Пример #1
0
def mnist_tutorial(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_epochs=NB_EPOCHS,
                   batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   clean_train=CLEAN_TRAIN,
                   testing=False,
                   backprop_through_attack=BACKPROP_THROUGH_ATTACK,
                   nb_filters=64,
                   num_threads=None,
                   label_smoothing=0.1):
    """
    MNIST cleverhans tutorial
    :param train_start: index of first training set example
    :param train_end: index of last training set example
    :param test_start: index of first test set example
    :param test_end: index of last test set example
    :param nb_epochs: number of epochs to train model
    :param batch_size: size of training batches
    :param learning_rate: learning rate for training
    :param clean_train: perform normal training on clean examples only
                        before performing adversarial training.
    :param testing: if true, complete an AccuracyReport for unit tests
                    to verify that performance is adequate
    :param backprop_through_attack: If True, backprop through adversarial
                                    example construction process during
                                    adversarial training.
    :param label_smoothing: float, amount of label smoothing for cross entropy
    :return: an AccuracyReport object
    """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    sess = tf.Session(config=tf.ConfigProto(**config_args))

    # Get MNIST test data
    x_train, y_train, x_test, y_test = data_mnist(train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)
    # Use Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    rng = np.random.RandomState([2017, 8, 30])

    def do_eval(preds, x_set, y_set, report_key, is_adv=None):
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

    if clean_train:
        model = ModelBasicCNN('model1', nb_classes, nb_filters)
        preds = model.get_logits(x)
        loss = CrossEntropy(model, smoothing=label_smoothing)

        def evaluate():
            do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

        train(sess,
              loss,
              x,
              y,
              x_train,
              y_train,
              evaluate=evaluate,
              args=train_params,
              rng=rng,
              var_list=model.get_params())

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph
        fgsm = FastGradientMethod(model, sess=sess)
        adv_x = fgsm.generate(x, **fgsm_params)
        preds_adv = model.get_logits(adv_x)

        # Evaluate the accuracy of the MNIST model on adversarial examples
        do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True)

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')

        print('Repeating the process, using adversarial training')

    print("after clean train>>>>>>>>>>>>>>>>>>>>>")

    # Create a new model and train it to be robust to FastGradientMethod
    model2 = ModelBasicCNN('model2', nb_classes, nb_filters)
    fgsm2 = FastGradientMethod(model2, sess=sess)

    def attack(x):
        return fgsm2.generate(x, **fgsm_params)

    loss2 = CrossEntropy(model2, smoothing=label_smoothing, attack=attack)
    preds2 = model2.get_logits(x)
    adv_x2 = attack(x)

    if not backprop_through_attack:
        # For the fgsm attack used in this tutorial, the attack has zero
        # gradient so enabling this flag does not change the gradient.
        # For some other attacks, enabling this flag increases the cost of
        # training, but gives the defender the ability to anticipate how
        # the atacker will change their strategy in response to updates to
        # the defender's parameters.
        adv_x2 = tf.stop_gradient(adv_x2)
    preds2_adv = model2.get_logits(adv_x2)

    def evaluate2():
        # Accuracy of adversarially trained model on legitimate test inputs
        do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False)
        # Accuracy of the adversarially trained model on adversarial examples
        do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True)

    # Perform and evaluate adversarial training
    train(sess,
          loss2,
          x,
          y,
          x_train,
          y_train,
          evaluate=evaluate2,
          args=train_params,
          rng=rng,
          var_list=model2.get_params())

    # Calculate training errors
    if testing:
        do_eval(preds2, x_train, y_train, 'train_adv_train_clean_eval')
        do_eval(preds2_adv, x_train, y_train, 'train_adv_train_adv_eval')

    return report
Пример #2
0
def mnist_tutorial(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_epochs=6,
                   batch_size=128,
                   learning_rate=0.001,
                   clean_train=True,
                   testing=False,
                   backprop_through_attack=False,
                   nb_filters=64,
                   num_threads=None,
                   label_smoothing=0.1):
    """
    MNIST cleverhans tutorial
    :param train_start: index of first training set example
    :param train_end: index of last training set example
    :param test_start: index of first test set example
    :param test_end: index of last test set example
    :param nb_epochs: number of epochs to train model
    :param batch_size: size of training batches
    :param learning_rate: learning rate for training
    :param clean_train: perform normal training on clean examples only
                        before performing adversarial training.
    :param testing: if true, complete an AccuracyReport for unit tests
                    to verify that performance is adequate
    :param backprop_through_attack: If True, backprop through adversarial
                                    example construction process during
                                    adversarial training.
    :param clean_train: if true, train on clean examples
    :param label_smoothing: float, amount of label smoothing for cross entropy
    :return: an AccuracyReport object
    """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    #sess = tf.Session(config=tf.ConfigProto(**config_args))
    sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 1}))

    # Get MNIST test data
    x_train, y_train, x_test, y_test = data_mnist(file,
                                                  train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)
    # Use Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    rng = np.random.RandomState([2017, 8, 30])

    ################ color training initialization ####################

    color_training_epochs = 5000
    color_learning_rate = 0.1
    colorCategory = [
        [0.0, 0.4],  # Black
        [0.3, 0.7],  # Grey
        [0.6, 1.0]  # White
    ]

    numOfPRModel = 20
    minColorEpoch = 300
    maxColorEpoch = 3000

    numColorInput = 1
    #numColorOutput = len(colorCategory)

    color_x = tf.placeholder(
        tf.float32,
        [None, numColorInput])  # mnist data image of shape 28*28=784
    color_y = tf.placeholder(
        tf.float32,
        [None, numColorOutput])  # 0-9 digits recognition => 10 classes

    # Set multiple models' weights and biases
    color_W = {}
    color_b = {}
    color_pred_out = {}
    color_cost = {}
    color_optimizer = {}
    color_argmax = {}
    color_correct_prediction = {}
    color_accuracy = {}
    for i in range(numOfPRModel):
        color_W["w" + str(i)] = tf.Variable(
            tf.random_normal([numColorInput, numColorOutput]))
        color_b["b" + str(i)] = tf.Variable(tf.random_normal([numColorOutput]))
        color_pred_out["out" + str(i)] = tf.matmul(
            color_x, color_W["w" + str(i)]) + color_b["b" + str(i)]  # Softmax
        color_cost["cost" + str(i)] = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(
                logits=color_pred_out["out" + str(i)], labels=color_y))
        # Gradient Descent
        color_optimizer["opt" + str(i)] = tf.train.GradientDescentOptimizer(
            color_learning_rate).minimize(color_cost["cost" + str(i)])

        # Test model
        color_argmax["argmax" + str(i)] = tf.argmax(
            color_pred_out["out" + str(i)], 1)
        color_correct_prediction["pred" + str(i)] = tf.equal(
            tf.argmax(color_pred_out["out" + str(i)], 1),
            tf.argmax(color_y, 1))
        # Calculate accuracy
        color_accuracy["acc" + str(i)] = tf.reduce_mean(
            tf.cast(color_correct_prediction["pred" + str(i)], tf.float32))

    # Graph for re-generating the original image into a new image by using trained color model
    pr_model_x = tf.placeholder(
        tf.float32,
        [None, n_input, numColorInput])  # mnist data image of shape 28*28=784
    pr_model_W = tf.placeholder(tf.float32,
                                [None, numColorInput, numColorOutput
                                 ])  # mnist data image of shape 28*28=784
    pr_model_b = tf.placeholder(tf.float32,
                                [None, numColorInput, numColorOutput
                                 ])  # mnist data image of shape 28*28=784
    pr_model_output = tf.one_hot(
        tf.argmax((tf.matmul(pr_model_x, pr_model_W) + pr_model_b), 2),
        numColorOutput)

    # Merge the random generated output for new image based on the colorCategory
    randomColorCategory = []
    for i in range(len(colorCategory)):
        tmp = []
        tmpRandomColorCategory = my_tf_round(
            tf.random_uniform(tf.shape(pr_model_x),
                              colorCategory[i][0],
                              colorCategory[i][1],
                              dtype=tf.float32), 2)
        tmp.append(tmpRandomColorCategory)
        randomColorCategory.append(tf.concat(tmp, 1))
    random_merge = tf.reshape(tf.concat(randomColorCategory, -1),
                              [-1, n_input, numColorOutput])
    random_color_set = tf.reduce_sum(
        tf.multiply(pr_model_output, random_merge), 2)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    # x = tf.reshape(random_color_set, shape=(-1, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    print(random_color_set)

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'train_dir': save_dir,
        'filename': filename,
        'numColorOutput': numColorOutput
    }
    eval_params = {'batch_size': batch_size, 'numColorOutput': numColorOutput}
    fgsm_params = {'eps': 8 / 256, 'clip_min': 0., 'clip_max': 1.}

    #sess = tf.Session()

    def do_eval(preds,
                x_set,
                y_set,
                report_key,
                is_adv=None,
                pred2=None,
                c_w=None,
                c_b=None,
                pr_model_x=None,
                random_color_set=None,
                pr_model_W=None,
                pr_model_b=None,
                pr_model_output=None,
                ae=None):
        acc = model_eval(sess,
                         x,
                         y,
                         preds,
                         x_set,
                         y_set,
                         args=eval_params,
                         pred2=pred2,
                         c_w=c_w,
                         c_b=c_b,
                         pr_model_x=pr_model_x,
                         random_color_set=random_color_set,
                         pr_model_W=pr_model_W,
                         pr_model_b=pr_model_b,
                         pr_model_output=pr_model_output,
                         is_adv=is_adv,
                         ae=ae)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

    with sess.as_default():
        if hasattr(tf, "global_variables_initializer"):
            tf.global_variables_initializer().run()
        else:
            warnings.warn("Update your copy of tensorflow; future versions of "
                          "CleverHans may drop support for this version.")
            sess.run(tf.initialize_all_variables())

        ################# color training ####################
        print("Trying to load pr model from: " + model_path2)
        if os.path.exists(model_path2 + ".meta"):
            tf_model_load(sess, model_path2)
            c_w, c_b = sess.run([color_W, color_b])
            print("Load color trained model in training")
        else:
            # Training the PR model
            c_w = {}
            c_b = {}
            for modelcount in range(numOfPRModel):
                color_training_epochs = np.random.randint(
                    minColorEpoch, maxColorEpoch)
                for epoch in range(color_training_epochs):
                    outputColorY = []
                    p1 = np.random.random(100)
                    for i in range(len(p1)):
                        outputOverlapColorY = []
                        for j in range(len(colorCategory)):
                            if p1[i] >= colorCategory[j][0] and p1[
                                    i] <= colorCategory[j][1]:
                                colorIndexSeq = []
                                for k in range(len(colorCategory)):
                                    if j == k:
                                        colorIndexSeq.append(1)
                                    else:
                                        colorIndexSeq.append(0)
                                outputOverlapColorY.append(colorIndexSeq)
                                # break

                        # Randomly choose the output for color Y if the outputOverlapColorY has more than 1 item
                        outputColorY.append(
                            outputOverlapColorY[np.random.randint(
                                0, len(outputOverlapColorY))])

                    inputColorX = p1.reshape(100, 1)
                    _, c, _c_w, _c_b = sess.run([
                        color_optimizer["opt" + str(modelcount)],
                        color_cost["cost" + str(modelcount)],
                        color_W["w" + str(modelcount)],
                        color_b["b" + str(modelcount)]
                    ],
                                                feed_dict={
                                                    color_x: inputColorX,
                                                    color_y: outputColorY
                                                })
                    avg_cost = c

                    # Evaluating color model
                    outputColorY = []
                    p1 = np.random.random(100)
                    # Generate output for random color inputs (test case)
                    for i in range(len(p1)):
                        for j in range(len(colorCategory)):
                            outputOverlapColorY = []
                            if p1[i] >= colorCategory[j][0] and p1[
                                    i] <= colorCategory[j][1]:
                                colorIndexSeq = []
                                for k in range(len(colorCategory)):
                                    if j == k:
                                        colorIndexSeq.append(1)
                                    else:
                                        colorIndexSeq.append(0)
                                outputOverlapColorY.append(colorIndexSeq)
                                break

                        # Randomly choose the output for color Y if the outputOverlapColorY has more than 1 item
                        outputColorY.append(
                            outputOverlapColorY[np.random.randint(
                                0, len(outputOverlapColorY))])

                    inputColorX = p1.reshape(100, 1)
                    # print(random_xs)
                    acc, argmax = sess.run([
                        color_accuracy["acc" + str(modelcount)],
                        color_argmax["argmax" + str(modelcount)]
                    ],
                                           feed_dict={
                                               color_x: inputColorX,
                                               color_y: outputColorY
                                           })
                print(str(modelcount + 1) + ") Epoch:",
                          '%04d' % (epoch + 1) + "/" + str(color_training_epochs) + ", Cost= " + \
                          "{:.9f}".format(avg_cost) + ", Training Accuracy= " + \
                          "{:.5f}".format(acc) + " ")

                c_w["w" + str(modelcount)] = _c_w
                c_b["b" + str(modelcount)] = _c_b

                # print(c_w)

            save_path = os.path.join(save_dir2, filename2)
            saver = tf.train.Saver()
            saver.save(sess, save_path)
        ##################### end of color training ------------------------------

    ################# model training ####################
    if clean_train:
        model = ModelBasicCNN('model1', nb_classes, nb_filters)
        preds = model.get_logits(x)
        loss = LossCrossEntropy(model, smoothing=label_smoothing)

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph
        saveFileNum = 50
        # saveFileNum = 500
        # saveFileNum = 1000
        model_path = os.path.join(save_dir, filename + "-" + str(saveFileNum))
        fgsm = FastGradientMethod(model)
        # fgsm = BasicIterativeMethod(model)
        # fgsm = MomentumIterativeMethod(model)
        adv_x = fgsm.generate(x, **fgsm_params)
        preds_adv = model.get_logits(adv_x)

        def evaluate():
            do_eval(preds,
                    x_test,
                    y_test,
                    'clean_train_clean_eval',
                    False,
                    pred2=preds,
                    c_w=c_w,
                    c_b=c_b,
                    pr_model_x=pr_model_x,
                    random_color_set=random_color_set,
                    pr_model_W=pr_model_W,
                    pr_model_b=pr_model_b)
            #do_eval(preds, x_test, y_test, 'clean_train_adv_eval', True,
            #pred2=preds, c_w=c_w, c_b=c_b, ae=adv_x,
            #pr_model_x=pr_model_x, random_color_set=random_color_set,
            #pr_model_W=pr_model_W, pr_model_b=pr_model_b, pr_model_output=pr_model_output
            #)

        print("Trying to load trained model from: " + model_path)
        if os.path.exists(model_path + ".meta"):
            tf_model_load(sess, model_path)
            print("Load trained model")
        else:
            train(sess,
                  loss,
                  x,
                  y,
                  x_train,
                  y_train,
                  evaluate=evaluate,
                  args=train_params,
                  rng=rng,
                  var_list=model.get_params(),
                  save=True,
                  c_w=c_w,
                  c_b=c_b,
                  pr_model_x=pr_model_x,
                  random_color_set=random_color_set,
                  pr_model_W=pr_model_W,
                  pr_model_b=pr_model_b)

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Evaluate the accuracy of the MNIST model on adversarial examples
        do_eval(preds,
                x_test,
                y_test,
                'clean_train_adv_eval',
                True,
                pred2=preds,
                c_w=c_w,
                c_b=c_b,
                ae=adv_x,
                pr_model_x=pr_model_x,
                random_color_set=random_color_set,
                pr_model_W=pr_model_W,
                pr_model_b=pr_model_b)

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')
Пример #3
0
def mnist_tutorial(train_start=0,
                   train_end=1000,
                   test_start=0,
                   test_end=1666,
                   nb_epochs=6,
                   batch_size=128,
                   learning_rate=0.001,
                   clean_train=True,
                   testing=False,
                   backprop_through_attack=False,
                   nb_filters=64,
                   num_threads=None):

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    sess = tf.Session(config=tf.ConfigProto(**config_args))

    # Get MNIST test data
    x_train, y_train, x_test, y_test = data_mnist(train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, 28, 28, 1))
    y = tf.placeholder(tf.float32, shape=(None, 10))

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    rng = np.random.RandomState([2017, 8, 30])
    sess = tf.Session()

    def do_eval(preds, x_set, y_set, report_key, is_adv=None):
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
            # added by hhkim
            # print('cur:', y_set)
            # feed_dict = {x: x_set}
            # probabilities = sess.run(preds, feed_dict)
            # print(probabilities)
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

    if clean_train:
        model = ModelBasicCNN('model1', 10, nb_filters)
        preds = model.get_logits(x)
        loss = LossCrossEntropy(model, smoothing=0.1)

        def evaluate():
            do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

        train(sess,
              loss,
              x,
              y,
              x_train,
              y_train,
              evaluate=evaluate,
              args=train_params,
              rng=rng,
              var_list=model.get_params())

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph
        fgsm = FastGradientMethod(model, sess=sess)
        adv_x = fgsm.generate(x, **fgsm_params)
        preds_adv = model.get_logits(adv_x)
        print('adv_x shape:', adv_x.shape)

        # Get array of output
        # updated by hak hyun kim
        feed_dict = {x: x_test[:1]}
        probabilities = sess.run(preds_adv, feed_dict)
        print(probabilities)
        print('original answer :', y_test[:1])

        # Evaluate the accuracy of the MNIST model on adversarial examples
        do_eval(preds_adv, x_test[:1], y_test[:1], 'clean_train_adv_eval',
                True)

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')

        print('Repeating the process, using adversarial training')
Пример #4
0
print("STEP 3: Start training model...")
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))

sess = tf.Session(config=tf.ConfigProto(**config_args))
model = ModelBasicCNN('model1', nb_classes, NB_FILTERS)
preds = model.get_logits(x)
loss = CrossEntropy(model, smoothing=0.1)

train(sess,
      loss,
      x_train,
      y_train,
      evaluate=None,
      args=train_params,
      rng=rng,
      var_list=model.get_params())

fgsm = FastGradientMethod(model, sess=sess)
adv_x = fgsm.generate(x, **fgsm_params)
preds_adv = model.get_logits(adv_x)
adv_image = adv_x.eval(session=sess, feed_dict={x: my_data})
# 快速显示,debug用
# plt.imshow(adv_image[0,:,:,0])
# plt.show()

# 是否生成对抗图片
print("STEP 4: Build melicious data...")
printimage = True
name_num = 0
directory = "image_adv_" + str(datetime.datetime.now())
if printimage is True:
Пример #5
0
def mnist_tutorial(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_epochs=NB_EPOCHS,
                   batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   clean_train=CLEAN_TRAIN,
                   testing=False,
                   backprop_through_attack=BACKPROP_THROUGH_ATTACK,
                   nb_filters=NB_FILTERS,
                   num_threads=None,
                   label_smoothing=0.1):
    """
  MNIST cleverhans tutorial
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param clean_train: perform normal training on clean examples only
                      before performing adversarial training.
  :param testing: if true, complete an AccuracyReport for unit tests
                  to verify that performance is adequate
  :param backprop_through_attack: If True, backprop through adversarial
                                  example construction process during
                                  adversarial training.
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    sess = tf.Session(config=tf.ConfigProto(**config_args))

    # Get MNIST data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Use Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    #x##########################################################
    #Tensor("Placeholder:0", shape=(?, 28, 28, 1), dtype=float32)
    #<class 'tensorflow.python.framework.ops.Tensor'>
    ###########################################################

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    rng = np.random.RandomState([2017, 8, 30])

    def do_eval(preds, x_set, y_set, report_key, is_adv=None):
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))
        return acc

    if clean_train:
        model = ModelBasicCNN(
            'model1', nb_classes, nb_filters
        )  # <cleverhans_tutorials.tutorial_models.ModelBasicCNN object at 0x7f81feaae240>

        preds = model.get_logits(
            x
        )  # Tensor("model1_1/dense/BiasAdd:0", shape=(?, 10), dtype=float32)

        loss = CrossEntropy(
            model, smoothing=label_smoothing
        )  # <cleverhans.loss.CrossEntropy object at 0x7f819466b470>

        def evaluate():
            do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

        train(sess,
              loss,
              x_train,
              y_train,
              evaluate=evaluate,
              args=train_params,
              rng=rng,
              var_list=model.get_params())

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph

        fgsm = ProjectedGradientDescent(
            model, sess=sess
        )  # TODO                     # <cleverhans.attacks.FastGradientMethod object at 0x7feabc77ce80>
        start = time.time()
        adv_x = fgsm.generate(
            x, **fgsm_params
        )  # Tensor("Identity_1:0", shape=(?, 28, 28, 1), dtype=float32)

        #imagetest = np.squeeze(adv_x)
        #plt.imshow(imagetest)

        preds_adv = model.get_logits(
            adv_x
        )  # Tensor("model1_5/dense/BiasAdd:0", shape=(?, 10), dtype=float32)
        end = time.time()
        a = end - start
        print("Attack time = ")
        print(a)
        print("")

        #Tensor("Identity_1:0", shape=(?, 28, 28, 1), dtype=float32)
        #Tensor("model1_5/dense/BiasAdd:0", shape=(?, 10), dtype=float32)

        # Evaluate the accuracy of the MNIST model on adversarial examples
        start = time.time()
        acc_result = do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval',
                             True)
        end = time.time()

        b = end - start

        print("")
        print("Inference function time = ")
        print(b)
        print("")

        values = [b, acc_result * 100, 0, 0, 0]
        x_labels = [
            'Time(s)', 'Accuracy(%)', '', 'Method2 Time(s)',
            'Method2 Accuracy(%)'
        ]
        plt.bar(x_labels, values)
        plt.show()

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')

        print("END!")
Пример #6
0
def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
                   test_end=10000, nb_epochs=6, batch_size=128,
                   learning_rate=0.001,
                   clean_train=True,
                   testing=False,
                   backprop_through_attack=False,
                   nb_filters=64, num_threads=None,
                   label_smoothing=True):
    """
    MNIST cleverhans tutorial
    :param train_start: index of first training set example
    :param train_end: index of last training set example
    :param test_start: index of first test set example
    :param test_end: index of last test set example
    :param nb_epochs: number of epochs to train model
    :param batch_size: size of training batches
    :param learning_rate: learning rate for training
    :param clean_train: perform normal training on clean examples only
                        before performing adversarial training.
    :param testing: if true, complete an AccuracyReport for unit tests
                    to verify that performance is adequate
    :param backprop_through_attack: If True, backprop through adversarial
                                    example construction process during
                                    adversarial training.
    :param clean_train: if true, train on clean examples
    :return: an AccuracyReport object
    """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    sess = tf.Session(config=tf.ConfigProto(**config_args))

    # Get MNIST test data
    x_train, y_train, x_test, y_test = data_mnist(train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)
    # Use Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    if label_smoothing:
        label_smooth = .1
        y_train = y_train.clip(label_smooth /
                               (nb_classes-1), 1. - label_smooth)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
                                          nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    fgsm_params = {
        'eps': 0.3,
        'clip_min': 0.,
        'clip_max': 1.
    }
    rng = np.random.RandomState([2017, 8, 30])
    sess = tf.Session()

    def do_eval(preds, x_set, y_set, report_key, is_adv=None):
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

    if clean_train:
        model = ModelBasicCNN('model1', nb_classes, nb_filters)
        preds = model.get_logits(x)
        loss = LossCrossEntropy(model, smoothing=0.1)

        def evaluate():
            do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

        train(sess, loss, x, y, x_train, y_train, evaluate=evaluate,
              args=train_params, rng=rng, var_list=model.get_params())

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph
        fgsm = FastGradientMethod(model, sess=sess)
        adv_x = fgsm.generate(x, **fgsm_params)
        preds_adv = model.get_logits(adv_x)

        # Evaluate the accuracy of the MNIST model on adversarial examples
        do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True)

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')

        print('Repeating the process, using adversarial training')

    # Create a new model and train it to be robust to FastGradientMethod
    model2 = ModelBasicCNN('model2', nb_classes, nb_filters)
    fgsm2 = FastGradientMethod(model2, sess=sess)

    def attack(x):
        return fgsm2.generate(x, **fgsm_params)

    loss2 = LossCrossEntropy(model2, smoothing=0.1, attack=attack)
    preds2 = model2.get_logits(x)
    adv_x2 = attack(x)

    if not backprop_through_attack:
        # For the fgsm attack used in this tutorial, the attack has zero
        # gradient so enabling this flag does not change the gradient.
        # For some other attacks, enabling this flag increases the cost of
        # training, but gives the defender the ability to anticipate how
        # the atacker will change their strategy in response to updates to
        # the defender's parameters.
        adv_x2 = tf.stop_gradient(adv_x2)
    preds2_adv = model2.get_logits(adv_x2)

    def evaluate2():
        # Accuracy of adversarially trained model on legitimate test inputs
        do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False)
        # Accuracy of the adversarially trained model on adversarial examples
        do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True)

    # Perform and evaluate adversarial training
    train(sess, loss2, x, y, x_train, y_train, evaluate=evaluate2,
          args=train_params, rng=rng, var_list=model2.get_params())

    # Calculate training errors
    if testing:
        do_eval(preds2, x_train, y_train, 'train_adv_train_clean_eval')
        do_eval(preds2_adv, x_train, y_train, 'train_adv_train_adv_eval')

    return report