def main(): # --- Set up all options -------------------------------------------------- # determine normalization factor for NormAn winding. S = 20.0 Ly = 12.0 normFactor = 4.0 * (S + Ly) ** 2 # some plotting color and label options colors = ["Salmon", "MediumSpringGreen", "DarkViolet", "Fuchsia", "Blue", "Maroon"] RandomColors = False if RandomColors: random.shuffle(colors) # get names of all subdirectories az_XXX. direcs = glob.glob("az_*") # build array of Lz values for plotting Lz vs winding. azValues = pl.array([]) # build array of norman winding values along with bins, for Lz plotting. windingAverages = pl.array([]) windingErrors = pl.array([]) filmAverages = pl.array([]) filmErrors = pl.array([]) bulkAverages = pl.array([]) bulkErrors = pl.array([]) # --- loop over and collect/analyze all data from files ------------------- for nd, d in enumerate(sorted(direcs)): os.chdir("./" + d) print d[3:] azValues = pl.append(azValues, float(d[3:])) # --- angular winding --- f = glob.glob("*AveragedNtwind*")[0] aCol = 3 sCol = 4 bCol = 5 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, normFactor) print avg windingAverages = pl.append(windingAverages, avg) windingErrors = pl.append(windingErrors, stdErr) # --- film densities --- f = glob.glob("*AveragedBipart*")[0] aCol = 0 sCol = 1 bCol = 2 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, 1.0) filmAverages = pl.append(filmAverages, avg) filmErrors = pl.append(filmErrors, stdErr) # --- bulk densities --- aCol = 3 sCol = 4 bCol = 5 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, normFactor) bulkAverages = pl.append(bulkAverages, avg) bulkErrors = pl.append(bulkErrors, stdErr) os.chdir("..") invaz = 1.0 / azValues figg = pl.figure(1) ax = figg.add_subplot(111) pl.errorbar(invaz, windingAverages, windingErrors, fmt="o", color="Indigo") pl.xlabel(r"$1/a_z\ [\si{\angstrom}^{-1}]$", fontsize=20) pl.ylabel(r"$\langle \Omega \rangle$", fontsize=26) pl.grid(True) pl.tick_params(axis="both", which="major", labelsize=16) pl.tick_params(axis="both", which="minor", labelsize=16) xticks = ax.xaxis.get_major_ticks() xticks[0].set_visible(False) pl.tight_layout() pl.savefig("Omega_vs_inverseLZ_S20.pdf", format="pdf", bbox_inches="tight") figg = pl.figure(2) ax = figg.add_subplot(111) pl.errorbar(invaz, filmAverages, filmErrors, fmt="o") pl.xlabel(r"$1/L_z\ [\si{\angstrom}^{-1}]$", fontsize=20) pl.ylabel(r"$ \rho_{\text{film}} $", fontsize=26) pl.grid(True) pl.tick_params(axis="both", which="major", labelsize=16) pl.tick_params(axis="both", which="minor", labelsize=16) xticks = ax.xaxis.get_major_ticks() xticks[0].set_visible(False) pl.tight_layout() pl.show()
def main(): omega = True energy = False superFrac = True # --- Set up all options -------------------------------------------------- Ly = 12.0 # parse command line, getting algorithmic and plotting options. args = jk.parseCMD() reduceType = args.reduceType direc = args.fileNames[0] nCol = args.nCol nEst = args.nEst # some plotting color and label options xLab = jk.getXlabel(reduceType) extent = args.bulkSeparation colors = [ 'Salmon', 'MediumSpringGreen', 'DarkViolet', 'Fuchsia', 'Blue', 'Maroon' ] if args.RandomColors: random.shuffle(colors) # set up figure that displays all data figg = pl.figure(1) ax = figg.add_subplot(111) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.ylabel(r'$\langle \Omega \rangle$', fontsize=20) pl.grid(True) pl.xlim([0.4, 2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) figg2 = pl.figure(2) ax = figg2.add_subplot(111) pl.ylabel(r'$ \rho_s/\rho $', fontsize=20) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.grid(True) pl.xlim([0.4, 2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) figg3 = pl.figure(3) ax = figg3.add_subplot(111) pl.ylabel(r'$ \rho_{\text{film}}\ [\si{\angstrom}^{-2}] $', fontsize=20) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.grid(True) pl.xlim([0.4, 2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) figg4 = pl.figure(4) ax = figg4.add_subplot(111) pl.ylabel(r'$\langle \rho_{\text{bulk}} \rangle$', fontsize=20) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.grid(True) pl.xlim([0.4, 2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) # --- loop over all values of S ------------------------------------------- os.chdir(direc) Svals = glob.glob('S*') Svals = natsort.natsorted(Svals) print Svals for nS, Sval in enumerate(Svals): os.chdir(Sval) # store bulk separation value S = re.search(r'\d+', Sval).group(0) print S # set normalization if omega: normFactor = 4.0 * (float(S) + Ly)**2 else: normFactor = 1.0 print normFactor # set label for plot #if 'distinguishable' in Sval: if 'noSwaps' in Sval: labell = 'S = ' + str( S) + ' ' + r'$\si{\angstrom}$' ', Boltzmannons' else: labell = 'S = ' + str(S) + ' ' + r'$\si{\angstrom}$' + ', Bosons' # get all temperature directory names Tdirs = sorted(glob.glob('T*')) # build array of norman winding values along with bins, for Lz plotting. windingAverages = pl.array([]) windingErrors = pl.array([]) filmAverages = pl.array([]) filmErrors = pl.array([]) bulkAverages = pl.array([]) bulkErrors = pl.array([]) superAverages = pl.array([]) superErrors = pl.array([]) Ts = pl.array([]) #Omegas = pl.array([]) #Errs = pl.array([]) #Films = pl.array([]) #Ferrs = pl.array([]) #Bulks = pl.array([]) #Berrs = pl.array([]) #Supers = pl.array([]) #Serrs = pl.array([]) # --- loop over all temperature values -------------------------------- for Tdir in Tdirs: os.chdir(Tdir) # build array of temperatures Ts = pl.append(Ts, float(Tdir[1:])) # --- angular winding --- f = glob.glob('*zAveragedNtwind*')[0] aCol = 3 sCol = 4 bCol = 5 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, normFactor) windingAverages = pl.append(windingAverages, avg) windingErrors = pl.append(windingErrors, stdErr) # --- film densities --- f = glob.glob('*zAveragedBipart*')[0] aCol = 0 sCol = 1 bCol = 2 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, 1.0) filmAverages = pl.append(filmAverages, avg) filmErrors = pl.append(filmErrors, stdErr) # --- bulk densities --- aCol = 3 sCol = 4 bCol = 5 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, 1.0) bulkAverages = pl.append(bulkAverages, avg) bulkErrors = pl.append(bulkErrors, stdErr) # --- superfluid fractions --- f = glob.glob('*zAveragedSuper*')[0] aCol = 0 sCol = 1 bCol = 2 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, 1.0) superAverages = pl.append(superAverages, avg) superErrors = pl.append(superErrors, stdErr) # ---------------------- os.chdir('..') # add data to plot for given S value. pl.figure(1) pl.errorbar(Ts, windingAverages, windingErrors, fmt='-o', color=colors[nS], label=labell) pl.figure(2) pl.errorbar(Ts, superAverages, superErrors, fmt='-o', color=colors[nS], label=labell) pl.figure(3) pl.errorbar(Ts, filmAverages, filmErrors, fmt='-o', color=colors[nS], label=labell) pl.figure(4) pl.errorbar(Ts, bulkAverages, bulkErrors, fmt='-o', color=colors[nS], label=labell) os.chdir('..') pl.figure(1) pl.legend() pl.savefig('Omega_vs_T_allS.pdf', format='pdf', bbox_inches='tight') pl.figure(2) pl.legend() #pl.savefig('SuperFrac_vs_T_allS.pdf', format='pdf', # bbox_inches='tight') pl.figure(3) pl.legend() pl.savefig('FilmDensities_vs_T_allS.pdf', format='pdf', bbox_inches='tight') pl.figure(4) pl.legend() pl.show()
def main(): # --- Set up all options -------------------------------------------------- # determine normalization factor for NormAn winding. S = 20.0 Ly = 12.0 normFactor = 4.0 * (S + Ly)**2 # some plotting color and label options colors = [ 'Salmon', 'MediumSpringGreen', 'DarkViolet', 'Fuchsia', 'Blue', 'Maroon' ] RandomColors = False if RandomColors: random.shuffle(colors) # get names of all subdirectories az_XXX. direcs = glob.glob('az_*') # build array of Lz values for plotting Lz vs winding. azValues = pl.array([]) # build array of norman winding values along with bins, for Lz plotting. windingAverages = pl.array([]) windingErrors = pl.array([]) filmAverages = pl.array([]) filmErrors = pl.array([]) bulkAverages = pl.array([]) bulkErrors = pl.array([]) # --- loop over and collect/analyze all data from files ------------------- for nd, d in enumerate(sorted(direcs)): os.chdir('./' + d) print d[3:] azValues = pl.append(azValues, float(d[3:])) # --- angular winding --- f = glob.glob('*AveragedNtwind*')[0] aCol = 3 sCol = 4 bCol = 5 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, normFactor) print avg windingAverages = pl.append(windingAverages, avg) windingErrors = pl.append(windingErrors, stdErr) # --- film densities --- f = glob.glob('*AveragedBipart*')[0] aCol = 0 sCol = 1 bCol = 2 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, 1.0) filmAverages = pl.append(filmAverages, avg) filmErrors = pl.append(filmErrors, stdErr) # --- bulk densities --- aCol = 3 sCol = 4 bCol = 5 avg, stdErr = cT.crunchZfile(f, aCol, sCol, bCol, normFactor) bulkAverages = pl.append(bulkAverages, avg) bulkErrors = pl.append(bulkErrors, stdErr) os.chdir('..') invaz = 1.0 / azValues figg = pl.figure(1) ax = figg.add_subplot(111) pl.errorbar(invaz, windingAverages, windingErrors, fmt='o', color='Indigo') pl.xlabel(r'$1/a_z\ [\si{\angstrom}^{-1}]$', fontsize=20) pl.ylabel(r'$\langle \Omega \rangle$', fontsize=26) pl.grid(True) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) xticks = ax.xaxis.get_major_ticks() xticks[0].set_visible(False) pl.tight_layout() pl.savefig('Omega_vs_inverseLZ_S20.pdf', format='pdf', bbox_inches='tight') figg = pl.figure(2) ax = figg.add_subplot(111) pl.errorbar(invaz, filmAverages, filmErrors, fmt='o') pl.xlabel(r'$1/L_z\ [\si{\angstrom}^{-1}]$', fontsize=20) pl.ylabel(r'$ \rho_{\text{film}} $', fontsize=26) pl.grid(True) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) xticks = ax.xaxis.get_major_ticks() xticks[0].set_visible(False) pl.tight_layout() pl.show()
def main(): omega = True energy = False superFrac = True # --- Set up all options -------------------------------------------------- Ly = 12.0 # parse command line, getting algorithmic and plotting options. args = jk.parseCMD() reduceType = args.reduceType direc = args.fileNames[0] nCol = args.nCol nEst = args.nEst # some plotting color and label options xLab = jk.getXlabel(reduceType) extent = args.bulkSeparation colors = ['Salmon','MediumSpringGreen','DarkViolet','Fuchsia','Blue', 'Maroon'] if args.RandomColors: random.shuffle(colors) # set up figure that displays all data figg = pl.figure(1) ax = figg.add_subplot(111) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.ylabel(r'$\langle \Omega \rangle$', fontsize=20) pl.grid(True) pl.xlim([0.4,2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) figg2 = pl.figure(2) ax = figg2.add_subplot(111) pl.ylabel(r'$ \rho_s/\rho $', fontsize=20) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.grid(True) pl.xlim([0.4,2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) figg3 = pl.figure(3) ax = figg3.add_subplot(111) pl.ylabel(r'$ \rho_{\text{film}}\ [\si{\angstrom}^{-2}] $', fontsize=20) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.grid(True) pl.xlim([0.4,2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) figg4 = pl.figure(4) ax = figg4.add_subplot(111) pl.ylabel(r'$\langle \rho_{\text{bulk}} \rangle$', fontsize=20) pl.xlabel(r'$T\ [K]$', fontsize=20) pl.grid(True) pl.xlim([0.4,2.6]) pl.tick_params(axis='both', which='major', labelsize=16) pl.tick_params(axis='both', which='minor', labelsize=16) yticks = ax.yaxis.get_major_ticks() yticks[0].set_visible(False) # --- loop over all values of S ------------------------------------------- os.chdir(direc) Svals = glob.glob('S*') Svals = natsort.natsorted(Svals) print Svals for nS, Sval in enumerate(Svals): os.chdir(Sval) # store bulk separation value S = re.search(r'\d+',Sval).group(0) print S # set normalization if omega: normFactor = 4.0*(float(S)+Ly)**2 else: normFactor = 1.0 print normFactor # set label for plot #if 'distinguishable' in Sval: if 'noSwaps' in Sval: labell = 'S = '+str(S)+' '+r'$\si{\angstrom}$'', Boltzmannons' else: labell = 'S = '+str(S)+' '+r'$\si{\angstrom}$'+', Bosons' # get all temperature directory names Tdirs = sorted(glob.glob('T*')) # build array of norman winding values along with bins, for Lz plotting. windingAverages = pl.array([]) windingErrors = pl.array([]) filmAverages = pl.array([]) filmErrors = pl.array([]) bulkAverages = pl.array([]) bulkErrors = pl.array([]) superAverages = pl.array([]) superErrors = pl.array([]) Ts = pl.array([]) #Omegas = pl.array([]) #Errs = pl.array([]) #Films = pl.array([]) #Ferrs = pl.array([]) #Bulks = pl.array([]) #Berrs = pl.array([]) #Supers = pl.array([]) #Serrs = pl.array([]) # --- loop over all temperature values -------------------------------- for Tdir in Tdirs: os.chdir(Tdir) # build array of temperatures Ts = pl.append(Ts, float(Tdir[1:])) # --- angular winding --- f = glob.glob('*zAveragedNtwind*')[0] aCol = 3 sCol = 4 bCol = 5 avg,stdErr = cT.crunchZfile(f,aCol,sCol,bCol,normFactor) windingAverages = pl.append(windingAverages, avg) windingErrors = pl.append(windingErrors, stdErr) # --- film densities --- f = glob.glob('*zAveragedBipart*')[0] aCol = 0 sCol = 1 bCol = 2 avg,stdErr = cT.crunchZfile(f,aCol,sCol,bCol,1.0) filmAverages = pl.append(filmAverages, avg) filmErrors = pl.append(filmErrors,stdErr) # --- bulk densities --- aCol = 3 sCol = 4 bCol = 5 avg,stdErr = cT.crunchZfile(f,aCol,sCol,bCol,1.0) bulkAverages = pl.append(bulkAverages,avg) bulkErrors = pl.append(bulkErrors, stdErr) # --- superfluid fractions --- f = glob.glob('*zAveragedSuper*')[0] aCol = 0 sCol = 1 bCol = 2 avg,stdErr = cT.crunchZfile(f,aCol,sCol,bCol,1.0) superAverages = pl.append(superAverages,avg) superErrors = pl.append(superErrors, stdErr) # ---------------------- os.chdir('..') # add data to plot for given S value. pl.figure(1) pl.errorbar(Ts, windingAverages, windingErrors, fmt='-o', color=colors[nS], label=labell) pl.figure(2) pl.errorbar(Ts, superAverages, superErrors, fmt='-o', color=colors[nS], label=labell) pl.figure(3) pl.errorbar(Ts, filmAverages, filmErrors, fmt='-o', color=colors[nS], label=labell) pl.figure(4) pl.errorbar(Ts, bulkAverages, bulkErrors, fmt='-o', color=colors[nS], label=labell) os.chdir('..') pl.figure(1) pl.legend() pl.savefig('Omega_vs_T_allS.pdf', format='pdf', bbox_inches='tight') pl.figure(2) pl.legend() #pl.savefig('SuperFrac_vs_T_allS.pdf', format='pdf', # bbox_inches='tight') pl.figure(3) pl.legend() pl.savefig('FilmDensities_vs_T_allS.pdf', format='pdf', bbox_inches='tight') pl.figure(4) pl.legend() pl.show()