afteraxes = surge.gauge_afteraxes

#    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
#    plotitem.plot_var = calc_currents
#    plotitem.plotstyle = 'r-.'
    #plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    #plotitem.plot_var = 2
    #plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata
Пример #20
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'ascii'

    # Load data from output
    claw_data = clawdata.ClawInputData(2)
    claw_data.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(
        cd, track, plot_direction=False)

    def plot_coastline(cd):
        """Load fine coastline for plotting around NYC"""
        try:
            # Assumes that at path theres a fine topography file in NetCDF file format
            path = "/Users/mandli/Dropbox/research/data/topography/atlantic/sandy_bathy/ny_area.nc"
            topo_file = topotools.Topography(path, topo_type=4)
            topo_file.read(nc_params={
                "x_var": "lon",
                "y_var": "lat",
                "z_var": "Band1"
            })

            axes = plt.gca()
            axes.contour(topo_file.X,
                         topo_file.Y,
                         topo_file.Z,
                         levels=[-0.001, 0.001],
                         colors='k',
                         linestyles='-')
        except:
            pass

        surge_afteraxes(cd)

    # Color limits
    surface_range = 4.5
    speed_range = 1.0
    # speed_range = 1.e-2

    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    speed_limits = [0.0, speed_range]

    wind_limits = [0, 55]
    pressure_limits = [966, 1013]
    friction_bounds = [0.01, 0.04]
    vorticity_limits = [-1.e-2, 1.e-2]
    land_bounds = [-10, 50]

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # Limits for plots
    regions = {
        'Full Domain': {
            "xlimits": [claw_data.lower[0], claw_data.upper[0]],
            "ylimits": [claw_data.lower[1], claw_data.upper[1]],
            "shrink": 1.0,
            "figsize": [6.4, 4.8]
        },
        'Tri-State Region': {
            "xlimits": [-74.5, -71.0],
            "ylimits": [40.0, 41.5],
            "shrink": 1.0,
            "figsize": [6.4, 4.8]
        },
        'NYC': {
            "xlimits": [-74.2, -73.7],
            "ylimits": [40.4, 40.85],
            "shrink": 1.0,
            "figsize": [6.4, 4.8]
        }
    }

    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    for (name, region_dict) in regions.items():
        # ========================================================================
        #  Surface Elevations
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Surface - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Surface'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = plot_coastline
        # plotaxes.afteraxes = surge_afteraxes
        # plotaxes.afteraxes = gauge_location_afteraxes

        surgeplot.add_surface_elevation(plotaxes,
                                        bounds=surface_limits,
                                        shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)

        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0]
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0, 0, 0]

        # ========================================================================
        #  Water Speed
        # ========================================================================
        plotfigure = plotdata.new_plotfigure(name='Currents - %s' % name)
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Currents'
        plotaxes.scaled = True
        plotaxes.xlimits = region_dict['xlimits']
        plotaxes.ylimits = region_dict['ylimits']
        plotaxes.afteraxes = plot_coastline

        surgeplot.add_speed(plotaxes,
                            bounds=speed_limits,
                            shrink=region_dict['shrink'])
        surgeplot.add_land(plotaxes, bounds=land_bounds)

        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0]
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0]

    # ========================================================================
    # Hurricane forcing - Entire Atlantic
    # ========================================================================
    # Friction field
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Manning's N Coefficients"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds)

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes, bounds=[-10, 500])

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()

    plotaxes.xlimits = regions['Full Domain']['xlimits']
    plotaxes.ylimits = regions['Full Domain']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    surgeplot.add_wind(plotaxes, bounds=wind_limits, plot_type='imshow')
    surgeplot.add_land(plotaxes, bounds=[-10, 500])
    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    stations = [('8518750', 'The Battery, NY'), ('8516945', 'Kings Point, NY'),
                ('8519483', 'Bergen Point West Reach, NY')]
    #('8531680','Sandy Hook, NY'),
    #('n03020','Narrows,NY')]

    landfall_time = np.datetime64('2012-10-29T23:30')
    begin_date = datetime.datetime(2012, 10, 28)
    end_date = datetime.datetime(
        2012,
        10,
        31,
    )

    def get_actual_water_levels(station_id):
        # Fetch water levels and tide predictions for given station
        date_time, water_level, tide = fetch_noaa_tide_data(
            station_id, begin_date, end_date)

        # Calculate times relative to landfall
        seconds_rel_landfall = (date_time - landfall_time) / np.timedelta64(
            1, 's')
        # Subtract tide predictions from measured water levels
        water_level -= tide

        return seconds_rel_landfall, water_level

    def gauge_afteraxes(cd):
        station_id, station_name = stations[cd.gaugeno - 1]
        seconds_rel_landfall, actual_level = get_actual_water_levels(
            station_id)

        axes = plt.gca()
        #surgeplot.plot_landfall_gauge(cd.gaugesoln, axes, landfall=landfall)
        axes.plot(seconds_rel_landfall, actual_level, 'g')

        # Fix up plot - in particular fix time labels
        axes.set_title(station_name)
        axes.set_xlabel('Seconds relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([days2seconds(-2), days2seconds(1)])
        axes.set_ylim([0, 4])
        axes.set_xticks(
            [days2seconds(-2),
             days2seconds(-1), 0,
             days2seconds(1)])
        #axes.set_xticklabels([r"$-3$", r"$-2$", r"$-1$", r"$0$", r"$1$"])
        #axes.grid(True)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Пример #21
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd, track, plot_direction=False,
                                             kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]
    color_limits=[0,50]
    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {"Atlantic": {"xlimits": (clawdata.lower[0], clawdata.upper[0]),
                        "ylimits": (clawdata.lower[1], clawdata.upper[1]),
                        "figsize": (6.4, 4.8)},
	       "Atlantic City, NJ": {"xlimits": (-78, -74),
		       	"ylimits": (32,36),
			"figsize": (10.5, 11.5)},
           "ChesapeakeBay Shelf": {"xlimits": (-77, -75),
                               "ylimits": (36, 38),
                               "figsize": (5, 6)},
	       "Manhattan Shelf": {"xlimits": (-75,-73),
			       "ylimits": (38,40),
			       "figsize": (5,6)},
	       "Sandy Hook, NJ": {"xlimits": (-76,-73),
				"ylimits": (38,41),
				"figsize":(5,6)},
           "New Haven CT": {"xlimits": (-77,-73),
				"ylimits": (39,41),
				"figsize":(5,6)},
              "New London CT": {"xlimits": (-74,-70),
				"ylimits": (39,43),
				"figsize":(5,6)},
              "Boston MA": {"xlimits": (-72,-68),
				"ylimits": (40,44),
				"figsize":(5,6)}}

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes,bounds=color_limits)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Atlantic']['xlimits']
    plotaxes.ylimits = regions['Atlantic']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces', figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-3, 3]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [0,1.5]
    plotaxes.title = 'Surface'
    #Gauge Data from NOAA
    try:
        gauges = [np.loadtxt('gauge_data_1.txt'), 
	       np.loadtxt('gauge_data_2.txt'), 
	       np.loadtxt('gauge_data3.txt'), 
               np.loadtxt('gauge_data_4.txt'),
               np.loadtxt('gauge_data_5.txt'),
	       np.loadtxt('gauge_data_6.txt')]
        #Legend with Gauge Locations
        data_names = ["Duke Marine Lab, NC Data from NOAA",
                 "Kiptopeke Beach, NC Data from NOAA",
                 "Atlantic City, NJ Data from NOAA",
                 "Sandy Hook, NJ Data from NOAA",
                 "New London, CT Data from NOAA",
                 "Boston, MA Data from NOAA"]
    except:
        print("Add gauge files to directory")
    

    def gauge_afteraxes(cd):
        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-3, 3])
        axes.set_ylim([0,1.5])
        axes.set_xticks([-3, -2, -1, 0, 1, 2, 3])
        axes.set_xticklabels([r"$-3$",r"$-2$",r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$"])
        axes.grid(True)
        
        
    try:
        gauge_data=gauges[cd.gaugeno-1]
        axes.plot(gauge_data[:,0], gauge_data[:,1], label=data_names[cd.gaugeno-1])
        axes.legend()
    except:
            print('Gauge Data Unavailable')
    plotaxes.afteraxes = gauge_afteraxes
        
    

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata, gaugenos='all',
                                        format_string='ko', add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [-81, -70]
    plotaxes.ylimits = [33,45]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #---------------

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4, 5, 6]   # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?
    plotdata.parallel = True                 # parallel plotting

    return plotdata
Пример #22
0
def setplot(plotdata=None,
            bathy_location=0.15,
            bathy_angle=0.0,
            bathy_left=-1.0,
            bathy_right=-0.2):
    """Setup the plotting data objects.

    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    returns plotdata object

    """

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    def transform_c2p(x, y, x0, y0, theta):
        return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta),
                (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta))

    def transform_p2c(x, y, x0, y0, theta):
        return (x * np.cos(theta) + y * np.sin(theta) - x0,
                -x * np.sin(theta) + y * np.cos(theta) - y0)

    # Setup bathymetry reference lines
    with open(os.path.join(plotdata.outdir, "bathy_geometry.data"), 'r') \
            as bathy_geometry_file:
        bathy_location = float(bathy_geometry_file.readline())
        bathy_angle = float(bathy_geometry_file.readline())
    x = [0.0, 0.0]
    y = [0.0, 1.0]
    x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle)
    x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle)

    if abs(x1 - x2) < 10**-3:
        x = [x1, x1]
        y = [clawdata.lower[1], clawdata.upper[1]]
    else:
        m = (y1 - y2) / (x1 - x2)
        x[0] = (clawdata.lower[1] - y1) / m + x1
        y[0] = clawdata.lower[1]
        x[1] = (clawdata.upper[1] - y1) / m + x1
        y[1] = clawdata.upper[1]
    ref_lines = [((x[0], y[0]), (x[1], y[1]))]

    plotdata.clearfigures()
    plotdata.save_frames = False
    plotdata.format = 'ascii'

    # ========================================================================
    #  Generic helper functions
    def pcolor_afteraxes(current_data):
        bathy_ref_lines(current_data)

    def contour_afteraxes(current_data):
        axes = plt.gca()
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        axes.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                  [-300e3, 300e3], 'y')
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def bathy_ref_lines(current_data):
        axes = plt.gca()
        for ref_line in ref_lines:
            x1 = ref_line[0][0]
            y1 = ref_line[0][1]
            x2 = ref_line[1][0]
            y2 = ref_line[1][1]
            axes.plot([x1, x2], [y1, y2], 'y--', linewidth=1)

    # ========================================================================
    # Axis limits

    xlimits = [-0.5, 0.5]
    ylimits = [-0.5, 0.5]
    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]
    top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03]
    internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # ========================================================================
    #  Surface Elevations
    plotfigure = plotdata.new_plotfigure(name='Surface')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06])
    # ml_plot.add_surface_elevation(plotaxes,1)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5])
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)

    # ========================================================================
    #  Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depths', figno=42)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1])
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Bottom Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7])
    ml_plot.add_land(plotaxes, 2)

    # ========================================================================
    #  Water Speed
    plotfigure = plotdata.new_plotfigure(name='speed')
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,2,bounds=[0.0,1e-10])
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    # add_speed(plotaxes,2)
    ml_plot.add_land(plotaxes, 2)

    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 14)}

    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125])
    ml_plot.add_y_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes, 2)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6])
    ml_plot.add_y_velocity(plotaxes, 2)

    ml_plot.add_land(plotaxes, 2)
    # ========================================================================
    #  Profile Plots
    #  Note that these are not currently plotted by default - set
    # `plotfigure.show = True` is you want this to be plotted
    plotfigure = plotdata.new_plotfigure(name='profile')
    plotfigure.show = False

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-1.1, 0.1]
    plotaxes.title = "Profile of depth"
    plotaxes.afteraxes = profile_afteraxes

    slice_index = 30

    # Internal surface
    def bathy_profile(current_data):
        return current_data.x[:, slice_index], b(current_data)[:, slice_index]

    def lower_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta2(current_data)[slice_index, :]

    def upper_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    eta1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    eta1(current_data)[slice_index, :]

    def top_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u1(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u1(current_data)[slice_index, :]

    def bottom_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index],    \
                    water_u2(current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :],    \
                    water_u2(current_data)[slice_index, :]

    # Bathy
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = bathy_profile
    plotitem.plot_var = 0
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'k'
    plotitem.show = True

    # Internal Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = lower_surface
    plotitem.plot_var = 7
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'b'
    plotitem.show = True

    # Upper Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = upper_surface
    plotitem.plot_var = 6
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Y-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_v
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    ml_plot.add_land(plotaxes, 1)

    # ========================================================================
    #  Contour plot for surface
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:

    # Top Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=1,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, 1, plot_type='contour')

    # Internal Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=2,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, 2, plot_type='contour')

    # ========================================================================
    #  Contour plot for speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Current'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes

    # Surface
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = ml_plot.water_speed_depth_ave
    plotitem.kwargs = {'linewidths': 1}
    # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0]
    plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0]
    plotitem.amr_contour_show = [1, 1, 1]
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]
    plotitem.amr_contour_colors = 'k'
    # plotitem.amr_contour_colors = ['r','k','b']  # color on each level
    # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.show = True

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.land
    plotitem.contour_nlevels = 40
    plotitem.contour_min = 0.0
    plotitem.contour_max = 100.0
    plotitem.amr_contour_colors = ['g']  # color on each level
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = 0
    plotitem.amr_patchedges_show = 0
    plotitem.show = True

    # ========================================================================
    #  Grid Cells
    # ========================================================================

    # Figure for grid cells
    plotfigure = plotdata.new_plotfigure(name='cells', figno=2)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.title = 'Grid patches'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    # ========================================================================
    #  Vorticity Plot
    # ========================================================================
    # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17)
    # plotfigure.show = False
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.title = "Vorticity"
    # plotaxes.scaled = True
    # plotaxes.xlimits = xlimits
    # plotaxes.ylimits = ylimits
    # plotaxes.afteraxes = pcolor_afteraxes
    #
    # # Vorticity
    # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    # plotitem.plot_var = 9
    # plotitem.imshow_cmap = plt.get_cmap('PRGn')
    # # plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    # # plotitem.pcolor_cmin = 0.0
    # # plotitem.pcolor_cmax = 6.0
    # plotitem.imshow_cmin = -1.e-2
    # plotitem.imshow_cmax = 1.e-2
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1]
    #
    # # Land
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # plotitem.plot_var = geoplot.land
    # plotitem.pcolor_cmap = geoplot.land_colors
    # plotitem.pcolor_cmin = 0.0
    # plotitem.pcolor_cmax = 80.0
    # plotitem.add_colorbar = False
    # plotitem.amr_celledges_show = [0,0,0]

    # ========================================================================
    #  Figures for gauges

    # Top
    plotfigure = plotdata.new_plotfigure(name='Surface & topo',
                                         type='each_gauge',
                                         figno=301)
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = top_surface_limits
    plotaxes.title = 'Top Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 6
    plotitem.plotstyle = 'b-'

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.ylimits = internal_surface_limits
    plotaxes.title = 'Bottom Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 7
    plotitem.plotstyle = 'b-'

    # =========================================================================
    #  Other plots

    # Gauge Locations - Enable to see where gauges are located
    def locations_afteraxes(current_data, gaugenos='all'):
        gaugetools.plot_gauge_locations(current_data.plotdata,
                                        gaugenos=gaugenos,
                                        format_string='kx',
                                        add_labels=True)
        pcolor_afteraxes(current_data)

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations')
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1, 2, 1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1, 2, 2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = locations_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_land(plotaxes, 2)

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
Пример #23
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))

    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))

    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))

    surge_data = surgedata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))

    friction_data = surgedata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008, 9, 13, 7) - datetime.datetime(
        2008, 1, 1, 0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]

    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)

    wind_limits = [0, 64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]
    # vorticity_limits = [-1.e-2,1.e-2]

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    #-----------------------------------------
    # Some global kml flags
    #-----------------------------------------
    plotdata.kml_name = "Ike"
    plotdata.kml_starttime = [2008, 9, 3, 15, 0,
                              0]  # Time of event in UTC [None]
    plotdata.kml_tz_offset = 5  # Time zone offset (in hours) of event. [None]

    plotdata.kml_index_fname = "Ike"  # name for .kmz and .kml files ["_GoogleEarth"]

    # Set to path where KMZ files will be stored;   KML file will then
    # link to this path.
    # plotdata.kml_publish = 'http://www.domain.edu/path/to/kmz/files'

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]]
    gulf_shrink = 1.0

    # --------------------------
    #  Surface - entire gulf
    # --------------------------

    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain',
                                         figno=0)
    plotfigure.show = True

    plotfigure.use_for_kml = True
    plotfigure.kml_use_for_initial_view = True

    # These override axes limits set below in plotitems
    plotfigure.kml_xlimits = gulf_xlimits
    plotfigure.kml_ylimits = gulf_ylimits

    # Resolution - needs to be set carefully for the transparent colormap
    rcl = 40
    plotfigure.kml_dpi = rcl * 2
    plotfigure.kml_figsize = [11.6, 9.6]
    plotfigure.kml_tile_images = False  # Tile images for faster loading.  Requires GDAL [False]

    plotaxes = plotfigure.new_plotaxes()
    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.googleearth_transparent
    plotitem.pcolor_cmin = -surface_range
    plotitem.pcolor_cmax = surface_range

    def kml_colorbar(filename):
        cmin = -surface_range
        cmax = surface_range
        geoplot.kml_build_colorbar(filename, geoplot.googleearth_transparent,
                                   cmin, cmax)

    plotfigure.kml_colorbar = kml_colorbar

    # --------------------------
    #  Water Speed - entire gulf
    # --------------------------
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',
                                         figno=1)
    plotfigure.show = True

    plotfigure.use_for_kml = True
    plotfigure.kml_use_for_initial_view = False

    # These override axes limits set below in plotitems
    plotfigure.kml_xlimits = gulf_xlimits
    plotfigure.kml_ylimits = gulf_ylimits
    plotfigure.kml_figsize = [11.6, 9.6]
    plotfigure.kml_dpi = 80  # size not so important with contourf
    plotfigure.kml_tile_images = False  # Tile images for faster loading.  Requires GDAL [False]

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()

    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.contour_levels = speed_contours
    plotitem.fill_cmin = min(speed_contours)
    plotitem.fill_cmax = max(speed_contours)

    cmap = plt.get_cmap('OrRd')
    cmap._rgba_under = (0.0, 0.0, 0.0, 0.0)
    plotitem.fill_cmap = cmap

    def cbar_speeds(filename):
        cmin = min(speed_contours)
        cmax = max(speed_contours)
        geoplot.kml_build_colorbar(filename, cmap, cmin, cmax)

    plotfigure.kml_colorbar = cbar_speeds

    # ========================================================================
    #  Houston/Galveston
    # ========================================================================
    houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)]
    houston_ylimits = [29.1, 29.0 + 55.0 / 60.0]
    houston_shrink = 0.9

    #No need to worry about fitting the plot exactly if we are not using
    # the transparent colormap with pcolor.
    #num_cells = [116, 96]
    #dx = (gulf_xlimits[1] - float(gulf_xlimits[0]))/num_cells[0]   # = 0.25
    #dy = (gulf_ylimits[1] - float(gulf_ylimits[0]))/num_cells[1]   # = 0.25
    #houston_xlimits = [gulf_xlimits[0] + 14*dx, gulf_xlimits[0] + 21*dx]  # [-95.25, -94.5]
    #houston_ylimits = [gulf_ylimits[0] + 82*dy, gulf_ylimits[0] + 88*dy]  # [-95.25, -94.5]
    #figsize = [(21-14)*dx,(88-82)*dy]  # relative to [11.6, 9.6] occupied by larger grid

    figsize = [
        houston_xlimits[1] - houston_xlimits[0],
        houston_ylimits[1] - houston_ylimits[0]
    ]
    dpi = 400

    # --------------------------------------
    # Surface Elevations - Houston/Galveston
    # --------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston',
                                         figno=2)
    plotfigure.show = True
    plotfigure.use_for_kml = True

    plotfigure.kml_xlimits = houston_xlimits
    plotfigure.kml_ylimits = houston_ylimits
    plotfigure.kml_dpi = dpi  # data is not more resolve than this
    plotfigure.kml_figsize = figsize
    plotfigure.kml_tile_images = False

    # pcolor for water.
    plotaxes = plotfigure.new_plotaxes()
    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf')
    plotitem.contour_levels = surface_contours
    plotitem.fill_cmin = min(surface_contours)
    plotitem.fill_cmax = max(surface_contours)

    # what is the colormap used here?
    #plotfigure.kml_colorbar = cbar_houston

    # --------------------------------
    # Water Speed - Houston/Galveston
    # --------------------------------
    plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston',
                                         figno=3)
    plotfigure.show = True
    plotfigure.use_for_kml = True

    # These override axes limits set below in plotitems
    plotfigure.kml_xlimits = houston_xlimits
    plotfigure.kml_ylimits = houston_ylimits
    plotfigure.kml_figsize = figsize
    plotfigure.kml_dpi = dpi  # data is not more resolve than this
    plotfigure.kml_tile_images = False  # Tile images for faster loading.  Requires GDAL [False]

    # Water
    plotaxes = plotfigure.new_plotaxes()
    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.contour_levels = speed_contours
    plotitem.fill_cmin = min(speed_contours)
    plotitem.fill_cmax = max(speed_contours)

    cmap = plt.get_cmap('OrRd')
    cmap._rgba_under = (0.0, 0.0, 0.0, 0.0)
    plotitem.fill_cmap = cmap

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):

        if cd.gaugeno in [1, 2, 3, 4]:
            axes = plt.gca()
            # # Add Kennedy gauge data
            # kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]]
            # axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])),
            #          kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-',
            #          label='Gauge Data')

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(seconds2days(geoclaw_gauge.t -
                                   date2seconds(gauge_landfall[1])),
                      geoclaw_gauge.q[3, :] + gauge_surface_offset[0],
                      'b--',
                      label="GeoClaw")

            # Add ADCIRC gauge data
            # ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']]
            # axes.plot(seconds2days(ADCIRC_gauge[:,0] - gauge_landfall[2]),
            #          ADCIRC_gauge[:,1] + gauge_surface_offset[1], 'r-.', label="ADCIRC")

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2, 1])
            axes.set_ylim([-1, 5])
            axes.set_xticks([-2, -1, 0, 1])
            axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        surgeplot.gauge_afteraxes(cd)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    #plotaxes.xlabel = "Days from landfall"
    #plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = [0, 1, 2, 3]  # list of figures to print
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    plotdata.html = False  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.kml = True

    return plotdata
Пример #24
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surge.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surge.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008, 9, 13, 7) - datetime.datetime(
        2008, 1, 1, 0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.surge_afteraxes(
        cd, track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]

    wind_limits = [0, 64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.gauge_locations(current_data,gaugenos=[6])

    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]]
    gulf_shrink = 0.9

    def gulf_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        else:
            plt.subplots_adjust(left=0.05, bottom=0.07, right=1.00, top=0.93)
        surge_afteraxes(cd)

    #
    #  Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=gulf_shrink)
    surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)
    # surge.add_bathy_contours(plotaxes)
    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        1, 1, 1, 1, 1, 1, 1, 1
    ]

    #
    #  Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    # Speed
    surge.add_speed(plotaxes,
                    plot_type='contourf',
                    contours=speed_contours,
                    shrink=gulf_shrink)
    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)

    # Land
    surge.add_land(plotaxes)
    surge.add_bathy_contours(plotaxes)

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and True

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    # ========================================================================
    #  LaTex Shelf
    # ========================================================================
    latex_xlimits = [-97.5, -88.5]
    latex_ylimits = [27.5, 30.5]
    latex_shrink = 1.0

    def latex_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86)
        # else:
        # plt.subplots_adjust(right=1.0)
        surge_afteraxes(cd)

    #
    # Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7)}  #, 'facecolor':'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7)}  #, 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
        # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall)
    else:
        add_custom_colorbar_ticks_to_axes(
            plotaxes, 'surface', [-5, -2.5, 0, 2.5, 5.0],
            ["-5.0", "-2.5", " 0", " 2.5", " 5.0"])
    # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd')
    # surge.add_surface_elevation(plotaxes,plot_type='contour')
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7)}  #, 'facecolor':'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7)}  #, 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.add_speed(plotaxes,
                    plot_type='contourf',
                    contours=speed_contours,
                    shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)
    # surge.add_surface_elevation(plotaxes,plot_type='contour')
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ========================================================================
    #  Houston/Galveston
    # ========================================================================
    houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)]
    houston_ylimits = [29.1, 29.0 + 55.0 / 60.0]
    houston_shrink = 0.9

    def houston_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.05, bottom=0.07, right=0.99, top=0.92)
        else:
            plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        # surge.gauge_locations(cd)

    #
    # Surface Elevations
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    # if article:
    #     plotfigure.kwargs['figsize'] =

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=houston_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)
    surge.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    # surge.add_bathy_contours(plotaxes)

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes

    surge.add_speed(plotaxes,
                    plot_type='contourf',
                    contours=speed_contours,
                    shrink=houston_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)
    surge.add_land(plotaxes)
    # surge.add_bathy_contours(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ==========================
    #  Hurricane Forcing fields
    # ==========================

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink)
    surge.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.add_wind(plotaxes,
                   bounds=wind_limits,
                   plot_type='pcolor',
                   shrink=gulf_shrink)
    surge.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):

        if cd.gaugeno in [1, 2, 3, 4]:
            axes = plt.gca()
            # Add Kennedy gauge data
            kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]]
            axes.plot(kennedy_gauge['t'] -
                      seconds2days(date2seconds(gauge_landfall[0])),
                      kennedy_gauge['mean_water'] + kennedy_gauge['depth'],
                      'k-',
                      label='Gauge Data')

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(seconds2days(geoclaw_gauge.t -
                                   date2seconds(gauge_landfall[1])),
                      geoclaw_gauge.q[3, :] + gauge_surface_offset[0],
                      'b--',
                      label="GeoClaw")

            # Add ADCIRC gauge data
            ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']]
            axes.plot(seconds2days(ADCIRC_gauge[:, 0] - gauge_landfall[2]),
                      ADCIRC_gauge[:, 1] + gauge_surface_offset[1],
                      'r-.',
                      label="ADCIRC")

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2, 1])
            axes.set_ylim([-1, 5])
            axes.set_xticks([-2, -1, 0, 1])
            axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        # surge.gauge_afteraxes(cd)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = [-95.5, -94]
    gauge_ylimits = [29.0, 30.0]
    gauge_location_shrink = 0.75

    def gauge_after_axes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        surge.gauge_locations(cd, gaugenos=[1, 2, 3, 4])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=gauge_location_shrink)
    # surge.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                      surface_labels)
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ==============================================================
    #  Debugging Plots, only really work if using interactive plots
    # ==============================================================
    #
    # Water Velocity Components
    #
    plotfigure = plotdata.new_plotfigure(
        name='Velocity Components - Entire Domain',
        figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # X-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.title = 'Velocity, X-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.water_u
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    surge.add_land(plotaxes)

    # Y-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.title = 'Velocity, Y-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.water_v
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    surge.add_land(plotaxes)

    #
    # Depth
    #
    plotfigure = plotdata.new_plotfigure(name='Depth - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'depth'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = 0
    plotitem.imshow_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.imshow_cmin = 0
    plotitem.imshow_cmax = 100
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 1, 1, 1, 1]

    # Surge field
    plotfigure = plotdata.new_plotfigure(name='Surge Field',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = ((surge_data.wind_forcing or surge_data.pressure_forcing)
                       and False)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Storm Surge Source Term S"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.pressure_field + 1
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 0, 0]

    surge.add_land(plotaxes)

    plotfigure = plotdata.new_plotfigure(name='Friction/Coriolis Source',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Friction/Coriolis Source"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.pressure_field + 2
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 0, 0]

    surge.add_land(plotaxes)

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = [54, 60, 66, 72, 78,
                                   84]  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = [4, 5, 6, 7, 10, 3,
                                 300]  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = False  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    else:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = 'all'  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = 'all'  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = True  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Пример #25
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    import os

    import numpy as np
    import matplotlib.pyplot as plt

    from clawpack.visclaw import geoplot, gaugetools, colormaps

    import clawpack.clawutil.data as clawutil
    import clawpack.amrclaw.data as amrclaw
    import clawpack.geoclaw.data

    import clawpack.geoclaw.multilayer.plot as ml_plot

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    from numpy import linspace

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.save_frames = False

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    geodata = clawpack.geoclaw.data.GeoClawData()
    geodata.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    # ========================================================================
    #  Generic helper functions
    # ========================================================================
    def pcolor_afteraxes(current_data):
        # bathy_ref_lines(current_data)
        gauge_locations(current_data)

    def contour_afteraxes(current_data):
        # gauge_locations(current_data)
        # m_to_km_labels()
        plt.hold(True)
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        plt.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                 [-300e3, 300e3], 'y')
        plt.hold(False)
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def gauge_locations(current_data, gaugenos='all'):
        plt.hold(True)
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos=gaugenos, format_string='kx', add_labels=True)
        plt.hold(False)

    # ========================================================================
    # Axis limits
    # xlimits = [amrdata.xlower,amrdata.xupper]
    xlimits = [-100.0, 100.0]

    # ylimits = [amrdata.ylower,amrdata.yupper]
    ylimits = [-100.0, 100.0]

    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]

    top_surface_limits = [eta[0] - 10, eta[0] + 10]
    internal_surface_limits = [eta[1] - 5, eta[1] + 5]
    depth_limits = [0.0, 0.4]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # ========================================================================
    #  Surface Elevations
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    ml_plot.add_inundation(plotaxes, 1, bounds=depth_limits)
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    ml_plot.add_inundation(plotaxes, 2, bounds=depth_limits)
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_colorbar = True
    ml_plot.add_land(plotaxes, 2)

    # ========================================================================
    # Figure for cross section
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='cross-section', figno=4)
    plotfigure.show = True
    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.title = 'Cross section at y=0'
    ml_plot.add_cross_section(plotaxes, 1)
    ml_plot.add_cross_section(plotaxes, 2)
    ml_plot.add_land_cross_section(plotaxes)

    # ========================================================================
    #  Water Speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,1)'
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    ml_plot.add_land(plotaxes, 2)

    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 14)}

    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    ml_plot.add_x_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    ml_plot.add_y_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    ml_plot.add_x_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes, 2)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    ml_plot.add_y_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes, 2)

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend, xticks, floor, axis, xlabel
        t = current_data.t
        gaugeno = current_data.gaugeno

        if gaugeno == 32412:
            try:
                plot(TG32412[:, 0], TG32412[:, 1], 'r')
                legend(['GeoClaw', 'Obs'], loc='lower right')
            except:
                pass
            axis((0, t.max(), -0.3, 0.3))

        plot(t, 0 * t, 'k')
        n = int(floor(t.max() / 3600.) + 2)
        xticks([3600 * i for i in range(n)], ['%i' % i for i in range(n)])
        xlabel('time (hours)')

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
Пример #26
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [-5.0, 5.0]
    speed_limits = [0.0, 3.0]
    wind_limits = [0, 64]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    def friction_after_axes(cd):
        plt.title(r"Manning's $n$ Coefficient")

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Gulf": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (6.4, 4.8)
        },
        "Long Island": {
            "xlimits": (-74.5, -71.5),
            "ylimits": (40, 41.5),
            "figsize": (8, 2.7)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction')
    plotfigure.show = friction_data.variable_friction and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surgeplot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    #
    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Gulf']['xlimits']
    plotaxes.ylimits = regions['Gulf']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 3.75]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [0, 4]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # fetch real data
        noaaArr = [
            "8557380", "8639348", "8662245", "2695540", "8531680", "8510560"
        ]
        gaugeNumber = cd.gaugeno
        if (gaugeNumber < 7):
            # only looking at gauge 1-6 because rest of data not from NOAA Gauges
            realData = geoutil.fetch_noaa_tide_data(
                noaaArr[gaugeNumber - 1],
                datetime.datetime(2015, 9, 30, hour=12),
                datetime.datetime(2015, 10, 6, hour=6))
            values = realData[1] - realData[2]  # de-tide NOAA data
            times = []
            for time in realData[0]:
                times.append(
                    (time - numpy.datetime64("2015-10-02T12:00")).astype(float)
                    / 1440)

            plt.plot(times, values, color="g", label="real")

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2, 3.75])
        axes.set_ylim([0, 4])
        axes.set_xticks([-2, -1, 0, 1, 2, 3])
        axes.set_xticklabels(
            [r"$-2$", r"$-1$", r"$0$", r"$1$", r"$2$", r"$3$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_1_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[1],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_2_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[2],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_3_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[3],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_4_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[4],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_5_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[5],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_6_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[6],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_7_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[8],
                                        format_string='ko',
                                        add_labels=True)

    def gauge_8_afteraxes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos=[9],
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge 1")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 1'
    plotaxes.scaled = True
    plotaxes.xlimits = [-75.5, -74.75]
    plotaxes.ylimits = [38.25, 39.25]
    plotaxes.afteraxes = gauge_1_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 2")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 2'
    plotaxes.scaled = True
    plotaxes.xlimits = [-76.75, -75.5]
    plotaxes.ylimits = [36.5, 37.5]
    plotaxes.afteraxes = gauge_2_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 3")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 3'
    plotaxes.scaled = True
    plotaxes.xlimits = [-79.5, -79]
    plotaxes.ylimits = [33, 33.5]
    plotaxes.afteraxes = gauge_3_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 4")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 4'
    plotaxes.scaled = True
    plotaxes.xlimits = [-65.25, -64.25]
    plotaxes.ylimits = [31.75, 32.5]
    plotaxes.afteraxes = gauge_4_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 5")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 5'
    plotaxes.scaled = True
    plotaxes.xlimits = [-74.5, -73.5]
    plotaxes.ylimits = [40, 40.75]
    plotaxes.afteraxes = gauge_5_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 6")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 6'
    plotaxes.scaled = True
    plotaxes.xlimits = [-72.5, -71.5]
    plotaxes.ylimits = [40.5, 41.5]
    plotaxes.afteraxes = gauge_6_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 7")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 7'
    plotaxes.scaled = True
    plotaxes.xlimits = [-75.5, -74]
    plotaxes.ylimits = [23, 24.5]
    plotaxes.afteraxes = gauge_7_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    plotfigure = plotdata.new_plotfigure(name="Gauge 8")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge 8'
    plotaxes.scaled = True
    plotaxes.xlimits = [-74.75, -73.5]
    plotaxes.ylimits = [21.75, 23.25]
    plotaxes.afteraxes = gauge_8_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2, 3, 4, 5, 6, 7,
                               8]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata
Пример #27
0
def setplot(plotdata=None):
    """"""

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    # clear any old figures,axes,items data
    plotdata.clearfigures()
    plotdata.format = 'binary'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Set afteraxes function
    def surge_afteraxes(cd):
        surgeplot.surge_afteraxes(cd,
                                  track,
                                  plot_direction=False,
                                  kwargs={"markersize": 4})

    # Color limits
    surface_limits = [physics.sea_level - 5.0, physics.sea_level + 5.0]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, 3.0]
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]
    wind_limits = [0, 66]
    pressure_limits = [909, 1013]
    friction_bounds = [0.01, 0.04]

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        """Adjust colorbar ticks and labels"""
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    def gulf_after_axes(cd):
        # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)

    def latex_after_axes(cd):
        # plt.subplot_adjust()
        surge_afteraxes(cd)

    def friction_after_axes(cd):
        # plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    regions = {
        "Coast": {
            "xlimits": (clawdata.lower[0], clawdata.upper[0]),
            "ylimits": (clawdata.lower[1], clawdata.upper[1]),
            "figsize": (8, 7.5)
        },
        "Zhapo Station": {
            "xlimits": (111.71666667, 111.91666667),
            "ylimits": (21.48333333, 21.68333333),
            "figsize": (6, 6)
        },
        "Landfall": {
            "xlimits": (112.26, 112.86),
            "ylimits": (21.3, 21.7),
            "figsize": (6, 4)
        },
        "Quarry Bay": {
            "xlimits": (114.11333333, 114.31333333),
            "ylimits": (22.19111111, 22.39111111),
            "figsize": (6, 6)
        }
    }

    for (name, region_dict) in regions.items():

        # Surface Figure
        plotfigure = plotdata.new_plotfigure(name="Surface - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Surface"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)

        # Speed Figure
        plotfigure = plotdata.new_plotfigure(name="Currents - %s" % name)
        plotfigure.kwargs = {"figsize": region_dict['figsize']}
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = "Currents"
        plotaxes.xlimits = region_dict["xlimits"]
        plotaxes.ylimits = region_dict["ylimits"]
        plotaxes.afteraxes = surge_afteraxes

        surgeplot.add_speed(plotaxes, bounds=speed_limits)
        surgeplot.add_land(plotaxes)
        plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0] * 10
        plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)

    #  Hurricane Forcing fields
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure')
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Coast']['xlimits']
    plotaxes.ylimits = regions['Coast']['ylimits']
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed')
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = regions['Coast']['xlimits']
    plotaxes.ylimits = regions['Coast']['ylimits']
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    surgeplot.add_wind(plotaxes, bounds=wind_limits)
    surgeplot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Gauge Surfaces',
                                         figno=300,
                                         type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2.25, 0.75]
    #plotaxes.xlabel = "Days from landfall"
    #plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 4]
    plotaxes.title = 'Surface'

    def gauge_afteraxes(cd):

        axes = plt.gca()
        surgeplot.plot_landfall_gauge(cd.gaugesoln, axes)

        # Fix up plot - in particular fix time labels
        axes.set_title('Station %s' % cd.gaugeno)
        axes.set_xlabel('Days relative to landfall')
        axes.set_ylabel('Surface (m)')
        axes.set_xlim([-2.25, 0.75])
        axes.set_ylim([-1, 4])
        axes.set_xticks([-2.25, -1.25, -0.25, 0.75])
        axes.set_xticklabels([r"$-2.25$", r"$-1.25$", r"$-0.25$", r"$0.75$"])
        axes.grid(True)

    plotaxes.afteraxes = gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    #plotitem.plot_var = 3
    #plotitem.plotstyle = 'b-'

    #
    #  Gauge Location Plot
    #
    def gauge_location_afteraxes(cd):
        #plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.92)
        surge_afteraxes(cd)
        gaugetools.plot_gauge_locations(cd.plotdata,
                                        gaugenos='all',
                                        format_string='ko',
                                        add_labels=True)

    plotfigure = plotdata.new_plotfigure(name="Gauge Locations")
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Gauge Locations'
    plotaxes.scaled = True
    plotaxes.xlimits = [111.0, 115.0]
    plotaxes.ylimits = [21.0, 22.5]
    plotaxes.afteraxes = gauge_location_afteraxes
    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0] * 10
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0] * 10

    # -----------------------------------------
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = [1, 2]  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # parallel plotting

    return plotdata