def display_error(errors, method): err = error(errors, n=1) err_max = error(errors) pylog.debug( "Obtained an error of {} using {} method (max={}, len={})".format( err, method, err_max, len(method)))
def exercise1(): if DEFAULT["1a"] is True: exercise1a() elif DEFAULT["1b"] is True: exercise1b() elif DEFAULT["1c"] is True: exercise1c() elif DEFAULT["1d"] is True: exercise1d() elif DEFAULT["1f"] is True: exercise1f() else: exercise1a() exercise1b() exercise1c() exercise1d() exercise1f() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() print(figures) pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def error(method_state, analytical_state, method): """ Compute error of an ode method based on analytical solution """ err = np.sum(np.abs(analytical_state - method_state)) / len(method_state) err_max = max(np.abs(analytical_state - method_state)) pylog.debug( "Obtained an error of {} using {} method (max={}, len={})".format( err, method, err_max, len(method_state))) return err
def L(self, value): """ Keyword Arguments: value -- Set the value of pendulum's length [m] """ self.parameters['L'] = value # ReCompute inertia # Inertia = m*l**2 self.I = self.m * self.parameters['L']**2 pylog.debug('Changed pendulum length to {} [m]'.format(self.L))
def m(self, value): """ Set the mass of the pendulum. Setting/Changing mass will automatically recompute the inertia. """ self.parameters['m'] = value # ReCompute inertia # Inertia = m*l**2 self.I = self.parameters['m'] * self.L**2 pylog.debug('Changed pendulum mass to {} [kg]'.format(self.m))
def exercise1(clargs): """ Exercise 1 """ # Setup pylog.info("Running exercise 1") # Setup time_max = 5 # Maximum simulation time time_step = 0.2 # Time step for ODE integration in simulation x0 = np.array([1.]) # Initial state # Integration methods (Exercises 1.a - 1.d) pylog.info("Running function integration using different methods") # Example pylog.debug("Running example plot for integration (remove)") example = example_integrate(x0, time_max, time_step) example.plot_state(figure="Example", label="Example", marker=".") # Analytical (1.a) time = np.arange(0, time_max, time_step) # Time vector x_a = analytic_function(time) analytical = Result(x_a, time) if x_a is not None else None # Euler (1.b) euler = euler_integrate(function, x0, time_max, time_step) # ODE (1.c) ode = ode_integrate(function, x0, time_max, time_step) # ODE Runge-Kutta (1.c) ode_rk = ode_integrate_rk(function_rk, x0, time_max, time_step) # Euler with lower time step (1.d) pylog.warning("Euler with smaller ts must be implemented") euler_time_step = None euler_ts_small = (euler_integrate(function, x0, time_max, euler_time_step) if euler_time_step is not None else None) # Plot integration results plot_integration_methods(analytical=analytical, euler=euler, ode=ode, ode_rk=ode_rk, euler_ts_small=euler_ts_small, euler_timestep=time_step, euler_timestep_small=euler_time_step) # Error analysis (Exercise 1.e) pylog.warning("Error analysis must be implemented") # Show plots of all results if not clargs.save_figures: plt.show() return
def save_figure(figure, name=None, **kwargs): """ Save figure """ for extension in kwargs.pop("extensions", ["png"]): fig = figure.replace(" ", "_").replace(".", "dot") if name is None: name = "{}.{}".format(fig, extension) else: name = "{}.{}".format(name, extension) name = save_folder + name plt.figure(figure) plt.savefig(name, bbox_inches='tight') pylog.debug("Saving figure {}...".format(name))
def exercise3(): time_param = TimeParameters(time_start=0, time_stop=10., time_step=0.001) exercise3a(time_param) exercise3b(time_param) if DEFAULT["save_figures"]: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.show()
def save_figure(figure, name=None, **kwargs): """ Save figure """ for extension in kwargs.pop("extensions", ["pdf"]): fig = figure.replace(" ", "_").replace(".", "dot") if name is None: name = "{}.{}".format(fig, extension) else: name = "{}.{}".format(name, extension) fig = plt.figure(figure) size = plt.rcParams.get('figure.figsize') fig.set_size_inches(0.7 * size[0], 0.7 * size[1], forward=True) plt.savefig(name, bbox_inches='tight') pylog.debug("Saving figure {}...".format(name)) fig.set_size_inches(size[0], size[1], forward=True)
def exercise1(): #exercise1a() exercise1d() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() print(figures) pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. """ exercise2b() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def pendulum_set_position(x0, time=0.0, *args): """ Function to analyse the pendulum spring damper system""" pendulum = args[0] pendulum.parameters.b1 = 1. pendulum.parameters.b2 = 1. pendulum.parameters.k1 = 50.0 pendulum.parameters.k2 = 50.0 pendulum.parameters.s_theta_ref1 = np.deg2rad(0.0) pendulum.parameters.s_theta_ref2 = np.deg2rad(65.6) pylog.info( "1b. Running pendulum_system to set fixed position") pylog.info(pendulum.parameters.showParameters()) title = "{} Pendulum Fixed Position (x0 = {})" res = integrate(pendulum_integration, x0, time, args=args) pylog.debug('Position : {}'.format(np.rad2deg(res.state[-1]))) res.plot_state(title.format("State", x0)) res.plot_phase(title.format("Phase", x0))
def save_figure(figure, name=None): """ Save figure """ if os.path.isdir(DEFAULT["save_folder"]): path = DEFAULT["save_folder"] else: pylog.warning( "The DEFAULT save directory does not exist. Switching to current directory" ) path = os.getcwd() if DEFAULT["save_figures"]: for extension in DEFAULT["save_extensions"]: fig = figure.replace(" ", "_").replace(".", "dot") if name is None: name = "{}.{}".format(fig, extension) else: name = "{}.{}".format(name, extension) plt.savefig(path + name, bbox_inches='tight') pylog.debug("Saving figure {}...".format(name))
def exercise3(clargs): """ Exercise 3 """ parameters = PendulumParameters() # Checkout pendulum.py for more info pylog.info(parameters) # Simulation parameters time = np.arange(0, 30, 0.01) # Simulation time x0 = [0.1, 0.0] # Initial state # To use/modify pendulum parameters (See PendulumParameters documentation): # parameters.g = 9.81 # Gravity constant # parameters.m = 1. # Mass # parameters.L = 1. # Length # parameters.I = 1. # Inertia (Automatically computed!) # parameters.d = 0.3 # damping # parameters.sin = np.sin # Sine function # parameters.dry = False # Use dry friction (True or False) # Example of system integration (Similar to lab1) # (NOTE: pendulum_equation must be imlpemented first) pylog.debug("Running integration example") res = integrate(pendulum_system, x0, time, args=(parameters,)) res.plot_state("State") res.plot_phase("Phase") # Evolutions # Write code here (You can add functions for the different cases) pylog.warning( "Evolution of pendulum in normal conditions must be implemented" ) pylog.warning( "Evolution of pendulum without damping must be implemented" ) pylog.warning( "Evolution of pendulum with perturbations must be implemented" ) pylog.warning( "Evolution of pendulum with dry friction must be implemented" ) # Show plots of all results if not clargs.save_figures: plt.show()
def exercise1(): plt.close("all") pylog.info("Start exercise 1") time_param = TimeParameters(time_start=0.0, time_stop=0.2, time_step=0.001, time_stabilize=0.2) exercise1a(time_param) exercise1b(time_param) exercise1c(time_param) time_param.t_stop = 0.3 # change time parameters for the second part exercise1d(time_param) exercise1e(time_param) if DEFAULT["save_figures"]: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.show()
def two_li_ode(y, t, params): """ Derivative function of a network of 2 leaky integrator neurons y is the vector of membrane potentials (variable m in lecture equations) yd the derivative of the vector of membrane potentials """ # Extract parameters tau, D, b, w, exp = params.list() # Update the firing rates: y = np.array(y) x = 1 / (1 + exp(-D * (y + b))) # IMPLEMENT THE DIFFERENTIAL EQUATION FOR THE MEMBRANE POTENTIAL # Compute the dentritic sums for both neurons dend_sum = w[0] * x[0] + w[1] * x[1] # Compute the membrane potential derivative: yd = (-y + dend_sum) / tau pylog.debug("x: {}\ndend_sum: {}\nyd: {}".format(x, dend_sum, yd)) return yd
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 3 # Maximum simulation time time = np.arange(0., t_max, 0.004) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent ''' #act1 = np.ones((len(time), 1)) * 1. #act2 = np.ones((len(time), 1)) * 0.05 act1 = (np.sin((time/t_max)*10*np.pi)+1)/2 act2 = (np.sin((time/t_max)*10*np.pi + np.pi)+1)/2 act1 = np.reshape(act1, (len(time),1)) act2 = np.reshape(act2, (len(time),1)) activations = np.hstack((act1, act2)) # Plotting the results plt.figure('Activations') plt.title('Muscle activations') plt.plot(time, act1, label = 'Activation muscle 1') plt.plot(time, act2, label = 'Activation muscle 2') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.legend() plt.grid() # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) ''' max_amplitude = np.zeros([10, 10]) i = 0 j = 0 # Simulate the system for given time for activation_max in np.arange(0, 1, 0.9): i = 0 for frequency in np.arange(1, 10, 4): act1 = ((np.sin( (time / t_max) * frequency * np.pi) + 1) / 2) * activation_max act2 = ((np.sin((time / t_max) * frequency * np.pi + 1) + 1) / 2) * activation_max act1 = np.reshape(act1, (len(time), 1)) act2 = np.reshape(act2, (len(time), 1)) activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results max_amplitude[i, j] = np.max(np.abs(res[:, 1])) i += 1 # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2], label='activation %.2f - frequency %f' % (activation_max, frequency)) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() j += 1 plt.figure('Amplitude') fig, ax1 = plt.subplots(1, 1) ax1.set_xticklabels(np.array([0, 0, 0.2, 0.4, 0.8, 1])) ax1.set_yticklabels(np.array([0, 1, 3, 5, 7, 9])) plt.title('Ampliudes') plt.imshow(max_amplitude, aspect='equal', origin='lower') plt.xlabel('Activation') plt.ylabel('Frequncy') # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # 2a : set of muscle 1 attachment points m1_origin = np.array([[-0.17, 0.0]]) # Origin of Muscle 1 m1_insertion = np.array([[0.0, -0.17], [0.0, -0.3], [0.0, -0.4], [0.0, -0.5]]) # Insertion of Muscle 1 theta = np.linspace(-np.pi/2,np.pi/2) m_lengths = np.zeros((len(m1_insertion),len(theta))) m_moment_arms = np.zeros((len(m1_insertion),len(theta))) leg=[] for i in range(0,len(m1_insertion)): m_lengths[i,:]=np.sqrt(m1_origin[0,0]**2 + m1_insertion[i,1]**2 + 2 * np.abs(m1_origin[0,0]) * np.abs(m1_insertion[i,1]) * np.sin(theta)) m_moment_arms[i,:]= m1_origin[0,0] * m1_insertion[i,1] * np.cos(theta) / m_lengths[i,:] leg.append('Origin: {}m, Insertion: {}m'.format(m1_origin[0,0],m1_insertion[i,1])) # Plotting plt.figure('2a length') plt.title('Length of M1 with respect to the position of the limb') for i in range(0,len(m_lengths)): plt.plot(theta*180/np.pi, m_lengths[i,:]) plt.plot((theta[0]*180/np.pi,theta[len(theta)-1]*180/np.pi),(0.11,0.11), ls='dashed') leg.append('l_opt') plt.plot((theta[0]*180/np.pi,theta[len(theta)-1]*180/np.pi),(0.13,0.13), ls='dashed') leg.append('l_slack') plt.xlabel('Position [deg]') plt.ylabel('Muscle length [m]') plt.legend(leg) plt.grid() plt.savefig('2_a_length.png') plt.figure('2a moment') plt.title('Moment arm over M1 with respect to the position of the limb') for i in range(0,len(m_moment_arms)): plt.plot(theta*180/np.pi, m_moment_arms[i,:]) plt.xlabel('Position [deg]') plt.ylabel('Moment arm [m]') plt.legend(leg) plt.grid() plt.savefig('2_a_moment.png') # 2b : simple activation wave forms # Muscle 2 attachement point m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin[0,:], m1_insertion[0,:]]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi/4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent sin_frequency = 2 #Hz amp_stim = 1 phase_shift = np.pi act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) for i in range(0,len(time)): act1[i,0] = amp_stim*(1+np.sin(2*np.pi*sin_frequency*time[i]))/2 act2[i,0] = amp_stim*(1+ np.sin(2*np.pi*sin_frequency*time[i] + phase_shift))/2 plt.figure('2b activation') plt.plot(time,act1) plt.plot(time,act2) plt.legend(["Activation for muscle 1", "Activation for muscle 2"]) plt.title('Activation for muscle 1 and 2 with simple activation wave forms') plt.xlabel("Time [s]") plt.ylabel("Activation") plt.savefig('2_b_activation.png') plt.show() activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Plotting the results plt.figure('2b phase') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.savefig('2_b_phase.png') plt.show() plt.figure('2b oscillations') plt.title('Pendulum Oscillations') plt.plot(time,res[:, 1]) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') plt.grid() plt.savefig('2_b_oscillations.png') plt.show() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # 2c : relationship between stimulation frequency and amplitude # Effect of frequency stim_frequency_range = np.array([0.05,0.1,0.5,1,5,10,50,100,500]) #Hz stim_amp = 1 phase_shift = np.pi frequency_pend=np.zeros(len(stim_frequency_range)) amplitude_pend=np.zeros(len(stim_frequency_range)) for j,stim_frequency in enumerate(stim_frequency_range): period = 1/stim_frequency t_max = 10*period # Maximum simulation time time = np.arange(0., t_max, 0.001*period) # Time vector act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) act1[:,0] = stim_amp*(1 + np.sin(2*np.pi*stim_frequency*time))/2 act2[:,0] = stim_amp*(1+ np.sin(2*np.pi*stim_frequency*time + phase_shift))/2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() # computing the frequency and amplitude angular_position = res[:,1] signal_stat = angular_position[int(len(angular_position)/2):len(angular_position)] index_zeros = np.where(np.diff(np.sign(signal_stat)))[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) period = 2*delta*0.001*period frequency_pend[j] = 1/period amplitude_pend[j] = (np.max(signal_stat)-np.min(signal_stat))/2 # Plotting plt.figure('2c : effect of frequency') plt.subplot(121) plt.loglog(stim_frequency_range,frequency_pend) plt.grid() plt.xlabel('Stimulation Frequency in Hz') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.loglog(stim_frequency_range,amplitude_pend) plt.grid() plt.xlabel('Stimulation Frequency in Hz') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_frequency.png') plt.show() # Effect of amplitude stim_frequency = 10 #Hz stim_amp_range = np.arange(0,1.1,0.1) phase_shift = np.pi frequency_pend=np.zeros(len(stim_amp_range)) amplitude_pend=np.zeros(len(stim_amp_range)) for j,stim_amp in enumerate(stim_amp_range): period = 1/stim_frequency t_max = 5*period # Maximum simulation time time = np.arange(0., t_max, 0.001*period) # Time vector act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) act1[:,0] = stim_amp*(1 + np.sin(2*np.pi*stim_frequency*time))/2 act2[:,0] = stim_amp*(1+ np.sin(2*np.pi*stim_frequency*time + phase_shift))/2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() # computing the frequency and amplitude angular_position = res[:,1] signal_stat = angular_position[int(len(angular_position)/2):len(angular_position)] index_zeros = np.where(np.diff(np.sign(signal_stat)))[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) period = 2*delta*0.001*period frequency_pend[j] = 1/period amplitude_pend[j] = (np.max(signal_stat)-np.min(signal_stat))/2 frequency_pend[0] = 0.0; # Plotting plt.figure('2c : effect of amplitude') plt.subplot(121) plt.plot(stim_amp_range,frequency_pend) plt.grid() plt.xlabel('Stimulation Amplitude') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.plot(stim_amp_range,amplitude_pend) plt.grid() plt.xlabel('Stimulation Amplitude') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_amplitude.png') plt.show()
def exercise3a(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum P_params.PERTURBATION = True pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.tau = [0.02, 0.02, 0.1, 0.1] N_params.b = [3.0, 3.0, -3.0, -3.0] N_params.D = 1.0 # To change a network parameter N_params.w = np.asarray([[0.0, -5.0, -5.0, 0.0], [-5.0, 0.0, 0.0, -5.0], [5.0, -5.0, 0.0, 0.0], [-5.0, 5.0, 0.0, 0.0]]) # Similarly to change w -> N_params.w = (4x4) array print(N_params.w) ############################# Exercise 3A ###################### N_params.w = np.transpose( np.asarray([[0, -1, 1, -1], [-1, 0, -1, 1], [-1, 0, 0, 0], [0, -1, 0, 0]])) * 5 print(N_params.w, N_params.D, N_params.tau, N_params.b, N_params.exp) # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system sys.add_neural_system( neural_network) # Add the neural network to the system ##### Time ##### t_max = 2. # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([[-0.5, 0], [-0.25, -0.25], [0., 0.], [0.5, 0]]) # Pendulum initial condition for i in x0_P: # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-1.5, 1, 2.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((i, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # sim.add_external_inputs_to_network(np.ones((len(time), 4))) # wave_h1 = np.sin(time*3)*2 #makes a sinusoidal wave from 'time' # wave_h2 = np.sin(time*3 + np.pi)*1 #makes a sinusoidal wave from 'time' # # wave_h1[wave_h1<0] = 0 #formality of passing negative values to zero # wave_h2[wave_h2<0] = 0 #formality of passing negative values to zero # # act1 = wave_h1.reshape(len(time), 1) #makes a vertical array like act1 # act2 = wave_h2.reshape(len(time), 1) #makes a vertical array like act1 # column = np.ones((len(time), 1)) # ext_in = np.hstack((act1, column, act2, column)) # sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state sim.sys.pendulum_sys.parameters.PERTURBATION = False # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results: Position(phase) vs time plt.figure('Pendulum Phase') plt.title('Pendulum Phase') plt.plot(res[:, 0], res[:, 1]) #to plot pendulum Position (phase) # plt.plot(res[:, 0], time) #to plot position # plt.plot(res[:, 0], res[:, -5:-1]) # to Plot neurons' states plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.grid() # Plotting the results: Velocity vs Position (phase) plt.figure('Pendulum Vel v.s. Phase') plt.title('Pendulum Vel v.s. Phase') plt.plot(res[:, 1], res[:, 2]) #to plot Velocity vs Position (phase) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Velocity vs time plt.figure('Pendulum Velocity') plt.title('Pendulum Velocity') plt.plot(res[:, 0], res[:, 2]) #to plot Velocity vs Position plt.xlabel('time [s]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Output of the network plt.figure('Network output') plt.title('Network output') plt.plot(res[:, 0], res[:, -1], label='neuron1') #to plot Velocity vs Position plt.plot(res[:, 0], res[:, -2], label='neuron2') plt.plot(res[:, 0], res[:, -3], label='neuron3') plt.plot(res[:, 0], res[:, -4], label='neuron4') plt.xlabel('time [s]') plt.ylabel('Stimulation ') plt.legend(loc='upper right') plt.grid() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
@property def mass(self): """Get the value of mass in the mass system """ return self.parameters["mass"] @mass.setter def mass(self, value): """ Keyword Arguments: value -- Set the value of mass""" if value <= 0.00001: pylog.error( "Mass you are trying to set is too low!. Setting to 1.") value = 1.0 self.parameters["mass"] = value def showParameters(self): return self.msg(self.parameters, self.units) if __name__ == '__main__': P = PendulumParameters(g=9.81, L=1.) pylog.debug(P.showParameters()) M = MuscleParameters() pylog.debug(M.showParameters()) Mass = MassParameters() pylog.debug(Mass.showParameters())
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters # Similarly to change w -> N_params.w = (4x4) array # From lecture 4, slide 85 -> Generate oscillations !! N_params.D = 2. N_params.tau = [0.02,0.02,0.1,0.1] N_params.b = [3.0,3.0,-3.0,-3.0] N_params.w = [[0,-5,-5,0], # 1 <- 2 [-5,0,0,-5], [5,-5,0,-5], [-5,5,0,0]] # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) #ext_in = np.ones((len(time), 4)) #ext_in[:,2] = 0.2 #ext_in[:,3] = 0.2 #sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 #res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the phase fig = plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumPhase.png') # Plotting the neuronal activation # Access the neurons outputs: # [t] theta theta. A1 lCE1 A2 lCE2 m1 m2 m3 m4 fig = plt.figure('Neuron output') plt.title('Membrane potentials') plt.plot(res[:, 0], res[:, 7],label='m1') plt.plot(res[:, 0], res[:, 8],label='m2') plt.plot(res[:, 0], res[:, 9],label='m3') plt.plot(res[:, 0], res[:, 10],label='m4') plt.xlabel('Time [s]') plt.ylabel('Potential') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/MembranePotentials.png') if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation( res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate() # 3.b ext_in = np.ones((len(time), 4))*0.0 plotExternalDrive(sys,x0,ext_in,typ='low') ext_in = np.ones((len(time), 4)) plotExternalDrive(sys,x0,ext_in,typ='high') ext_in = np.ones((len(time), 4)) ext_in[:,0] *= 0.1 ext_in[:,1] *= 0.1 plotExternalDrive(sys,x0,ext_in,typ='asymmetric')
def exercise1(clargs): """ Exercise 1 """ # Setup pylog.info("Running exercise 1") # Setup time_max = 5 # Maximum simulation time time_step = 0.2 # Time step for ODE integration in simulation x0 = np.array([1.]) # Initial state # Integration methods (Exercises 1.a - 1.d) pylog.info("Running function integration using different methods") # Example pylog.debug("Running example plot for integration (remove)") example = example_integrate(x0, time_max, time_step) example.plot_state(figure="Example", label="Example", marker=".") # Analytical (1.a) time = np.arange(0, time_max, time_step) # Time vector x_a = analytic_function(time) analytical = Result(x_a, time) if x_a is not None else None # Euler (1.b) euler = euler_integrate(function, x0, time_max, time_step) display_error(euler.state - analytical.state, "Euler") # ODE (1.c) ode = ode_integrate(function, x0, time_max, time_step) display_error(ode.state - analytical.state, "LSODA") # ODE Runge-Kutta (1.c) ode_rk = ode_integrate_rk(function_rk, x0, time_max, time_step) display_error(ode_rk.state - analytical.state, "Runge-Kutta") # Euler with lower time step (1.d) euler_time_step = 0.05 euler_ts_small = (euler_integrate(function, x0, time_max, euler_time_step) if euler_time_step is not None else None) # New analytical time step time_step_small = 0.05 time_small = np.arange(0, time_max, time_step_small) # Time vector x_a_small = analytic_function(time_small) analytical_small = Result(x_a_small, time_small) if x_a_small is not None else None display_error(euler_ts_small.state - analytical_small.state, "Euler small") # Plot integration results plot_integration_methods(analytical=analytical_small, euler=euler, ode=ode, ode_rk=ode_rk, euler_ts_small=euler_ts_small, euler_timestep=time_step_small, euler_timestep_small=euler_time_step) # Error analysis (Exercise 1.e) pylog.warning("Error analysis must be implemented") dt_list = np.logspace(-3, 0, 20) # List of timesteps (powers of 10) integration_errors = [["L1", 1], ["L2", 2], ["Linf", 0]] methods = [["Euler", euler_integrate, function], ["Lsoda", ode_integrate, function], ["RK", ode_integrate_rk, function_rk]] for error_name, error_index in integration_errors: for name, integration_function, f in methods: compute_error(f, analytic_function, integration_function, x0, dt_list, time_max=time_max, figure=error_name, label=name, n=error_index) # Show plots of all results if not clargs.save_figures: plt.show() return
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ############Exercise 2A ############################################### # rigth after creating and attaching both muscles: print(m1_origin, m2_origin) m1a1 = abs(abs(m1_origin[0]) - abs(m1_origin[1])) m1a2 = abs(abs(m1_insertion[0]) - abs(m1_insertion[1])) m1a1 = m1_origin[0] - m1_origin[1] m1a2 = m1_insertion[0] - m1_insertion[1] m2a1 = m2_origin[0] - m2_origin[1] m2a2 = m2_insertion[0] - m2_insertion[1] print(m1a1, m1a2) fromtheta(M1, m1a1, m1a2, 1) fromtheta(M2, m2a1, m2a2, 2) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 5 # Maximum simulation time time = np.arange(0., t_max, 0.002) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 4, 0.]) # Pendulum initial condition x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent wave_h1 = np.sin(time * 3) * 1 #makes a sinusoidal wave from 'time' wave_h2 = np.sin(time * 3 + np.pi) * 1 #makes a sinusoidal wave from 'time' wave_h1[wave_h1 < 0] = 0 #formality of passing negative values to zero wave_h2[wave_h2 < 0] = 0 #formality of passing negative values to zero act1 = wave_h1.reshape(len(time), 1) #makes a vertical array like act1 act2 = wave_h2.reshape(len(time), 1) #makes a vertical array like act1 # Plotting the waveforms plt.figure('Muscle Activations') plt.title('Muscle Activation Functions') plt.plot(time, wave_h1, label='Muscle 1') plt.plot(time, wave_h2, label='Muscle 2') plt.xlabel('Time [s]') plt.ylabel('Muscle Excitation') plt.legend(loc='upper right') plt.grid() activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum_phase') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Amplidute stimulation plt.figure('Amplidute stimulation') plt.title('Amplidute stimulation') plt.plot(time, res[:, 1], label='Stimul. 0.2') plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.legend(loc='upper left') plt.grid() # Plotting the results: frequency stimulation plt.figure('Frequency stimulation') plt.title('Frequency stimulation') plt.plot(time, res[:, 1], label='w: 3 rad/s') plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.legend(loc='upper left') plt.grid() poincare_crossings(res, -2, 1, "Pendulum") # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 3 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time simsin = SystemSimulation(sys) # Instantiate Simulation object #simsquare = SystemSimulation(sys) # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent label_test = [] """" definition of different kinds of activation for each muscle. Amplitude1 and amplitude2 allows to play with the amplitude of activation on each muscle (RMS value for the sinus activation) act1 and act2 activates the muscle all the time. actsin activates with sin(wi) if sin(wi)>0 (no negative activation). The 2 muscles are in opposition of phase. actsquare does the same with a square signal. """ amplitude1 = 1. amplitude2 = 1. #declaration of the activations act1 = np.ones((len(time), 1)) * amplitude1 act2 = np.ones((len(time), 1)) * amplitude2 actsin = np.ones((len(time), 1)) actsin2 = np.ones((len(time), 1)) actsquare = np.ones((len(time), 1)) actsquare2 = np.ones((len(time), 1)) wlist = [0.1, 0.05, 0.01, 0.005] k = 0 for w in wlist: #generation of the signals at pulsation w for i in range(len(actsin)): if math.sin(w * i) <= 0: actsin[i] = 0 actsin2[i] = abs(amplitude2 * math.sqrt(2) * math.sin(w * i)) else: actsin[i] = abs(amplitude1 * math.sqrt(2) * math.sin(w * i)) actsin2[i] = 0 for i in range(len(actsquare)): if i % (2 * math.pi / w) <= math.pi / w: actsquare[i] = amplitude1 actsquare2[i] = 0 else: actsquare[i] = 0 actsquare2[i] = amplitude2 """ uncomment this to plot the activation signals""" # #Plot of the activation through time # plt.figure # plt.plot(actsquare) # plt.plot(actsin) # plt.title("Activations wave forms used") # plt.xlabel("Time (s)") # plt.ylabel("Activation amplitude (.)") """ put as parameters the activation you want (act1/2, actsin1/2 or actsquare1/2)""" activationssin = np.hstack((actsquare, actsquare2)) #activationssquare = np.hstack((actsquare, actsquare2)) # Method to add the muscle activations to the simulation simsin.add_muscle_activations(activationssin) #simsquare.add_muscle_activations(activationssquare) # Simulate the system for given time simsin.initalize_system(x0, time) # Initialize the system state #simsquare.initalize_system(x0, time) #: If you would like to perturb the pedulum model then you could do # so by """perturbation of the signal""" simsin.sys.pendulum_sys.parameters.PERTURBATION = False #simsquare.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time simsin.simulate() #simsquare.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 ressin = simsin.results() #ressquare = simsquare.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = simsin.sys.muscle_sys.Muscle1.results muscle2_results = simsin.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(ressin[:, 1], ressin[:, 2]) label_test.append('w=' + str(wlist[k])) k = k + 1 #plt.plot(ressquare[:, 1], ressquare[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.legend(label_test) plt.grid() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulationsin = SystemAnimation(ressin, pendulum, muscles) #simulationsquare = SystemAnimation(ressquare, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulationsin.animate() #simulationsquare.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ #----------------# Exercise 2a #----------------# theta = np.linspace(-np.pi/4, np.pi/4,num=50) h1=[] a1= 1 a2a1=np.linspace(0.5,2,num=4) plt.figure('2a_Muscle_Length_vs_Theta') plt.title('Muscle Length vs Theta') plt.xlabel('Position [rad]') plt.ylabel('Muscle length [m]') plt.grid() plt.figure('2a_Moment_arm_vs_Theta') plt.title('Moment arm vs Theta') plt.xlabel('Position [rad]') plt.ylabel('Moment arm [m]') plt.grid() for i in range(0,len(a2a1)): a2=a2a1[i]*a1 L1=(np.sqrt(a1**2+a2**2+2*a1*a2*np.sin(theta))) h1=((a1*a2*np.cos(theta))/L1) plt.figure('2a_Muscle_Length_vs_Theta') plt.plot(theta,L1,label=('a2/a1 = %.1f' %(a2a1[i]))) plt.figure('2a_Moment_arm_vs_Theta') plt.plot(theta,h1,label=('a2/a1= %.1f' %(a2a1[i]))) plt.figure('2a_Muscle_Length_vs_Theta') plt.legend() plt.figure('2a_Moment_arm_vs_Theta') plt.legend() #----------------# Exercise 2a finished #----------------# # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi/4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent activationFunction = ['sin','square'] for idx, act in enumerate(activationFunction): #----------------# Exercise 2c #----------------# w = np.linspace(0.2,4,4) # w = 0.5 # a = np.linspace(0.1,1,4) plt.figure('2c_LimitCycle_'+str(act)) # plt.figure('2c_LimitCycle_Amplitude_'+str(act)) plt.title('Pendulum Phase') plt.figure('2c_Amplitude_'+str(act)) # plt.figure('2c_Amplitude_Amplitude_'+str(act)) plt.title('Amplitude vs. Frequency') # plt.title('Amplitude vs. Stimulation Amplitude') for i in range(0,len(w)): # for i in range(0,len(a)): # plt.figure('2c_LimitCycle_Amplitude_'+str(act)) plt.figure('2c_LimitCycle_'+str(act)) print('Running simulation %d out of %d'%(i+1,len(w))) # print('Running simulation %d out of %d'%(i+1,len(a))) if act == 'sin': sinAct = np.sin(2*np.pi*w[i]*time).reshape(len(time),1) # sinAct = a[i]*np.sin(2*np.pi*w*time).reshape(len(time),1) else: sinAct = signal.square(2*np.pi*w[i]*time).reshape(len(time),1) # sinAct = a[i]*signal.square(2*np.pi*w*time).reshape(len(time),1) sinFlex = sinAct.copy() sinFlex[sinAct<0] = 0 sinExt = sinAct.copy() sinExt[sinAct>0] = 0 sinExt = abs(sinExt) sinAct1 = np.ones((len(time),1)) sinAct2 = np.ones((len(time),1)) sinAct1 = sinFlex sinAct2 = sinExt sinActivations = np.hstack((sinAct1,sinAct2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(sinActivations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.plot(res[:, 1], res[:, 2], label='Act. $%s(2\cdot{}\\pi\cdot{}%.1f\cdot{}t)$'%(act,w[i])) # plt.plot(res[:, 1], res[:, 2], label='Act. $%.1f\cdot{}%s(2\cdot{}\\pi\cdot{}0.5\cdot{}t)$'%(a[i],act)) plt.figure('2c_Amplitude_'+str(act)) plt.plot(time,res[:, 1], label='Frequency = %.1f'%(w[i])) # plt.figure('2c_Amplitude_Amplitude_'+str(act)) # plt.plot(time,res[:, 1], label='Amplitude = %.1f'%(a[i])) plt.figure('2c_LimitCycle_'+str(act)) # plt.figure('2c_LimitCycle_Amplitude_'+str(act)) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() plt.figure('2c_Amplitude_'+str(act)) # plt.figure('2c_Amplitude_Amplitude_'+str(act)) plt.xlabel('Time [s]') plt.ylabel('Amplitude [rad]') plt.grid() plt.legend() #----------------# Exercise 2c finished #----------------# #----------------# Exercise 2b #----------------# w = 0.5 if act == 'sin': sinAct = np.sin(2*np.pi*w*time).reshape(len(time),1) else: sinAct = signal.square(2*np.pi*w*time).reshape(len(time),1) sinFlex = sinAct.copy() sinFlex[sinAct<0] = 0 sinExt = sinAct.copy() sinExt[sinAct>0] = 0 sinExt = abs(sinExt) sinAct1 = np.ones((len(time),1)) sinAct2 = np.ones((len(time),1)) sinAct1 = sinFlex sinAct2 = sinExt activations = np.hstack((sinAct1,sinAct2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('2b_LimitCycle_'+str(act)) plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2], label='Act. $%s(2\cdot{}\\pi\cdot{}%.1f\cdot{}t)$, Pert. ($t=3.2,\\theta = 1, \dot{\\theta} = -0.5$)' %(act,w)) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() plt.figure('2b_ActivationFunction_'+str(act)) plt.title('Activation Function') plt.plot(time, sinAct1, label='Flexor') plt.plot(time, sinAct2, label='Extensor') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.grid() plt.legend() #----------------# Exercise 2b finished #----------------# # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) #plt.close(fig) plt.show
def save_figures(**kwargs): """Save_figures""" figures = [str(figure) for figure in plt.get_figlabels()] pylog.debug("Other files:\n - " + "\n - ".join(figures)) for name in figures: save_figure(name, extensions=kwargs.pop("extensions", ["pdf"]))
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 6, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent sin_freq = 1 #hz ampl_sin = 1 phase_difference_1_2 = np.pi act1 = np.ones((len(time), 1)) act2 = np.ones((len(time), 1)) for i in range(len(time)): act1[i, 0] = ampl_sin * (1 + np.sin(2 * np.pi * sin_freq * time[i])) act2[i, 0] = ampl_sin * ( 1 + np.sin(2 * np.pi * sin_freq * time[i] + phase_difference_1_2)) activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Activations') plt.title('Sine wave activations for both muscles') plt.plot(time, act1) plt.plot(time, act2) plt.legend(("activation muscle1", "activation muscle2")) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def plotExternalDrive(sys,x0,ext_in,typ='low'): ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) #ext_in = np.ones((len(time), 4)) #ext_in[:,2] = 0.2 #ext_in[:,3] = 0.2 sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 #res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the phase fig = plt.figure('Pendulum Phase, {} drive'.format(typ)) plt.title('Pendulum Phase, {} drive'.format(typ)) plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumPhase{}Drive.png'.format(typ)) # Plotting the state evolution fig = plt.figure('Pendulum State, {} drive'.format(typ)) plt.title('Pendulum State, {} drive'.format(typ)) plt.plot(res[:, 0], res[:, 1], label='position [rad]') plt.plot(res[:, 0], res[:, 2], label='speed [rad/s]') plt.xlabel('Time [s]') plt.ylabel('') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumState{}drive.png'.format(typ)) # Plotting the neuronal activation # Access the neurons outputs: # [t] theta theta. A1 lCE1 A2 lCE2 m1 m2 m3 m4 fig = plt.figure('Neuron output, {} drive'.format(typ)) plt.title('Membrane potentials') plt.plot(res[:, 0], res[:, 7],label='m1') plt.plot(res[:, 0], res[:, 8],label='m2') plt.plot(res[:, 0], res[:, 9],label='m3') plt.plot(res[:, 0], res[:, 10],label='m4') plt.xlabel('Time [s]') plt.ylabel('Potential') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/MembranePotentials{}drive.png'.format(typ)) if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation( res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.D = 2. # To change a network parameter # Similarly to change w -> N_params.w = (4x4) array # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) # sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 0], res[:, :2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
self.parameters['b1'] = value pylog.info( 'Changed damping constant for damper 1 to {} [N-s/rad]'.format( self.parameters['b1'])) @property def b2(self): """ Get the value of damping constant for damper 2. [N-s/rad] Default is 0.5""" return self.parameters['b2'] @b2.setter def b2(self, value): """ Keyword Arguments: value -- Set the value of damping constant for damper 2. [N-s/rad] """ if (value < 0.0): pylog.warning('Setting bad damping values. Should be positive!') else: self.parameters['b2'] = value pylog.info( 'Changed damping constant for damper 2 to {} [N-s/rad]'.format( self.parameters['b2'])) def showParameters(self): return self.msg(self.parameters, self.units) if __name__ == '__main__': P = PendulumParameters(g=9.81, L=1.) pylog.debug(P.showParameters())