Пример #1
0
def onlytransfer(n_clusters, fb_kmeans=True):

    X = np.load('data/chan/8chan_pol/VGG16/fc1/featuresx.npy')
    X = X.astype('float32')
    pathfile = open('data/chan/8chan_pol/VGG16/fc1/paths.txt', "r")
    pathlist = pathfile.readlines()
    pathlist = [path[:-1] for path in pathlist]
    pathfile.close()

    if fb_kmeans:
        #features = torch.from_numpy(features)
        images_lists, loss = kmeans(X,
                                    nmb_clusters=n_clusters,
                                    preprocess=False)
        Y_pred = arrange_clustering(images_lists)
    else:
        km = KMeans(n_clusters=n_clusters, n_init=20)
        Y_pred = km.fit_predict(X)

    for y_pred, path in zip(Y_pred, pathlist):
        savedir = '/home/elahe/NortfaceProject/codes/DEC-keras/results/clusters/8chan_pol/%s/%s/%s' % (
            'transfer', 'fc1', y_pred)
        if not os.path.exists(savedir):
            os.makedirs(savedir)

        shutil.copy(path, savedir)
Пример #2
0
def main():
    global args
    args = parser.parse_args()

    # fix random seeds
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)

    # CNN
    if args.verbose:
        print('Architecture: {}'.format(args.arch))
    model = models.__dict__[args.arch](sobel=args.sobel)
    fd = int(model.top_layer.weight.size()[1])
    model.top_layer = None
    model.features = torch.nn.DataParallel(model.features)
    model.cuda()
    cudnn.benchmark = True

    # create optimizer
    optimizer = torch.optim.SGD(
        filter(lambda x: x.requires_grad, model.parameters()),
        lr=args.lr,
        momentum=args.momentum,
        weight_decay=10**args.wd,
    )

    # define loss function
    criterion = nn.CrossEntropyLoss().cuda()

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            # remove top_layer parameters from checkpoint
            for key in checkpoint['state_dict']:
                if 'top_layer' in key:
                    del checkpoint['state_dict'][key]
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    # creating checkpoint repo
    exp_check = os.path.join(args.exp, 'checkpoints')
    if not os.path.isdir(exp_check):
        os.makedirs(exp_check)

    # creating cluster assignments log
    cluster_log = Logger(os.path.join(args.exp, 'clusters'))

    # preprocessing of data
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    tra = [transforms.Resize(256),
           transforms.CenterCrop(224),
           transforms.ToTensor(),
           normalize]

    # load the data
    end = time.time()
    dataset = datasets.ImageFolder(args.data, transform=transforms.Compose(tra))
    if args.verbose: print('Load dataset: {0:.2f} s'.format(time.time() - end))
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch,
                                             num_workers=args.workers,
                                             pin_memory=True)

    # clustering algorithm to use
    deepcluster = clustering.__dict__[args.clustering](args.nmb_cluster)

    # training convnet with DeepCluster
    for epoch in range(args.start_epoch, args.epochs):
        end = time.time()

        # remove head
        model.top_layer = None
        model.classifier = nn.Sequential(*list(model.classifier.children())[:-1])

        # get the features for the whole dataset
        features = compute_features(dataloader, model, len(dataset))

        # cluster the features
        clustering_loss = deepcluster.cluster(features, verbose=args.verbose)

        # assign pseudo-labels
        train_dataset = clustering.cluster_assign(deepcluster.images_lists,
                                                  dataset.imgs)

        # uniformely sample per target
        sampler = UnifLabelSampler(int(args.reassign * len(train_dataset)),
                                   deepcluster.images_lists)

        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch,
            num_workers=args.workers,
            sampler=sampler,
            pin_memory=True,
        )

        # set last fully connected layer
        mlp = list(model.classifier.children())
        mlp.append(nn.ReLU(inplace=True).cuda())
        model.classifier = nn.Sequential(*mlp)
        model.top_layer = nn.Linear(fd, len(deepcluster.images_lists))
        model.top_layer.weight.data.normal_(0, 0.01)
        model.top_layer.bias.data.zero_()
        model.top_layer.cuda()

        # train network with clusters as pseudo-labels
        end = time.time()
        loss = train(train_dataloader, model, criterion, optimizer, epoch)

        # print log
        if args.verbose:
            print('###### Epoch [{0}] ###### \n'
                  'Time: {1:.3f} s\n'
                  'Clustering loss: {2:.3f} \n'
                  'ConvNet loss: {3:.3f}'
                  .format(epoch, time.time() - end, clustering_loss, loss))
            try:
                nmi = normalized_mutual_info_score(
                    clustering.arrange_clustering(deepcluster.images_lists),
                    clustering.arrange_clustering(cluster_log.data[-1])
                )
                print('NMI against previous assignment: {0:.3f}'.format(nmi))
            except IndexError:
                pass
            print('####################### \n')
        # save running checkpoint
        torch.save({'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'optimizer' : optimizer.state_dict()},
                   os.path.join(args.exp, 'checkpoint.pth.tar'))

        # save cluster assignments
        cluster_log.log(deepcluster.images_lists)
Пример #3
0
def main(args):
    # fix random seeds
    seed(31)

    # CNN
    model = MobileNetV1(num_classes=100, sobel=True)
    fd = int(model.top_layer.weight.size()[1])
    model.top_layer = None
    model.features = torch.nn.DataParallel(model.features)
    model.cuda()
    cudnn.benchmark = True

    # create optimizer
    optimizer = torch.optim.SGD(
        [x for x in model.parameters() if x.requires_grad],
        lr=args.lr,
        momentum=args.momentum,
        weight_decay=10**args.wd,
    )

    # define loss function
    criterion = nn.CrossEntropyLoss().cuda()

    # creating cluster assignments log
    cluster_log = Logger(os.path.join('./image_list_log/', 'clusters'))
    end = time.time()
    # load the data
    dataset = datasets.ImageFolder(root=r'./dataset/train',
                                   transform=transform())
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch,
                                             num_workers=args.workers,
                                             pin_memory=True)

    # clustering algorithm to use
    deepcluster = clustering.__dict__[args.clustering](args.nmb_cluster)
    print('start train')

    # training convnet with DeepCluster
    for epoch in range(args.start_epoch, args.epochs):
        print(epoch)
        # remove head
        model.top_layer = None
        model.classifier = nn.Sequential(
            *list(model.classifier.children())[:-1])

        # get the features for the whole dataset
        features = compute_features(dataloader, model, len(dataset),
                                    args.batch)

        # cluster the feature
        clustering_loss = deepcluster.cluster(features)

        # assign pseudo-labels
        train_dataset = clustering.cluster_assign(deepcluster.images_lists,
                                                  dataset.imgs)

        # uniformly sample per target
        sampler = UnifLabelSampler(int(args.reassign * len(train_dataset)),
                                   deepcluster.images_lists)

        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch,
            num_workers=args.workers,
            sampler=sampler,
            pin_memory=True,
        )

        # set last fully connected layer
        mlp = list(model.classifier.children())
        mlp.append(nn.ReLU(inplace=True).cuda())
        model.classifier = nn.Sequential(*mlp)
        model.top_layer = nn.Linear(fd, len(deepcluster.images_lists))
        model.top_layer.weight.data.normal_(0, 0.01)
        model.top_layer.bias.data.zero_()
        model.top_layer.cuda()

        # train network with clusters as pseudo-labels
        end = time.time()
        loss = train(train_dataloader, model, criterion, optimizer, epoch,
                     args.lr, args.wd)

        # print log
        # print('###### Epoch [{0}] ###### \n'
        #       'Time: {1:.3f} s\n'
        #       'Clustering loss: {2:.3f} \n'
        #       'ConvNet loss: {3:.3f}'
        #       .format(epoch, time.time() - end, clustering_loss, loss))
        try:
            nmi = normalized_mutual_info_score(
                clustering.arrange_clustering(deepcluster.images_lists),
                clustering.arrange_clustering(cluster_log.data[-1]))
            print('NMI against previous assignment: {0:.3f}'.format(nmi))
            f = open('result.txt', "a")
            f.write('NMI against previous assignment: {0:.3f}'.format(nmi))
            f.close()
            # print(loss)
        except IndexError:
            pass
        print('####################### \n')
        # save cluster assignments
        cluster_log.log(deepcluster.images_lists)
Пример #4
0
    model.top_layer_class.weight.data.normal_(0, 0.01)
    model.top_layer_class.bias.data.zero_()
    model.top_layer_class.cuda()

    # Joint training for emotional clusters
    end = time.time()
    print('======== Epoch ' + str(epoch) + ' ========')
    loss_joint = train_joint(emo_cluster_dataloader, model, criterion_class,
                             cc_coef, optimizer_class, optimizer_attri, epoch)
    Loss_Joint.append(loss_joint)
    print('Loss Joint: ' + str(loss_joint))

    try:
        print('=====================================')
        nmi = normalized_mutual_info_score(
            clustering.arrange_clustering(deepcluster.images_lists),
            clustering.arrange_clustering(cluster_log.data[-1]))
        NMI.append(nmi)
        print('NMI against previous assignment: {0:.3f}'.format(nmi))
    except IndexError:
        pass

    # Validation Stage: considering CCC performance only
    loss_valid = validation(valid_loader, model, cc_coef)
    Loss_CCC_Valid.append(loss_valid)
    cluster_log.log(deepcluster.images_lists)
    print('Loss Validation CCC: ' + str(loss_valid))

    # save model checkpoint based on best validation CCC performance
    if epoch == 0:
        # initial CCC value