def test_instantiate_SpatialSVM():
    from os.path import dirname, join, abspath
    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import SpatialSVM

    root = dirname(abspath(join(abspath(__file__), pardir)))
    root = join(root, 'data', 'SpatialSVM')

    parameters = {'group_label': 'ADNIbl', 'orig_input_data': 't1-volume'}
    pipeline = SpatialSVM(caps_directory=join(root, 'in', 'caps'),
                          tsv_file=join(root, 'in', 'subjects.tsv'),
                          parameters=parameters)
    pipeline.build()
Пример #2
0
    def run_command(self, args):
        """
        """
        from tempfile import mkdtemp
        from clinica.utils.stream import cprint
        from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import SpatialSVM

        pipeline = SpatialSVM(
            caps_directory=self.absolute_path(args.caps_directory),
            tsv_file=self.absolute_path(args.subjects_sessions_tsv))

        pipeline.parameters = {
            'group_id': args.group_id,
            'fwhm': args.full_width_half_maximum,
            'image_type': args.image_type,
            'pet_type': args.pet_tracer,
            'no_pvc': args.no_pvc
        }
        if args.working_directory is None:
            args.working_directory = mkdtemp()
        pipeline.base_dir = self.absolute_path(args.working_directory)
        if args.n_procs:
            pipeline.run(plugin='MultiProc',
                         plugin_args={'n_procs': args.n_procs})
        else:
            pipeline.run()

        cprint(
            "The " + self._name +
            " pipeline has completed. You can now delete the working directory ("
            + args.working_directory + ").")
Пример #3
0
def test_instantiate_SpatialSVM(cmdopt):

    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import (
        SpatialSVM, )

    input_dir = Path(cmdopt["input"])
    root = input_dir / "SpatialSVM"

    parameters = {"group_label": "ADNIbl", "orig_input_data": "t1-volume"}
    pipeline = SpatialSVM(
        caps_directory=fspath(root / "in" / "caps"),
        tsv_file=fspath(root / "in" / "subjects.tsv"),
        parameters=parameters,
    )
    pipeline.build()
Пример #4
0
def test_instantiate_SpatialSVM():
    from os.path import abspath, dirname, join

    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import (
        SpatialSVM, )

    root = dirname(abspath(join(abspath(__file__), pardir)))
    root = join(root, "data", "SpatialSVM")

    parameters = {"group_label": "ADNIbl", "orig_input_data": "t1-volume"}
    pipeline = SpatialSVM(
        caps_directory=join(root, "in", "caps"),
        tsv_file=join(root, "in", "subjects.tsv"),
        parameters=parameters,
    )
    pipeline.build()
def test_instantiate_SpatialSVM():
    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import SpatialSVM
    from os.path import dirname, join, abspath

    root = join(dirname(abspath(__file__)), 'data', 'SpatialSVM')
    pipeline = SpatialSVM(caps_directory=join(root, 'in', 'caps'),
                          tsv_file=join(root, 'in', 'subjects.tsv'))
    pipeline.parameters['group_id'] = 'ADNIbl'
    pipeline.parameters['fwhm'] = 4
    pipeline.parameters['image_type'] = 't1'
    pipeline.parameters['pet_type'] = 'fdg'
    pipeline.parameters['no_pvc'] = 'True'
    pipeline.build()
Пример #6
0
def test_run_SpatialSVM(cmdopt):
    from os.path import dirname, join, abspath
    import shutil
    import numpy as np
    import nibabel as nib
    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import SpatialSVM

    working_dir = cmdopt
    root = dirname(abspath(join(abspath(__file__), pardir)))
    root = join(root, 'data', 'SpatialSVM')

    # Remove potential residual of previous UT
    clean_folder(join(root, 'out', 'caps'), recreate=False)
    clean_folder(join(working_dir, 'SpatialSVM'), recreate=False)

    # Copy necessary data from in to out
    shutil.copytree(join(root, 'in', 'caps'), join(root, 'out', 'caps'))

    parameters = {'group_label': 'ADNIbl', 'orig_input_data': 't1-volume'}
    # Instantiate pipeline and run()
    pipeline = SpatialSVM(caps_directory=join(root, 'out', 'caps'),
                          tsv_file=join(root, 'in', 'subjects.tsv'),
                          base_dir=join(working_dir, 'SpatialSVM'),
                          parameters=parameters)
    pipeline.build()
    pipeline.run(plugin='MultiProc',
                 plugin_args={'n_procs': 4},
                 bypass_check=True)

    # Check output vs ref
    subjects = ['sub-ADNI011S0023', 'sub-ADNI013S0325']
    out_data_REG_NIFTI = [
        nib.load(
            join(
                root, 'out', 'caps', 'subjects', sub, 'ses-M00',
                'machine_learning', 'input_spatial_svm', 'group-ADNIbl', sub +
                '_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-on_spatialregularization.nii.gz'
            )).get_data() for sub in subjects
    ]
    ref_data_REG_NIFTI = [
        nib.load(
            join(
                root, 'ref', sub +
                '_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-on_spatialregularization.nii.gz'
            )).get_data() for sub in subjects
    ]
    for i in range(len(out_data_REG_NIFTI)):
        assert np.allclose(out_data_REG_NIFTI[i],
                           ref_data_REG_NIFTI[i],
                           rtol=1e-3,
                           equal_nan=True)

    # Remove data in out folder
    clean_folder(join(root, 'out', 'caps'), recreate=True)
    clean_folder(join(working_dir, 'SpatialSVM'), recreate=False)
Пример #7
0
def run_SpatialSVM(input_dir: Path, output_dir: Path, ref_dir: Path,
                   working_dir: Path) -> None:

    import shutil
    from os import fspath

    import nibabel as nib
    import numpy as np

    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import (
        SpatialSVM, )

    caps_dir = output_dir / "caps"
    tsv = input_dir / "subjects.tsv"

    # Copy necessary data from in to out
    shutil.copytree(input_dir / "caps", caps_dir, copy_function=shutil.copy)

    parameters = {"group_label": "ADNIbl", "orig_input_data": "t1-volume"}
    # Instantiate pipeline and run()
    pipeline = SpatialSVM(
        caps_directory=fspath(caps_dir),
        tsv_file=fspath(tsv),
        base_dir=fspath(working_dir),
        parameters=parameters,
    )
    pipeline.build()
    pipeline.run(plugin="MultiProc",
                 plugin_args={"n_procs": 4},
                 bypass_check=True)

    # Check output vs ref
    subjects = ["sub-ADNI011S0023", "sub-ADNI013S0325"]
    out_data_REG_NIFTI = [
        nib.load(
            fspath(
                caps_dir / "subjects" / sub / "ses-M00" / "machine_learning" /
                "input_spatial_svm" / "group-ADNIbl" /
                (sub +
                 "_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-on_spatialregularization.nii.gz"
                 ))).get_fdata(dtype="float32") for sub in subjects
    ]
    ref_data_REG_NIFTI = [
        nib.load(
            fspath(ref_dir / (
                sub +
                "_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-on_spatialregularization.nii.gz"
            ))).get_fdata(dtype="float32") for sub in subjects
    ]
    for i in range(len(out_data_REG_NIFTI)):
        assert np.allclose(out_data_REG_NIFTI[i],
                           ref_data_REG_NIFTI[i],
                           rtol=1e-3,
                           equal_nan=True)
Пример #8
0
def test_run_SpatialSVM(cmdopt):
    import shutil
    from os.path import abspath, dirname, join

    import nibabel as nib
    import numpy as np

    from clinica.pipelines.machine_learning_spatial_svm.spatial_svm_pipeline import (
        SpatialSVM, )

    working_dir = cmdopt
    root = dirname(abspath(join(abspath(__file__), pardir, pardir)))
    root = join(root, "data", "SpatialSVM")

    # Remove potential residual of previous UT
    clean_folder(join(root, "out", "caps"), recreate=False)
    clean_folder(join(working_dir, "SpatialSVM"), recreate=False)

    # Copy necessary data from in to out
    shutil.copytree(join(root, "in", "caps"), join(root, "out", "caps"))

    parameters = {"group_label": "ADNIbl", "orig_input_data": "t1-volume"}
    # Instantiate pipeline and run()
    pipeline = SpatialSVM(
        caps_directory=join(root, "out", "caps"),
        tsv_file=join(root, "in", "subjects.tsv"),
        base_dir=join(working_dir, "SpatialSVM"),
        parameters=parameters,
    )
    pipeline.build()
    pipeline.run(plugin="MultiProc",
                 plugin_args={"n_procs": 4},
                 bypass_check=True)

    # Check output vs ref
    subjects = ["sub-ADNI011S0023", "sub-ADNI013S0325"]
    out_data_REG_NIFTI = [
        nib.load(
            join(
                root,
                "out",
                "caps",
                "subjects",
                sub,
                "ses-M00",
                "machine_learning",
                "input_spatial_svm",
                "group-ADNIbl",
                sub +
                "_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-on_spatialregularization.nii.gz",
            )).get_data() for sub in subjects
    ]
    ref_data_REG_NIFTI = [
        nib.load(
            join(
                root,
                "ref",
                sub +
                "_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-on_spatialregularization.nii.gz",
            )).get_data() for sub in subjects
    ]
    for i in range(len(out_data_REG_NIFTI)):
        assert np.allclose(out_data_REG_NIFTI[i],
                           ref_data_REG_NIFTI[i],
                           rtol=1e-3,
                           equal_nan=True)

    # Remove data in out folder
    clean_folder(join(root, "out", "caps"), recreate=True)
    clean_folder(join(working_dir, "SpatialSVM"), recreate=False)