Пример #1
0
def data2tiles_southtrac():

    tag = 'stratospheric'
    df = southtrac.read(strat=1).set_index(target).sort_index()

    relative_count, total_count = group(df)
    return relative_count, total_count, tag
Пример #2
0
                res=res
                )


ace = xr.open_dataset(dircInput2+f'ACE_OCS_{target}_{postfix}.nc').to_dataframe()
ace, _ = group(
               ace[ace['air'] >= 1].reset_index(),
                group='OCS', 
                groupby_v=target, 
                vmin=vmin, 
                vmax=vmax, 
                res=res
                )


southtrac = southtrac.read(strat=1)
southtrac, _ = group(
                    southtrac.reset_index(),
                    group='OCS', 
                    groupby_v=target, 
                    vmin=vmin, 
                    vmax=vmax, 
                    res=res
                    )
###############################################################################
colors = {'MIPAS' : 'firebrick',
          'ACE': 'orangered',
          'SOUTHTRAC': 'teal'
          }

fig = plt.figure(figsize=(10,50))
import clean.clean_03 as southtrac
from matplotlib import gridspec
from scipy import stats
import plotly.io as pio
import plotly.express as px
pio.renderers.default='browser'

def group(df):
    df = df[['ALT', 'LAT', 'OCS']]
    alt_range = np.arange(9, 14+0.5, 0.5) 
    lat_range = [-70, -60, -50, -40]
    output = df['OCS'].groupby([pd.cut(df['ALT'], alt_range), pd.cut(df['LAT'], lat_range)]).agg(['count', 'mean', 'std'])
    output = output[output['count']>=3]
    return output

df = southtrac.read(strat=1, local=1)
plot_data_p1 = group(df[(df.index.month==9) | (df.index.month==10)])
plot_data_p2 = group(df[(df.index.month==11)])
plot_data_dif = plot_data_p1['mean'] - plot_data_p2['mean']

index = [pd.Interval(-70, -60, closed='right'),
         pd.Interval(-60, -50, closed='right'),
         pd.Interval(-50, -40, closed='right'),]

tro_hs_v = [
    dict(sep = 10.4, nov = 9.1), 
    dict(sep = 9.8, nov = 9.5), 
    dict(sep = 10.1, nov = 10.6), 
    ]

trp_hs = dict(zip(index, tro_hs_v))
#             'p75': group.quantile(0.75),
#             'p90': group.quantile(0.9)}

groupby = 'LAT'
vmin = -90#-90
vmax = 90#90
res = 5#5

def group(df, group='OCS', groupby=groupby, vmin=vmin, vmax=vmax, res=res):
    vrange = np.arange(vmin, vmax+res, res) 
    output = df[group].groupby([pd.cut(df[groupby], vrange)]).describe().reset_index() #apply(get_stats) .unstack()
    output[groupby.casefold()] = output.apply(lambda x: x[groupby].left+res/2,axis=1)
    return output  

# amica 
df = southtrac.read(strat=0,LAT=[-90, 90], ALT=9)
 
df_9oct = df[(df['flight']=='2019-10-09') | (df['flight']=='2019-10-09')] #SAL - OPH super high
ocs_9oct = group(df_9oct)

df_2nov = df[df['flight']=='2019-11-02'] #OPH - SAL super low
ocs_2nov = group(df_2nov)


def plot(df=None, ax=None, shift=0, **kwargs):
    if ax is None:
        ax = plt.gca()   
    ax.errorbar(df[groupby.casefold()]+shift, 
                df['mean'], 
                yerr=df['std'],
                capsize=4,
#             'SD': group.std(),
#             'p10': group.quantile(0.1),
#             'p25': group.quantile(0.25),
#             'p75': group.quantile(0.75),
#             'p90': group.quantile(0.9)}


def group(df):
    lat_range = np.arange(-60, 60+10, 10) 
    output = df['OCS'].groupby([pd.cut(df['LAT'], lat_range)]).describe().reset_index() #apply(get_stats) .unstack()
    print(output.head())
    output['lat'] = output.apply(lambda x: x['LAT'].left+5/2,axis=1)
    return output  

# amica 
df = southtrac.read(strat=0, transfer=1, ALT=11)

def plot(label=None, df=None, ax=None, shift=0, **kwargs):
    if ax is None:
        ax = plt.gca()   
    ax.errorbar(y=df['mean'], 
                x=df['lat']+shift, 
                yerr=df['std'],
                capsize=4,
                label=label,
                fmt='s',
                #ecolor='#BDBDBD',
                **kwargs
                )
    return ax
target = 'AGE'
vmin = 0
vmax = 60
res = 5

ace = xr.open_dataset(dircInput2+f'ACE_N2O_{target}_{postfix}.nc').to_dataframe()
ace, _ = group(
                ace.reset_index(),
                group='N2O', 
                groupby_v=target, 
                vmin=vmin, 
                vmax=vmax, 
                res=res
              )

southtrac = southtrac.read(local=1)
southtrac, _ = group(
                    southtrac[southtrac.air >= 1].reset_index(),
                    group='UMAQS_N2O', 
                    groupby_v=target, 
                    vmin=vmin, 
                    vmax=vmax, 
                    res=res
                    )
###############################################################################
fig = plt.figure(figsize=(10,50))
spec = gridspec.GridSpec(nrows=2, ncols=2,height_ratios=[15,1],width_ratios=[9,1])#,height_ratios=[15,1]) width_ratios=[9,1]

ax = fig.add_subplot(spec[0,0])
# x = df.OCS
# y = df[target] 
    plt.rc('font', **font)
    ax1 = fig.add_subplot()
    
    plot(label='AMICA', df=stats_amica)
    plot(label='MIPAS', df=stats_mipas)
    plot(label='ACE', df=stats_ace)
    
    ax1.set_xlim((0, 600) if species == 'OCS' else (0, 350))
    ax1.set_ylim((vmin,vmax))
    ax1.set_xlabel('OCS [ppt]' if species == 'OCS' else 'N2O [ppb]', fontweight='bold')
    ax1.set_ylabel(f'{target} [month]' if target in ('AGE', 'p50') else f'{target} [%]', fontweight='bold')
    plt.legend()
    #plt.title(f'{tag}')
    plt.show()

##########plotting##########
for target in np.intersect1d(c.ALL_AGEV_SOUTHTRAC, c.ALL_AGEV):
    vrange = c.VRANGE_AGE if target == 'AGE' else c.VRANGE
    vmin, vmax, res = c.VMIN, c.VMAX_AGE if target== 'AGE' else c.VMAX, c.VRES
    ##########data processing##########
    stats_ace, tag = data2plot('ACE')
    stats_mipas, tag = data2plot('MIPAS')
    data_southtrac = southtrac.read(strat=1).set_index(target)[species]
    data_southtrac.dropna(inplace=True)
    data_southtrac.index = pd.IntervalIndex(pd.cut(data_southtrac.index, vrange))
    data_southtrac.rename_axis(target, inplace=True)
    stats_amica = data_southtrac.groupby(target).agg({'mean', 'std', 'count'})
    plot_age()

winsound.Beep(freq, duration)