Пример #1
0
# Check whether model has been built already.
if not (os.path.exists('dumped_model_LR.pkl')):
    # Call function that builds model on train.csv and uses it to test data.
    training.main()

# Open saved model.
model = 0
with open('dumped_model_LR.pkl', 'rb') as f:
    model = rick.load(f)

# Read in test data.
test_phrases = cleaning.read_data("testset_1.csv", "Phrase")
test_ids = cleaning.read_data("testset_1.csv", "PhraseId")

# Clean test data.
test_phrases = cleaning.tokenize_data(test_phrases)
test_phrases = cleaning.filter_data(test_phrases)
test_phrases = training.untokenize(test_phrases)
vect = CountVectorizer(min_df=2, ngram_range=(0, 30))
test_phrases = vect.transform(test_phrases)
#test_phrases = np.array(test_phrases)

#test_phrases = vect.transform(test_phrases)
print(test_phrases.shape)
#print(test_phrases.shape[1])
#test_phrases = test_phrases.reshape(1,-1)
# Predict labels on test data.
predictions = model.predict(
    test_phrases)  # ValueError: X has 1 features per sample; expecting 170735

#data = create_df(ids, predictions)
Пример #2
0
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
import cleaning
import timeit
import numpy


# MAIN -----------------------------------------------

# Get data
phrases = cleaning.read_data("../data/train.csv", "Phrase")
labels = cleaning.read_data("../data/train.csv", "Sentiment")

# Tokenize and clean
start_time_clean = timeit.default_timer()
cleaned = cleaning.tokenize_data(phrases)
# cleaned = cleaning.stem_data(cleaned)
result = cleaning.filter_data(cleaned)
elapsed_time_clean = timeit.default_timer() - start_time_clean
print("Cleaning finished in " + str(elapsed_time_clean) + " seconds")


# Tf-idf model to extract features.
start_time_extract = timeit.default_timer()
transformer = TfidfTransformer(smooth_idf=False)

result = cleaning.untokenize(result)
result = numpy.array(result)
result = result.reshape(-1, 1) # convert to 2D array

X_train = transformer.fit(result).transform(result) # X_train.toarray()
Пример #3
0
def main():
    # Get train data.
    train_phrases = cleaning.read_data("../data/train.csv", "Phrase")
    train_labels = cleaning.read_data("../data/train.csv", "Sentiment")

    # Tokenize and clean train data prior to building model.
    start_time_clean = timeit.default_timer()
    train_phrases = cleaning.tokenize_data(train_phrases)
    # Stemming wasn't helpful.
    # train_phrases = cleaning.stem_data(train_phrases)
    train_phrases = cleaning.filter_data(train_phrases)
    elapsed_time_clean = timeit.default_timer() - start_time_clean
    print("Cleaning finished in " + str(elapsed_time_clean) + " seconds")

    # Bag of Words model to extract features.
    start_time_extract = timeit.default_timer()
    # Only uses the phrases between 0 through 30 words.
    vect = CountVectorizer(min_df=2, ngram_range=(1, 30))
    train_phrases = cleaning.untokenize(train_phrases)
    train_phrases = vect.fit(train_phrases).transform(train_phrases)
    elapsed_time_extract = timeit.default_timer() - start_time_extract
    print("Feature extracting finished in " + str(elapsed_time_extract) +
          " seconds")

    # Train logistic regression model with built-in K-fold CV.
    start_time_train = timeit.default_timer()
    # Try a variety of C-values
    #param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]} # best is 1
    #param_grid = {'C': [0.6, 0.8, 1, 2]} # best is 2
    #param_grid = {'C': [5, 7, 9, 11, 13]} # best is 5 for cv=10
    param_grid = {'C': [2]}
    grid = GridSearchCV(LogisticRegression(), param_grid, cv=5)
    grid.fit(train_phrases, train_labels)
    elapsed_time_train = timeit.default_timer() - start_time_train
    print("Training finished in " + str(elapsed_time_train) + " seconds")

    # Print Cross Validation estimates and optimal parameters.
    # print("Best cross-validation score: {:.2f}".format(grid.best_score_))
    # print("Best parameters: ", grid.best_params_) # Output best parameter
    # print("Best estimator: ", grid.best_estimator_)
    model = grid.best_estimator_

    # Read in test data.
    test_phrases = cleaning.read_data("../data/testset_1.csv", "Phrase")
    test_ids = cleaning.read_data("../data/testset_1.csv", "PhraseId")

    # Clean test data.
    test_phrases = cleaning.tokenize_data(test_phrases)
    test_phrases = cleaning.filter_data(test_phrases)
    test_phrases = cleaning.untokenize(test_phrases)
    test_phrases = vect.transform(test_phrases)

    print(test_phrases.shape)

    # Predict labels on test data.
    predictions = model.predict(test_phrases)

    # Output predictions into csv file.
    df = pd.DataFrame({
        'PhraseId': np.array(test_ids),
        'Sentiment': np.array(predictions)
    })
    outfile = "output.csv"
    df.to_csv(outfile, index=False)