Пример #1
0
def main():
    # Setup container manager.
    # k8 = KubernetesContainerManager(kubernetes_proxy_addr="127.0.0.1:8080",
    #                                 useInternalIP=True)
    # clipper_conn = ClipperConnection(k8)
    swarm = DockerContainerManager()
    clipper_conn = ClipperConnection(swarm)
    clipper_conn.stop_all()
    clipper_conn.start_clipper()

    # Register application.
    clipper_conn.register_application(name="sum-app", 
                                      input_type="doubles", 
                                      default_output="-1.0", 
                                      slo_micros=10000000)

    # Model deployement.
    python_deployer.deploy_python_closure(clipper_conn, 
                                          name="sum-model", 
                                          version=1, 
                                          input_type="doubles", 
                                          func=sum)

    # Link application to model.
    clipper_conn.link_model_to_app(app_name="sum-app", 
                                   model_name="sum-model")

    # Test
    headers = {"Content-type": "application/json"}
    response = requests.post("http://localhost:1337/sum-app/predict", 
                             headers=headers, 
                             data=json.dumps({"input": list(np.random.random(10))})).json()
    print(response)
Пример #2
0
def create_docker_connection(cleanup=True, start_clipper=True):
    logger.info("Creating DockerContainerManager")
    cm = DockerContainerManager(clipper_query_port=find_unbound_port(),
                                clipper_management_port=find_unbound_port(),
                                clipper_rpc_port=find_unbound_port(),
                                redis_port=find_unbound_port())
    cl = ClipperConnection(cm)
    if cleanup:
        cl.stop_all()
        docker_client = get_docker_client()
        docker_client.containers.prune(filters={"label": CLIPPER_DOCKER_LABEL})
    if start_clipper:
        # Try to start Clipper in a retry loop here to address flaky tests
        # as described in https://github.com/ucbrise/clipper/issues/352
        while True:
            try:
                logger.info("Starting Clipper")
                cl.start_clipper()
                time.sleep(1)
                break
            except docker.errors.APIError as e:
                logger.info(
                    "Problem starting Clipper: {}\nTrying again.".format(e))
                cl.stop_all()
                cm = DockerContainerManager(
                    clipper_query_port=find_unbound_port(),
                    clipper_management_port=find_unbound_port(),
                    clipper_rpc_port=find_unbound_port(),
                    redis_port=find_unbound_port())
                cl = ClipperConnection(cm)
    else:
        cl.connect()
    return cl
Пример #3
0
def create_kubernetes_connection(cleanup=True,
                                 start_clipper=True,
                                 connect=True,
                                 with_proxy=False,
                                 num_frontend_replicas=1):
    logger.info("Creating KubernetesContainerManager")
    if with_proxy:
        cm = KubernetesContainerManager(kubernetes_proxy_addr="127.0.0.1:8080")
    else:
        cm = KubernetesContainerManager()
    cl = ClipperConnection(cm)
    if cleanup:
        cl.stop_all()
        # Give kubernetes some time to clean up
        time.sleep(20)
        logger.info("Done cleaning up clipper")
    if start_clipper:
        logger.info("Starting Clipper")
        cl.start_clipper(
            query_frontend_image=
            "568959175238.dkr.ecr.us-west-1.amazonaws.com/clipper/query_frontend:{}".
            format(clipper_version),
            mgmt_frontend_image=
            "568959175238.dkr.ecr.us-west-1.amazonaws.com/clipper/management_frontend:{}".
            format(clipper_version),
            num_frontend_replicas=num_frontend_replicas)
        time.sleep(1)
    if connect:
        try:
            cl.connect()
        except Exception:
            pass
        except ClipperException:
            pass
        return cl
Пример #4
0
def create_kubernetes_connection(cleanup=False,
                                 start_clipper=False,
                                 connect=False,
                                 with_proxy=False,
                                 num_frontend_replicas=1,
                                 cleanup_name='default-cluster',
                                 new_name='default-cluster',
                                 connect_name='default-cluster',
                                 service_types=None,
                                 namespace='default'):
    logger.info("Creating KubernetesContainerManager")
    cl = None
    assert cleanup or start_clipper or connect, "You must set at least one of {cleanup, start_clipper, connect} to be true."

    if with_proxy:
        kubernetes_proxy_addr = "127.0.0.1:8080"
    else:
        kubernetes_proxy_addr = None

    if cleanup:
        logger.info("Cleaning up Kubernetes Cluster {}".format(cleanup_name))
        cm = KubernetesContainerManager(
            cluster_name=cleanup_name,
            useInternalIP=USE_MINIKUBE,
            service_types=service_types,
            kubernetes_proxy_addr=kubernetes_proxy_addr)
        cl = ClipperConnection(cm)
        cl.stop_all()
        logger.info("Done cleaning up clipper")

    if start_clipper:
        logger.info("Starting up Kubernetes Cluster {}".format(new_name))
        cm = KubernetesContainerManager(
            cluster_name=new_name,
            kubernetes_proxy_addr=kubernetes_proxy_addr,
            namespace=namespace,
            useInternalIP=USE_MINIKUBE,
            service_types=service_types,
            create_namespace_if_not_exists=True)
        cl = ClipperConnection(cm)
        cl.start_clipper(num_frontend_replicas=num_frontend_replicas)

    if connect:
        try:
            cm = KubernetesContainerManager(
                cluster_name=connect_name,
                useInternalIP=USE_MINIKUBE,
                service_types=service_types,
                kubernetes_proxy_addr=kubernetes_proxy_addr)
            cl = ClipperConnection(cm)
            cl.connect()
        except Exception:
            pass

    return cl
Пример #5
0
def create_docker_connection(cleanup=False,
                             start_clipper=False,
                             cleanup_name='default-cluster',
                             new_name='default-cluster',
                             use_centralized_log=False):
    logger.info("Creating DockerContainerManager")
    cl = None
    assert cleanup or start_clipper, "You must set at least one of {cleanup, start_clipper} to be true."

    if cleanup:
        logger.info("Cleaning up Docker cluster {}".format(cleanup_name))
        cm = DockerContainerManager(
            cluster_name=cleanup_name,
            clipper_query_port=find_unbound_port(),
            clipper_management_port=find_unbound_port(),
            clipper_rpc_port=find_unbound_port(),
            fluentd_port=find_unbound_port(),
            redis_port=find_unbound_port(),
            prometheus_port=find_unbound_port(),
        )
        cl = ClipperConnection(cm)
        cl.stop_all(graceful=False)

    if start_clipper:
        # Try to start Clipper in a retry loop here to address flaky tests
        # as described in https://github.com/ucbrise/clipper/issues/352
        logger.info("Starting up Docker cluster {}".format(new_name))

        while True:
            cm = DockerContainerManager(
                cluster_name=new_name,
                clipper_query_port=find_unbound_port(),
                clipper_management_port=find_unbound_port(),
                clipper_rpc_port=find_unbound_port(),
                fluentd_port=find_unbound_port(),
                redis_port=find_unbound_port(),
                prometheus_port=find_unbound_port(),
                use_centralized_log=use_centralized_log)
            cl = ClipperConnection(cm)
            try:
                logger.info("Starting Clipper")
                cl.start_clipper()
                time.sleep(1)
                break
            except docker.errors.APIError as e:
                logger.info(
                    "Problem starting Clipper: {}\nTrying again.".format(e))
                cl.stop_all()
    return cl
Пример #6
0
class Clip(object):
    def __init__(self, sleep_time):
        from clipper_admin import ClipperConnection, DockerContainerManager
        #from clipper_admin.deployers import python as python_deployer
        from clipper_admin.deployers import pytorch as pt_deployer
        self.clipper_conn = ClipperConnection(DockerContainerManager())
        try:
            self.clipper_conn.connect()
            self.clipper_conn.stop_all()
        except Exception:
            pass
        self.clipper_conn.start_clipper()
        self.clipper_conn.register_application(name="hello-world",
                                               input_type="strings",
                                               default_output="-1.0",
                                               slo_micros=10**8)
        model = Model()

        def policy(ptmodel, x):
            batch = (len(x))
            arr = []
            for j in x:
                xs, masks = j.split("###")
                res = np.frombuffer(base64.decodestring(xs), dtype=np.float32)
                res = res.reshape((64, 19, 19, 3))
                res = np.frombuffer(base64.decodestring(masks),
                                    dtype=np.float32)
                res = res.reshape((64, 362))
            for i in x:
                time.sleep(sleep_time)
            return [
                np.random.rand(64).astype(np.float32) for i in range(batch)
            ]

        pt_deployer.deploy_pytorch_model(self.clipper_conn,
                                         name="policy",
                                         version=1,
                                         input_type="strings",
                                         func=policy,
                                         pytorch_model=model)

        self.clipper_conn.link_model_to_app(app_name="hello-world",
                                            model_name="policy")
Пример #7
0
class Clip(object):
    def __init__(self, shape, model_name):
        from clipper_admin import ClipperConnection, DockerContainerManager
        from clipper_admin.deployers import python as python_deployer
        from clipper_admin.deployers import pytorch as pytorch_deployer
        self.clipper_conn = ClipperConnection(DockerContainerManager())
        try:
            self.clipper_conn.connect()
            self.clipper_conn.stop_all()
        except Exception:
            pass
        self.clipper_conn.start_clipper()
        self.clipper_conn.register_application(name="hello-world",
                                               input_type="strings",
                                               default_output="-1.0",
                                               slo_micros=10**8)
        ptmodel = get_model(model_name)

        def policy(model, x):
            print(len(x))
            batch = (len(x))
            arr = []
            for j in x:
                print(type(j), len(j))
                res = np.frombuffer(base64.decodestring(j), dtype=np.float32)
                print(res.shape)
                arr += [res]
            x = np.array(arr)
            x = x.reshape((-1, ) + shape[1:])
            print("new shape", x.shape)
            return evaluate_model(model, x).reshape((batch, shape[0]))

        pytorch_deployer.deploy_pytorch_model(self.clipper_conn,
                                              name="policy",
                                              version=1,
                                              input_type="strings",
                                              func=policy,
                                              pytorch_model=ptmodel)

        self.clipper_conn.link_model_to_app(app_name="hello-world",
                                            model_name="policy")
Пример #8
0
def deployModelToClipper():
    """Deploy model to clipper and replace its entry."""
    global app_name, model_name, model_version

    print('Deploying model to clipper, model_name={}, model_version={}'.format(
        model_name, model_version))

    # Setup clipper and deploy model
    clipper_conn = ClipperConnection(DockerContainerManager(redis_port=6380))
    try:
        clipper_conn.start_clipper()
    except:
        clipper_conn.connect()
    try:
        # input_type must be bytes as inputs will be serialized into bytes with pickle
        clipper_conn.register_application(name=app_name,
                                          input_type="bytes",
                                          default_output="-1.0",
                                          slo_micros=1000000)
    except Exception as e:
        print(e)
    try:
        deploy_python_closure(clipper_conn,
                              name=model_name,
                              version=model_version,
                              input_type="bytes",
                              batch_size=1,
                              func=predict,
                              base_image='hysia-clipper-base-container-gpu')
    except Exception as e:
        print(e)
    try:
        clipper_conn.link_model_to_app(app_name=app_name,
                                       model_name=model_name)
    except Exception as e:
        print(e)

    replaceDefaultEntry()
    print('{} deployed to clipper!'.format(model_name))
Пример #9
0
def frontend(args):
    print(args)
    batch_size = args.batch_size
    num_models = args.num_models
    num_redundant_models = args.num_redundant_models
    func = predict
    red_func = predict

    if args.redundancy_mode == "none" or args.redundancy_mode == "equal":
        redundancy_mode = 0
    elif args.redundancy_mode == "coded":
        redundancy_mode = 2
    elif args.redundancy_mode == "cheap":
        redundancy_mode = 3

    if args.queue_mode == "single_queue":
        queue_mode = 0
        single_queue = True
    else:
        # Round robin
        queue_mode = 1
        single_queue = False

    assert len(args.f_ips) == num_models + num_redundant_models
    if len(args.f_ports) != len(args.f_ips):
        assert len(args.f_ports) == 1
        args.f_ports *= len(args.f_ips)

    model_instance_ip_port = []
    red_model_instance_ip_port = []
    for i in range(len(args.f_ips)):
        if i < num_models:
            model_instance_ip_port.append(
                (args.f_ips[i], int(args.f_ports[i])))
        else:
            red_model_instance_ip_port.append(
                (args.f_ips[i], int(args.f_ports[i])))

    client_ip_port = []
    if len(args.f_client_ports) != len(args.f_client_ips):
        assert len(args.f_client_ports) == 1
        args.f_client_ports *= len(args.f_client_ips)
    client_ip_port = [
        (ip, int(port))
        for ip, port in zip(args.f_client_ips, args.f_client_ports)
    ]
    cm = DistributedParmDockerContainerManager(
        model_instance_ip_port=model_instance_ip_port,
        red_model_instance_ip_port=red_model_instance_ip_port,
        client_ip_port=client_ip_port)
    clipper_conn = ClipperConnection(cm, distributed=True)
    frontend_args = {
        "redundancy_mode": redundancy_mode,
        "queue_mode": queue_mode,
        "num_models": num_models,
        "num_redundant_models": num_redundant_models,
        "batch_size": batch_size,
        "mode": args.f_mode
    }

    clipper_conn.start_clipper(frontend_args=frontend_args)

    if args.redundancy_mode == "coded":
        red_input_type = "floats"
    else:
        red_input_type = "bytes"

    pytorch_deployer.create_endpoint(clipper_conn=clipper_conn,
                                     name="example",
                                     input_type="bytes",
                                     func=func,
                                     pytorch_model=model,
                                     pkgs_to_install=['pillow'],
                                     num_replicas=num_models,
                                     batch_size=batch_size,
                                     num_red_replicas=num_redundant_models,
                                     red_func=red_func,
                                     red_input_type=red_input_type,
                                     red_pytorch_model=red_model,
                                     prefer_original=False,
                                     slo_micros=10000000 * 10)

    sleep_time = 5
    print("Sleeping for", sleep_time, "seconds to let things start up")
    time.sleep(sleep_time)

    total_time = cm.run_clients()
    print(total_time)

    with open(args.f_outfile, 'w') as outfile:
        outfile.write("{:.4f}".format(total_time))

    clipper_conn.stop_all()
Пример #10
0
from clipper_admin import ClipperConnection, DockerContainerManager
from clipper_admin.deployers import python as py_deployer
import random

cl = ClipperConnection(DockerContainerManager())
cl.stop_all()
cl.start_clipper()

# cl.register_application(name="pong", input_type="doubles", slo_micros=1000000, default_output="1")


def random_predict(xs):
    action = random.randint(0, 2)
    return [str(action) for _ in xs]


# cl.register_application(name="pong", input_type="doubles", default_output="-1.0", slo_micros=100000)

# py_deployer.deploy_python_closure(cl, name="rand-model", version=1, input_type="doubles", func=random_predict, registry="hsubbaraj")

# cl.link_model_to_app(app_name="pong", model_name="rand-model")

py_deployer.create_endpoint(cl,
                            name="pong",
                            input_type="doubles",
                            func=random_predict,
                            default_output="0",
                            slo_micros=100000)

print("CLIPPER ADDRESS: " + cl.get_query_addr())
Пример #11
0
# clipper_start
from clipper_admin import ClipperConnection, DockerContainerManager
clipper_conn = ClipperConnection(DockerContainerManager())

clipper_conn.start_clipper()
clipper_conn.connect()

clipper_conn.register_application(
    name="digit",
    input_type="doubles",
    default_output="-1.0",
    slo_micros=10000000)  # 10,000,000 micros == 10 sec

clipper_conn.get_all_apps()

#################################################
######### Define Own Prediction Function ########
#################################################

import sklearn
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.externals import joblib
from clipper_admin.deployers import python as python_deployer

for version_postfix in ["10x1k", "10x2k", "20x1k", "15x2k"]:

    model_path = "../../models/sklearn/"
    model_name = "dig_nn_model_" + version_postfix + ".sav"
    clf = joblib.load(model_path + model_name)
Пример #12
0
        response = apply_forecast_impl(parameters[0].decode("utf-8").split(','))
        code = '202' 
    except Exception as e:
        response = str(e)
        code = '500'
    return [str(code+', '+response) for _ in parameters]

if __name__ == '__main__':
    # setup logging format
    format = "%(asctime)-15s %(message)s"
    logging.basicConfig(
        filename='./timeseries/log.log', level=logging.DEBUG, format=format)
    # set up logging to console
    console = logging.StreamHandler(sys.stdout)
    console.setLevel(logging.ERROR)
    logging.getLogger().addHandler(console)

    signal.signal(signal.SIGINT, signal_handler)
    conn = ClipperConnection(DockerContainerManager())
    conn.start_clipper()
    try:
        conn.register_application(name="forecast",input_type="strings",default_output="500, Error executing call.",slo_micros=100000000)
        python_deployer.deploy_python_closure(conn, name="do-forecast", version=1, input_type="strings", func=do_forecast, base_image='wamsiv/timeseries:latest')
        conn.link_model_to_app(app_name="forecast", model_name='do-forecast')
        print(subprocess.getoutput(["docker update --restart=on-failure $(docker ps -a | grep 'clipper/query_frontend:0.3.0' | awk '{ print $1 }')"]))
        input("Server started. Press ctrl+c to stop server.\n")
    except Exception as e:
        logging.error("Encountered {}. Stopping server...".format(e))
        conn.stop_all()
    conn.stop_all()
Пример #13
0
from clipper_admin import ClipperConnection, DockerContainerManager

clipper_conn = ClipperConnection(DockerContainerManager(extra_container_kwargs={'cpuset_cpus':'0-35'}))
clipper_conn.start_clipper(cache_size=0)
Пример #14
0
def frontend(args):
    print(args)
    batch_size = args.batch_size
    num_models = args.num_models
    func = predict
    red_func = predict

    assert args.redundancy_mode in ["none", "equal"]
    redundancy_mode = 0

    if args.queue_mode == "single_queue":
        queue_mode = 0
    elif args.queue_mode == "rr":
        queue_mode = 1
    else:
        assert False, "Unrecognized queue mode '{}'".format(args.queue_mode)

    model_instance_ip_port = []
    red_model_instance_ip_port = []
    cur_port = base_port
    if num_models < len(args.f_ips):
	# Round up to highest int so as not to launch more models than needed.
        num_between = int(len(args.f_ips) / num_models + 0.5)
        chosen_indices = list(range(0, len(args.f_ips), num_between))
        print("Range is", chosen_indices)

        # Shift our chosen indices so that they are evenly distributed
        # throughout the clients.
        delta = len(args.f_ips) - chosen_indices[-1]
        shift = delta // 2
        if len(args.f_ips) == 15:
            shift += 1
        chosen_indices = [i + shift for i in chosen_indices]
        print("Shifted range is", chosen_indices)
        for i in chosen_indices:
            model_instance_ip_port.append((args.f_ips[i], cur_port))

    else:
        for i in range(num_models):
            model_instance_ip_port.append(
                    (args.f_ips[i % len(args.f_ips)], cur_port))

            # Wrap around to the next port number if we will ned to repeat workers.
            if i % len(args.f_ips) == len(args.f_ips) - 1:
                cur_port += 1

    print("Model instance ip, port:", model_instance_ip_port)
    client_ip_port = []
    if len(args.f_client_ports) != len(args.f_client_ips):
        assert len(args.f_client_ports) == 1
        args.f_client_ports *= len(args.f_client_ips)
    client_ip_port = [(ip, int(port)) for ip, port in zip(args.f_client_ips, args.f_client_ports)]
    cm = DistributedParmDockerContainerManager(model_instance_ip_port=model_instance_ip_port,
                                                 red_model_instance_ip_port=red_model_instance_ip_port,
                                                 client_ip_port=client_ip_port)
    clipper_conn = ClipperConnection(cm, distributed=True)
    frontend_args = {
        "redundancy_mode": redundancy_mode,
        "queue_mode": queue_mode,
        "num_models": num_models,
        "num_redundant_models": 0,
        "batch_size": batch_size,
        "mode": args.f_mode,
    }

    clipper_conn.start_clipper(frontend_args=frontend_args)

    red_input_type = "bytes"
    pytorch_deployer.create_endpoint(
            clipper_conn=clipper_conn,
            name="bg",
            input_type="bytes",
            func=func,
            pytorch_model=model,
            pkgs_to_install=['pillow'],
            num_replicas=num_models,
            batch_size=batch_size,
            num_red_replicas=0,
            red_func=red_func,
            red_input_type=red_input_type,
            red_pytorch_model=red_model,
            prefer_original=False,
            slo_micros=10000000 * 10)

    sleep_time = 5
    print("Sleeping for", sleep_time, "seconds to let things start up")
    time.sleep(sleep_time)

    cm.run_clients(wait=False)

    # Listen to a ud socket to determine when we should quit.
    sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
    sock.bind('/home/ubuntu/bg_sock')
    sock.listen(5)
    (clientsocket, address) = sock.accept()

    print("Stopping all clients")
    cm.stop_all_clients()

    print("Sending response")
    clientsocket.sendall('1'.encode())
    clientsocket.close()
    sock.close()

    print("Stopping all")
    clipper_conn.stop_all()
Пример #15
0
def create_clipper_conn():
    conn = ClipperConnection(DockerContainerManager())
    conn.start_clipper()
    return conn