Пример #1
0
def main(argv):
    experiment = Experiment()

    parser = ArgumentParser(argv[0], description=__doc__)
    parser.add_argument('--model', '-m', type=str, required=True)
    parser.add_argument('--data',
                        '-d',
                        type=str,
                        default='data/deadleaves_train.mat')
    parser.add_argument('--width', '-W', type=int, default=512)
    parser.add_argument('--height', '-H', type=int, default=512)
    parser.add_argument('--crop', '-C', type=int, default=16)
    parser.add_argument('--log', '-L', type=int, default=0)
    parser.add_argument('--output',
                        '-o',
                        type=str,
                        default='results/sample.png')

    args = parser.parse_args(argv[1:])

    images = loadmat(args.data)['data']
    vmin = percentile(images, 0.02)
    vmax = percentile(images, 98.)

    experiment = Experiment(args.model)

    img = empty([args.height + args.crop, args.width + 2 * args.crop])
    img.ravel()[:] = images.ravel()[random_select(img.size, images.size)]
    img = sample_image(img,
                       experiment['model'],
                       experiment['input_mask'],
                       experiment['output_mask'],
                       experiment['preconditioner'],
                       min_value=vmin,
                       max_value=vmax)

    if args.log:
        # linearize and gamma-correct
        img = power(exp(img), .45)
        vmin = power(exp(vmin), .45)
        vmax = power(exp(vmax), .45)

    imwrite(
        args.output,
        imformat(img[args.crop:, args.crop:-args.crop],
                 vmin=vmin,
                 vmax=vmax,
                 symmetric=False))
    savez('sample.npz', sample=img)

    return 0
Пример #2
0
def main(argv):
	experiment = Experiment()

	parser = ArgumentParser(argv[0], description=__doc__)
	parser.add_argument('--model',  '-m', type=str, required=True)
	parser.add_argument('--data',   '-d', type=str, default='data/deadleaves_train.mat')
	parser.add_argument('--width',  '-W', type=int, default=512)
	parser.add_argument('--height', '-H', type=int, default=512)
	parser.add_argument('--crop',   '-C', type=int, default=16)
	parser.add_argument('--log',    '-L', type=int, default=0)
	parser.add_argument('--output', '-o', type=str, default='results/sample.png')

	args = parser.parse_args(argv[1:])

	images = loadmat(args.data)['data']
	vmin = percentile(images, 0.02)
	vmax = percentile(images, 98.)

	experiment = Experiment(args.model)

	img = empty([args.height + args.crop, args.width + 2 * args.crop])
	img.ravel()[:] = images.ravel()[random_select(img.size, images.size)]
	img = sample_image(
		img,
		experiment['model'],
		experiment['input_mask'],
		experiment['output_mask'],
		experiment['preconditioner'],
		min_value=vmin,
		max_value=vmax)

	if args.log:
		# linearize and gamma-correct
		img = power(exp(img), .45)
		vmin = power(exp(vmin), .45)
		vmax = power(exp(vmax), .45)

	imwrite(args.output, imformat(img[args.crop:, args.crop:-args.crop], vmin=vmin, vmax=vmax, symmetric=False))
	savez('sample.npz', sample=img)

	return 0
Пример #3
0
def main(argv):
    parser = ArgumentParser(argv[0], description=__doc__)
    parser.add_argument('model', type=str)
    parser.add_argument('--num_rows', '-r', type=int, default=256)
    parser.add_argument('--num_cols', '-c', type=int, default=256)
    parser.add_argument('--data', '-d', type=str, default=None)
    parser.add_argument('--log', '-L', type=int, default=0)
    parser.add_argument('--output', '-o', type=str, default='sample.png')
    parser.add_argument('--margin', '-M', type=int, default=8)

    args = parser.parse_args(argv[1:])

    model = Experiment(args.model)['model']

    if isinstance(model, PatchRIDE):
        img = model.sample()[0]
        imwrite(args.output, imformat(img, vmin=0, vmax=255, symmetric=False))

    else:
        if args.data is None:
            # initialize image with white noise
            img_init = randn(1, args.num_rows + args.margin * 2, args.num_cols
                             + args.margin * 2, sum(model.num_channels)) / 10.
            img = model.sample(img_init)

            if args.log:
                # linearize and gamma-correct
                img = power(exp(img), .45)

            if args.margin > 0:
                img = img[:, args.margin:-args.margin,
                          args.margin:-args.margin]

            if img.shape[-1] == 3:
                img[img > 255.] = 255.
                img[img < 0.] = 0.
                imwrite(args.output, asarray(img[0, :, :, :], dtype='uint8'))
            else:
                imwrite(args.output, imformat(img[0, :, :, 0], perc=99))

        else:
            if args.data.lower()[-4:] in ['.gif', '.png', '.jpg', 'jpeg']:
                data = imread(args.data)[None]
                vmin, vmax = 0, 255
            else:
                data = loadmat(args.data)['data']
                vmin = percentile(data, 0.02)
                vmax = percentile(data, 98.)

            if data.ndim < 4:
                data = data[:, :, :, None]

            if isinstance(model, MultiscaleRIDE):
                num_channels = 1
            elif isinstance(model, ColorRIDE):
                num_channels = 3
            else:
                num_channels = model.num_channels

            num_pixels = (args.num_rows + args.margin) * (args.num_cols +
                                                          args.margin * 2)

            # initialize image with white noise (but correct marginal distribution)
            img_init = []
            for c in range(num_channels):
                indices = randint(data.size // num_channels, size=num_pixels)
                img_init.append(
                    asarray(data[:, :, :, c].ravel()[indices],
                            dtype=float).reshape(
                                1, args.num_rows + args.margin,
                                args.num_cols + args.margin * 2, 1))
            img_init = concatenate(img_init, 3)

            img_init[img_init < vmin] = vmin
            img_init[img_init > vmax] = vmax

            if isinstance(model, MultiscaleRIDE) or isinstance(
                    model, ColorRIDE):
                data = model._transform(data)
                idx = randint(data.shape[0])
                img = model.sample(
                    img_init,
                    #				min_values=data[idx].min(1).min(0),
                    #				max_values=data[idx].max(1).max(0))
                    min_values=data.min(2).min(1).min(0),
                    max_values=data.max(2).max(1).max(0))
            else:
                #			img_init[:] = img_init.mean()
                img = model.sample(img_init,
                                   min_values=percentile(data, .1),
                                   max_values=percentile(data, 99.8))
    #				min_values=percentile(data, 1.),
    #				max_values=percentile(data, 96.))

            if args.log:
                # linearize and gamma-correct
                img = power(exp(img), .45)
                vmin = power(exp(vmin), .45)
                vmax = power(exp(vmax), .45)

            try:
                savez(args.output.split('.')[0] + '.npz', sample=img)
            except:
                pass

            if args.margin > 0:
                img = img[:, args.margin:, args.margin:-args.margin]

            if num_channels == 1:
                imwrite(
                    args.output,
                    imformat(img[0, :, :, 0],
                             vmin=vmin,
                             vmax=vmax,
                             symmetric=False))
            else:
                imwrite(
                    args.output,
                    imformat(img[0], vmin=vmin, vmax=vmax, symmetric=False))

    return 0
Пример #4
0
def main(argv):
	parser = ArgumentParser(argv[0], description=__doc__)
	parser.add_argument('model',            type=str)
	parser.add_argument('--num_rows', '-r', type=int, default=256)
	parser.add_argument('--num_cols', '-c', type=int, default=256)
	parser.add_argument('--data',     '-d', type=str, default=None)
	parser.add_argument('--log',      '-L', type=int, default=0)
	parser.add_argument('--output',   '-o', type=str, default='sample.png')
	parser.add_argument('--margin',   '-M', type=int, default=8)

	args = parser.parse_args(argv[1:])

	model = Experiment(args.model)['model']

	if isinstance(model, PatchRIDE):
		img = model.sample()[0]
		imwrite(args.output, imformat(img, vmin=0, vmax=255, symmetric=False))

	else:
		if args.data is None:
			# initialize image with white noise
			img_init = randn(1,
				args.num_rows + args.margin * 2,
				args.num_cols + args.margin * 2,
				sum(model.num_channels)) / 10.
			img = model.sample(img_init)

			if args.log:
				# linearize and gamma-correct
				img = power(exp(img), .45)

			if args.margin > 0:
				img = img[:, args.margin:-args.margin, args.margin:-args.margin]

			if img.shape[-1] == 3:
				img[img > 255.] = 255.
				img[img < 0.] = 0.
				imwrite(args.output, asarray(img[0, :, :, :], dtype='uint8'))
			else:
				imwrite(args.output, imformat(img[0, :, :, 0], perc=99))

		else:
			if args.data.lower()[-4:] in ['.gif', '.png', '.jpg', 'jpeg']:
				data = imread(args.data)[None]
				vmin, vmax = 0, 255
			else:
				data = loadmat(args.data)['data']
				vmin = percentile(data, 0.02)
				vmax = percentile(data, 98.)

			if data.ndim < 4:
				data = data[:, :, :, None]

			if isinstance(model, MultiscaleRIDE):
				num_channels = 1
			elif isinstance(model, ColorRIDE):
				num_channels = 3
			else:
				num_channels = model.num_channels

			num_pixels = (args.num_rows + args.margin) * (args.num_cols + args.margin * 2)

			# initialize image with white noise (but correct marginal distribution)
			img_init = []
			for c in range(num_channels):
				indices = randint(data.size // num_channels, size=num_pixels)
				img_init.append(
					asarray(data[:, :, :, c].ravel()[indices], dtype=float).reshape(
					1,
					args.num_rows + args.margin,
					args.num_cols + args.margin * 2, 1))
			img_init = concatenate(img_init, 3)

			img_init[img_init < vmin] = vmin
			img_init[img_init > vmax] = vmax

			if isinstance(model, MultiscaleRIDE) or isinstance(model, ColorRIDE):
				data = model._transform(data)
				idx = randint(data.shape[0])
				img = model.sample(img_init,
	#				min_values=data[idx].min(1).min(0),
	#				max_values=data[idx].max(1).max(0))
					min_values=data.min(2).min(1).min(0),
					max_values=data.max(2).max(1).max(0))
			else:
	#			img_init[:] = img_init.mean()
				img = model.sample(img_init,
					min_values=percentile(data, .1),
					max_values=percentile(data, 99.8))
	#				min_values=percentile(data, 1.),
	#				max_values=percentile(data, 96.))

			if args.log:
				# linearize and gamma-correct
				img = power(exp(img), .45)
				vmin = power(exp(vmin), .45)
				vmax = power(exp(vmax), .45)

			try:
				savez(args.output.split('.')[0] + '.npz', sample=img)
			except:
				pass

			if args.margin > 0:
				img = img[:, args.margin:, args.margin:-args.margin]

			if num_channels == 1:
				imwrite(args.output,
					imformat(img[0, :, :, 0], vmin=vmin, vmax=vmax, symmetric=False))
			else:
				imwrite(args.output,
					imformat(img[0], vmin=vmin, vmax=vmax, symmetric=False))

	return 0
Пример #5
0
def main(argv):
	parser = ArgumentParser(argv[0], description=__doc__)
	parser.add_argument('image',                    type=str)
	parser.add_argument('model',                    type=str)
	parser.add_argument('--init',             '-I', type=str, default=None)
	parser.add_argument('--index',            '-x', type=int, default=0,
		help='Determines which image is used when whole dataset is given instead of image.')
	parser.add_argument('--fill_region',      '-f', type=int, default=71)
	parser.add_argument('--outer_patch_size', '-p', type=int, default=19)
	parser.add_argument('--inner_patch_size', '-i', type=int, default=5)
	parser.add_argument('--stride',           '-s', type=int, default=3)
	parser.add_argument('--candidates',       '-C', type=int, default=5,
		help='The best initialization is taken out of this many initializations.')
	parser.add_argument('--num_epochs',       '-e', type=int, default=1000)
	parser.add_argument('--method',           '-m', type=str, default='SAMPLE', choices=['SAMPLE', 'MAP'])
	parser.add_argument('--step_width',       '-l', type=float, default=100.)
	parser.add_argument('--output',           '-o', type=str, default='results/inpainting/')
	parser.add_argument('--flip',             '-F', type=int, default=0,
		help='If > 0, assume horizontal symmetry. If > 1, assume vertical symmetry.')

	args = parser.parse_args(argv[1:])


	### DATA

	# load image
	if args.image.lower()[-4:] in ['.gif', '.png', '.jpg', 'jpeg']:
		image = imread(args.image)[None]
		vmin, vmax = 0, 255
	else:
		image = loadmat(args.image)['data'][[args.index]]
		vmin, vmax = image.min(), image.max()
	if image.ndim < 4:
		image = image[:, :, :, None]

	image = asarray(image, dtype=float)

	imwrite(os.path.join(args.output, 'original.png'),
		imformat(image[0, :, :, 0], vmin=vmin, vmax=vmax, symmetric=False))

	# remove center portion
	i_start = (image.shape[1] - args.fill_region) // 2
	j_start = (image.shape[2] - args.fill_region) // 2
	image[0,
		i_start:i_start + args.fill_region,
		j_start:j_start + args.fill_region, 0] = vmin + rand(args.fill_region, args.fill_region) * (vmax - vmin)

	imwrite(os.path.join(args.output, 'start.png'),
		imformat(image[0, :, :, 0], vmin=vmin, vmax=vmax, symmetric=False))


	### MODEL

	# load model
	model = Experiment(args.model)['model']
	model.verbosity = False

	# use different models for sampling and likelihoods because of SLSTM caching
	model_copy = deepcopy(model)

	# create mask indicating pixels to replace
	M = args.outer_patch_size
	N = args.inner_patch_size
	m = (M - N) // 2
	n = M - N - m
	patch_mask = zeros([M, M], dtype=bool)
	patch_mask[m:-n, m:-n] = True

	if args.init is None:
		candidates = []
		logliks = []

		for _ in range(args.candidates):
			# replace missing pixels by ancestral sampling
			patch = image[:,
				i_start - M:i_start + args.fill_region,
				j_start - M:j_start + args.fill_region + M]
			sample_mask = zeros([patch.shape[1], patch.shape[2]], dtype=bool)
			sample_mask[M:, M:-M] = True
			image[:,
				i_start - M:i_start + args.fill_region,
				j_start - M:j_start + args.fill_region + M] = model.sample(patch, mask=sample_mask,
					min_values=vmin, max_values=vmax)

			candidates.append(image.copy())
			logliks.append(model.loglikelihood(image).sum())

		image = candidates[argmax(logliks)]

		imwrite(os.path.join(args.output, 'fillin.0.png'),
			imformat(image[0, :, :, 0], vmin=vmin, vmax=vmax, symmetric=False))

		start_epoch = 0

	else:
		init = load(args.init)
		image = init['image']
		start_epoch = init['epoch']


	### INPAINTING

	try:
		for epoch in range(start_epoch, args.num_epochs):
			print epoch
			
			h_flipped = False
			if args.flip > 0 and rand() < .5:
				print 'Horizontal flip.'
				# flip image horizontally
				image = image[:, :, ::-1]
				j_start = image.shape[2] - j_start - args.fill_region
				h_flipped = True

			v_flipped = False
			if args.flip > 0 and rand() < .5:
				print 'Vertical flip.'
				# flip image vertically
				image = image[:, ::-1, :]
				i_start = image.shape[1] - i_start - args.fill_region
				v_flipped = True

			for i in range(i_start - m, i_start - m + args.fill_region - N + 1, args.stride):
				for j in range(j_start - m, j_start - m + args.fill_region - N + 1, args.stride):
					patch = image[:, i:i + M, j:j + M]

					if args.method == 'SAMPLE':
						# proposal
						patch_pr, logq_pr = model.sample(patch.copy(), mask=patch_mask,
							min_values=vmin, max_values=vmax, return_loglik=True)

						# conditional log-density
						logq = model_copy._logq(patch, patch_mask)

						# joint log-densities
						logp = model_copy.loglikelihood(patch).sum()
						logp_pr = model_copy.loglikelihood(patch_pr).sum()

						if rand() < exp(logp_pr - logp - logq_pr + logq):
							# accept proposal
							patch[:] = patch_pr

					else:
						# gradient step
						grad = model.gradient(patch)[1]
						patch[:, patch_mask] += grad[:, patch_mask] * args.step_width

			# flip back
			if h_flipped:
				image = image[:, :, ::-1]
				j_start = image.shape[2] - j_start - args.fill_region
			if v_flipped:
				image = image[:, ::-1, :]
				i_start = image.shape[1] - i_start - args.fill_region

			imwrite(os.path.join(args.output, 'fillin.{0}.png'.format(epoch + 1)),
				imformat(image[0, :, :, 0], vmin=vmin, vmax=vmax, symmetric=False))

	except KeyboardInterrupt:
		pass

	savez(os.path.join(args.output, 'final.npz'), image=image, epoch=epoch)

	return 0