batch_size = 128 debug = 0 model = Model() train_data = MNIST(name='train', path=data_path) valid_data = MNIST(name='valid', path=data_path) # Choose the random initialization method init_W = InitCell('rand') init_b = InitCell('zeros') # Define nodes: objects x, y = train_data.theano_vars() mn_x, mn_y = valid_data.theano_vars() # You must use THEANO_FLAGS="compute_test_value=raise" python -m ipdb if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) mn_x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) mn_y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) h1 = FullyConnectedLayer(name='h1', parent=['x'], parent_dim=[784], nout=1000, unit='relu', init_W=init_W, init_b=init_b)
save_path = '/home/junyoung/src/cle/saved/' batch_size = 128 debug = 0 model = Model() train_data = MNIST(name='train', path=data_path) valid_data = MNIST(name='valid', path=data_path) # Choose the random initialization method init_W = InitCell('randn') init_b = InitCell('zeros') # Define nodes: objects x, y = train_data.theano_vars() # You must use THEANO_FLAGS="compute_test_value=raise" python -m ipdb if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) h1 = FullyConnectedLayer(name='h1', parent=['x'], parent_dim=[784], nout=1000, unit='relu', init_W=init_W, init_b=init_b) output = FullyConnectedLayer(name='output', parent=['h1'],
inpsz = 784 latsz = 100 n_steps = 64 debug = 0 model = Model() data = MNIST(name='train', unsupervised=1, path=datapath) init_W = InitCell('rand') init_U = InitCell('ortho') init_b = InitCell('zeros') init_b_sig = InitCell('const', mean=0.6) x, _ = data.theano_vars() if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) error = ErrorLayer(name='error', parent=['x'], recurrent=['canvas'], batch_size=batch_size) read_param = FullyConnectedLayer(name='read_param', parent=['dec_tm1'], parent_dim=[256], nout=5, unit='linear', init_W=init_W, init_b=init_b)
# Set your dataset data_path = '/data/lisa/data/mnist/mnist.pkl' save_path = '/u/chungjun/src/cle/saved/' batch_size = 128 debug = 0 model = Model() train_data = MNIST(name='train', path=data_path) valid_data = MNIST(name='valid', path=data_path) # Define nodes: objects x, y = train_data.theano_vars() # You must use THEANO_FLAGS="compute_test_value=raise" python -m ipdb if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) # Choose the random initialization method init_W = InitCell('rand') init_b = InitCell('zeros') h1 = FullyConnectedLayer(name='h1', parent=['x'], parent_dim=[784], nout=1000, unit='relu',
batch_size = 100 input_dim = 784 latent_dim = 100 n_steps = 64 debug = 0 model = Model() data = MNIST(name='train', unsupervised=1, path=datapath) init_W = InitCell('rand') init_U = InitCell('ortho') init_b = InitCell('zeros') init_b_sig = InitCell('const', mean=0.6) x, _ = data.theano_vars() if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) error = ErrorLayer(name='error', parent=['x'], recurrent=['canvas'], batch_size=batch_size) read_param = FullyConnectedLayer(name='read_param', parent=['dec_tm1'], parent_dim=[256], nout=5, unit='linear', init_W=init_W, init_b=init_b)
#save_path = '/home/junyoung/src/cle/saved/' batch_size = 128 debug = 0 model = Model() train_data = MNIST(name='train', path=data_path) valid_data = MNIST(name='valid', path=data_path) # Choose the random initialization method init_W = InitCell('rand') init_b = InitCell('zeros') # Define nodes: objects x, y = train_data.theano_vars() mn_x, mn_y = valid_data.theano_vars() # You must use THEANO_FLAGS="compute_test_value=raise" python -m ipdb if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) mn_x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) mn_y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) h1 = FullyConnectedLayer(name='h1', parent=['x'], parent_dim=[784], nout=1000, unit='relu', init_W=init_W, init_b=init_b)
batch_size = 128 debug = 0 model = Model() trdata = MNIST(name='train', path=data_path) valdata = MNIST(name='valid', path=data_path) # Choose the random initialization method init_W = InitCell('randn') init_b = InitCell('zeros') # Define nodes: objects model.inputs = trdata.theano_vars() x, y = model.inputs # You must use THEANO_FLAGS="compute_test_value=raise" python -m ipdb if debug: x.tag.test_value = np.zeros((batch_size, 784), dtype=np.float32) y.tag.test_value = np.zeros((batch_size, 1), dtype=np.float32) inputs = [x, y] inputs_dim = {'x':784, 'y':1} onehot = OnehotLayer(name='onehot', parent=['y'], nout=10) h1 = FullyConnectedLayer(name='h1', parent=['x'],