Пример #1
0
def run(cloudburst: CloudburstConnection, num_requests: int, batch_size: int,
        gpu: bool):

    with open('imagenet_classes.txt', 'r') as f:
        classes = [line.strip() for line in f.readlines()]

    cloudburst.put_object('imagenet-classes', classes)

    def resnet_init_gpu(self, cloudburst):
        import os

        import torch
        import torchvision
        from torchvision import transforms

        tpath = os.path.join(os.getenv('TORCH_HOME'), 'checkpoints')
        self.resnet = torch.load(os.path.join(tpath, 'resnet101.model')).cuda()
        self.resnet.eval()

        self.transforms = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

        self.classes = cloudburst.get('imagenet-classes')

    def resnet_model_gpu(self, table: Table) -> str:
        """
        AlexNet for image classification on ImageNet
        """
        import torch

        inputs = []
        for row in table.get():
            img = self.transforms(row['img'])
            inputs.append(img)

        inputs = torch.stack(inputs, dim=0).cuda()
        output = self.resnet(inputs)
        _, indices = torch.sort(output, descending=True)
        indices = indices.cpu().detach().numpy()

        result = []
        for idx_set in indices:
            index = idx_set[0]
            result.append(self.classes[index])

        return result

    def resnet_init_cpu(self, cloudburst):
        import os

        import torch
        import torchvision
        from torchvision import transforms

        tpath = os.path.join(os.getenv('TORCH_HOME'), 'checkpoints')
        self.resnet = torch.load(os.path.join(tpath, 'resnet101.model'))

        self.resnet.eval()

        self.transforms = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

        self.classes = cloudburst.get('imagenet-classes')

    def resnet_model_cpu(self, table: Table) -> str:
        """
        AlexNet for image classification on ImageNet
        """
        import torch

        inputs = []
        for row in table.get():
            img = self.transforms(row['img'])
            inputs.append(img)

        inputs = torch.stack(inputs, dim=0)
        output = self.resnet(inputs)
        _, indices = torch.sort(output, descending=True)
        indices = indices.detach().numpy()

        result = []
        for idx_set in indices:
            index = idx_set[0]
            result.append(self.classes[index])

        return result

    print(f'Creating flow with size {batch_size} batches.')

    flow = Flow('batching-benchmark', FlowType.PUSH, cloudburst)
    if gpu:
        flow.map(resnet_model_gpu,
                 init=resnet_init_gpu,
                 names=['class'],
                 gpu=True,
                 batching=True)
    else:
        flow.map(resnet_model_cpu,
                 init=resnet_init_cpu,
                 names=['class'],
                 batching=True)

    flow.deploy()
    print('Flow successfully deployed!')

    latencies = []
    inp = Table([('img', NumpyType)])
    img = np.array(Image.open('panda.jpg').convert('RGB').resize((224, 224)))

    inp.insert([img])

    kvs = cloudburst.kvs_client

    if gpu:
        print('Starting GPU warmup...')
        for _ in range(50):
            flow.run(inp).get()
        print('Finished warmup...')

    print('Starting benchmark...')
    for i in range(num_requests):
        if i % 100 == 0 and i > 0:
            print(f'On request {i}...')

        futs = []
        for _ in range(batch_size):
            futs.append(flow.run(inp))
        pending = set([fut.obj_id for fut in futs])

        # Break these apart to batch the KVS get requests.
        start = time.time()
        while len(pending) > 0:
            get_start = time.time()
            response = kvs.get(list(pending))

            for key in response:
                if response[key] is not None:
                    pending.discard(key)

        end = time.time()
        latencies.append(end - start)

    compute_time = np.mean(latencies) * num_requests
    tput = (batch_size * num_requests) / (compute_time)
    print('THROUGHPUT: %.2f' % (tput))
    print_latency_stats(latencies, 'E2E')
Пример #2
0
        resnet = resnet_model_gpu
        resnet_cons = resnet_init_gpu
        incept = inceptionv3_model_gpu
        incept_cons = inceptionv3_init_gpu
        trans = transform_batch
    else:
        resnet = resnet_model
        resnet_cons = resnet_init
        incept = inceptionv3_model
        incept_cons = inceptionv3_init
        trans = transform

    with open('imagenet_classes.txt', 'r') as f:
        classes = [line.strip() for line in f.readlines()]

    cloudburst.put_object('imagenet-classes', classes)

    flow = Flow('cascade-flow', FlowType.PUSH, cloudburst)
    rnet = flow.map(trans,
                    init=transform_init,
                    names=['img'],
                    batching=gpu) \
        .map(resnet,
             init=resnet_cons,
             names=['img', 'resnet_index', 'resnet_max_prob'],
             gpu=gpu,
             batching=gpu)

    incept = rnet.filter(low_prob) \
        .map(incept,
             init=incept_cons,
Пример #3
0
def run(cloudburst: CloudburstConnection,
        num_requests: int,
        data_size: str,
        breakpoint: bool,
        do_optimize: bool):

    print('Creating data...')
    size = DATA_SIZES[data_size]
    for i in range(1, NUM_DATA_POINTS+1):
        arr = np.random.rand(size)
        cloudburst.put_object('data-' + str(i), arr)

    def stage1(self, row: Row) -> (int, str):
        idx = int(row['req_num'] / 10) + 1
        key = 'data-%d' % (idx)

        return idx, key

    def stage2(self, row: Row) -> str:
        import numpy as np
        arr = row[row['key']]

        return float(np.sum(arr))

    print(f'Creating flow with {data_size} ({DATA_SIZES[data_size]}) inputs.')

    flow = Flow('locality-benchmark', FlowType.PUSH, cloudburst)
    flow.map(stage1, names=['index', 'key']) \
        .lookup('key', dynamic=True) \
        .map(stage2, names=['sum'])

    optimize_rules['breakpoint'] = breakpoint
    if do_optimize:
        flow = optimize(flow, rules=optimize_rules)
        print('Flow has been optimized...')

    flow.deploy()
    print('Flow successfully deployed!')

    latencies = []
    inp = Table([('req_num', IntType)])

    if breakpoint:
        print('Starting warmup...')
        for i in range(NUM_DATA_POINTS):
            inp = Table([('req_num', IntType)])
            inp.insert([i * 10])

            res = flow.run(inp).get()

        print('Pausing to let cache metadata propagate...')
        time.sleep(15)

    print('Starting benchmark...')
    for i in range(num_requests):
        if i % 100 == 0 and i > 0:
            print(f'On request {i}...')

        inp = Table([('req_num', IntType)])
        inp.insert([i])

        start = time.time()
        res = flow.run(inp).get()
        end = time.time()

        latencies.append(end - start)

    with open('data.bts', 'wb') as f:
        from cloudburst.shared.serializer import Serializer
        ser = Serializer()
        bts = ser.dump(latencies)
        f.write(bts)

    print_latency_stats(latencies, 'E2E')