Пример #1
0
        # Compute quantities required for featurewise normalization
        # (std, mean, and principal components if ZCA whitening is applied).
        datagen.fit(X_train)

        # Fit the model on the batches generated by datagen.flow().
        model.fit_generator(datagen.flow(X_train,
                                         Y_train,
                                         batch_size=batch_size,
                                         shuffle=True),
                            steps_per_epoch=X_train.shape[0] // batch_size,
                            validation_data=(X_test, Y_test),
                            epochs=nb_epoch,
                            verbose=1,
                            callbacks=[lr_finder])

# from plot we see, the model isnt impacted by the weight_decay very much at all
# so we can use any of them.

for momentum in MOMENTUMS:
    directory = 'weights/momentum/momentum-%s/' % str(momentum)

    losses, lrs = lr_finder.restore_schedule_from_dir(directory, 10, 5)
    plt.plot(lrs, losses, label='momentum=%0.2f' % momentum)

plt.title("Momentum")
plt.xlabel("Learning rate")
plt.ylabel("Validation Loss")
plt.legend()
plt.show()
def main(data_path=args['data_path'], train_from=train_from):
    train_gen, test_gen = create_data_generator(data_path)
    valid_x, valid_y = create_valid_data()
    MOMENTUMS = [0.9, 0.95, 0.99]
    for momentum in MOMENTUMS:
        K.clear_session()
        # Learning rate range obtained from `find_lr_schedule.py`
        # NOTE : Minimum is 10x smaller than the max found above !
        # NOTE : It is preferable to use the validation data here to get a correct value
        lr_finder = LRFinder(NUM_SAMPLES,
                             BS,
                             minimum_lr=0.0001,
                             maximum_lr=0.001,
                             validation_data=(valid_x, valid_y),
                             validation_sample_rate=5,
                             lr_scale='linear',
                             save_dir='weights/momentum/momentum-%s/' %
                             str(momentum),
                             verbose=True)

        if train_from == 'trained_weights':
            model = load_model_from_trained_weights(
                imagedims=IMAGE_DIMS,
                nb_classes=len(train_gen.class_indices),
                weights=args['weight_path'],
                freeze_until=freeze_until)
        elif train_from == 'trained_model':
            model = load_model_from_trained_model()
        else:
            model = load_models(imagedims=IMAGE_DIMS,
                                nb_classes=len(train_gen.class_indices))
        print('[INFO] compiling model...')
        model.compile(loss="categorical_crossentropy",
                      optimizer=OPT,
                      metrics=["accuracy"])

        # set the weight_decay here !
        # lr doesnt matter as it will be over written by the callback
        optimizer = SGD(lr=0.001, momentum=momentum, nesterov=True)
        model.compile(loss='categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=['accuracy'])

        callbacks = [lr_finder]
        H = model.fit_generator(
            train_gen,
            validation_data=(valid_x, valid_y),
            epochs=EPOCHS,
            #steps_per_epoch=209,
            callbacks=callbacks,
            verbose=1)
    for momentum in MOMENTUMS:
        directory = 'weights/momentum/momentum-%s/' % str(momentum)

        losses, lrs = LRFinder.restore_schedule_from_dir(directory, 10, 5)
        plt.plot(lrs, losses, label='momentum=%0.2f' % momentum)

    plt.title("Momentum")
    plt.xlabel("Learning rate")
    plt.ylabel("Validation Loss")
    plt.legend()
    plt.show()