def PerfectMatchingPrinciple(G): """Generates the clauses for the graph perfect matching principle. The principle claims that there is a way to select edges to such that all vertices have exactly one incident edge set to 1. Parameters ---------- G : undirected graph """ cnf=CNF() # Describe the formula name="Perfect Matching Principle" if hasattr(G,'name'): cnf.header=name+" of graph:\n"+G.name+"\n"+cnf.header else: cnf.header=name+".\n"+cnf.header def var_name(u,v): if u<=v: return 'x_{{{0},{1}}}'.format(u,v) else: return 'x_{{{0},{1}}}'.format(v,u) # Each vertex has exactly one edge set to one. for v in enumerate_vertices(G): edge_vars = [var_name(u,v) for u in neighbors(G,v)] cnf.add_equal_to(edge_vars,1) return cnf
def CountingPrinciple(M, p): """Generates the clauses for the counting matching principle. The principle claims that there is a way to partition M in sets of size p each. Arguments: - `M` : size of the domain - `p` : size of each class """ cnf = CNF() # Describe the formula name = "Counting Principle: {0} divided in parts of size {1}.".format(M, p) cnf.header = name + "\n" + cnf.header def var_name(tpl): return "Y_{{" + ",".join("{0}".format(v) for v in tpl) + "}}" # Incidence lists incidence = [[] for _ in range(M)] for tpl in combinations(list(range(M)), p): for i in tpl: incidence[i].append(tpl) # Each element of the domain is in exactly one part. for el in range(M): edge_vars = [var_name(tpl) for tpl in incidence[el]] cnf.add_equal_to(edge_vars, 1) return cnf
def CountingPrinciple(M,p): """Generates the clauses for the counting matching principle. The principle claims that there is a way to partition M in sets of size p each. Arguments: - `M` : size of the domain - `p` : size of each class """ cnf=CNF() # Describe the formula name="Counting Principle: {0} divided in parts of size {1}.".format(M,p) cnf.header=name+"\n"+cnf.header def var_name(tpl): return "Y_{{"+",".join("{0}".format(v) for v in tpl)+"}}" # Incidence lists incidence=[[] for _ in range(M)] for tpl in combinations(range(M),p): for i in tpl: incidence[i].append(tpl) # Each element of the domain is in exactly one part. for el in range(M): edge_vars = [var_name(tpl) for tpl in incidence[el]] cnf.add_equal_to(edge_vars,1) return cnf
def TseitinFormula(graph,charges=None): """Build a Tseitin formula based on the input graph. Odd charge is put on the first vertex by default, unless other vertices are is specified in input. Arguments: - `graph`: input graph - `charges': odd or even charge for each vertex """ V=enumerate_vertices(graph) if charges==None: charges=[1]+[0]*(len(V)-1) # odd charge on first vertex else: charges = [bool(c) for c in charges] # map to boolean if len(charges)<len(V): charges=charges+[0]*(len(V)-len(charges)) # pad with even charges # init formula tse=CNF() for e in sorted(graph.edges(),key=sorted): tse.add_variable(edgename(e)) # add constraints for v,c in zip(V,charges): # produce all clauses and save half of them names = [ edgename((u,v)) for u in neighbors(graph,v) ] for cls in parity_constraint(names,c): tse.add_clause(list(cls),strict=True) return tse
def PerfectMatchingPrinciple(graph): """Generates the clauses for the graph perfect matching principle. The principle claims that there is a way to select edges to such that all vertices have exactly one incident edge set to 1. Arguments: - `graph` : undirected graph """ cnf=CNF() # Describe the formula name="Perfect Matching Principle" if hasattr(graph,'name'): cnf.header=name+" of graph:\n"+graph.name+"\n"+cnf.header else: cnf.header=name+".\n"+cnf.header def var_name(u,v): if u<=v: return 'x_{{{0},{1}}}'.format(u,v) else: return 'x_{{{0},{1}}}'.format(v,u) # Each vertex has exactly one edge set to one. for v in graph.nodes(): edge_vars = [var_name(u,v) for u in graph.adj[v]] for cls in equal_to_constraint(edge_vars,1): cnf.add_clause(cls) return cnf
def test_one_eq(self) : opb="""\ * #variable= 5 #constraint= 1 * +1 x1 +1 x2 +1 x3 +1 x4 +1 x5 = 2; """ F=CNF() F.add_equal_to(["a","b","c","d","e"],2) self.assertCnfEqualsOPB(F,opb)
def test_weighted_gt(self) : opb="""\ * #variable= 5 #constraint= 1 * +1 x1 +2 x2 +3 x3 -1 x4 -2 x5 >= 3; """ F=CNF() F.add_linear(1,"a",2,"b",3,"c",-1,"d",-2,"e",">",2) self.assertCnfEqualsOPB(F,opb)
def test_one_eq(self): opb = """\ * #variable= 5 #constraint= 1 * +1 x1 +1 x2 +1 x3 +1 x4 +1 x5 = 2; """ F = CNF() F.add_equal_to(["a", "b", "c", "d", "e"], 2) self.assertCnfEqualsOPB(F, opb)
def test_one_leq(self): opb = """\ * #variable= 5 #constraint= 1 * -1 x1 -1 x2 -1 x3 -1 x4 -1 x5 >= -2; """ F = CNF() F.add_less_or_equal(["a", "b", "c", "d", "e"], 2) self.assertCnfEqualsOPB(F, opb)
def test_one_gt(self): opb = """\ * #variable= 5 #constraint= 1 * +1 x1 +1 x2 +1 x3 +1 x4 +1 x5 >= 3; """ F = CNF() F.add_strictly_greater_than(["a", "b", "c", "d", "e"], 2) self.assertCnfEqualsOPB(F, opb)
def test_one_clause(self): opb = """\ * #variable= 4 #constraint= 1 * +1 x1 +1 x2 -1 x3 -1 x4 >= -1; """ F = CNF() F.add_clause([(True, "a"), (True, "b"), (False, "c"), (False, "d")]) self.assertCnfEqualsOPB(F, opb)
def test_weighted_gt(self): opb = """\ * #variable= 5 #constraint= 1 * +1 x1 +2 x2 +3 x3 -1 x4 -2 x5 >= 3; """ F = CNF() F.add_linear(1, "a", 2, "b", 3, "c", -1, "d", -2, "e", ">", 2) self.assertCnfEqualsOPB(F, opb)
def test_weighted_leq(self): opb = """\ * #variable= 5 #constraint= 1 * -1 x1 -2 x2 -3 x3 +1 x4 +2 x5 >= -2; """ F = CNF() F.add_linear(1, "a", 2, "b", 3, "c", -1, "d", -2, "e", "<=", 2) self.assertCnfEqualsOPB(F, opb)
def test_one_lt(self): opb = """\ * #variable= 5 #constraint= 1 * -1 x1 -1 x2 -1 x3 -1 x4 -1 x5 >= -1; """ F = CNF() F.add_strictly_less_than(["a", "b", "c", "d", "e"], 2) self.assertCnfEqualsOPB(F, opb)
def test_one_lt(self) : opb="""\ * #variable= 5 #constraint= 1 * -1 x1 -1 x2 -1 x3 -1 x4 -1 x5 >= -1; """ F=CNF() F.add_strictly_less_than(["a","b","c","d","e"],2) self.assertCnfEqualsOPB(F,opb)
def test_one_gt(self) : opb="""\ * #variable= 5 #constraint= 1 * +1 x1 +1 x2 +1 x3 +1 x4 +1 x5 >= 3; """ F=CNF() F.add_strictly_greater_than(["a","b","c","d","e"],2) self.assertCnfEqualsOPB(F,opb)
def test_one_leq(self) : opb="""\ * #variable= 5 #constraint= 1 * -1 x1 -1 x2 -1 x3 -1 x4 -1 x5 >= -2; """ F=CNF() F.add_less_or_equal(["a","b","c","d","e"],2) self.assertCnfEqualsOPB(F,opb)
def test_one_clause(self) : opb="""\ * #variable= 4 #constraint= 1 * +1 x1 +1 x2 -1 x3 -1 x4 >= -1; """ F=CNF() F.add_clause([(True,"a"),(True,"b"),(False,"c"),(False,"d")]) self.assertCnfEqualsOPB(F,opb)
def test_weighted_leq(self) : opb="""\ * #variable= 5 #constraint= 1 * -1 x1 -2 x2 -3 x3 +1 x4 +2 x5 >= -2; """ F=CNF() F.add_linear(1,"a",2,"b",3,"c",-1,"d",-2,"e","<=",2) self.assertCnfEqualsOPB(F,opb)
def test_strict_clause_insertion(self): F=CNF() F.mode_strict() F.add_variable("S") F.add_variable("T") F.add_variable("U") self.assertTrue(len(list(F.variables()))==3) F.add_clause([(True,"S"),(False,"T")]) F.add_clause([(True,"T"),(False,"U")]) self.assertRaises(ValueError, F.add_clause, [(True,"T"),(False,"V")])
def test_parity(self) : opb="""\ * #variable= 3 #constraint= 4 * +1 x1 +1 x2 +1 x3 >= 1; +1 x1 -1 x2 -1 x3 >= -1; -1 x1 +1 x2 -1 x3 >= -1; -1 x1 -1 x2 +1 x3 >= -1; """ F=CNF() F.add_parity(["a","b","c"],1) self.assertCnfEqualsOPB(F,opb)
def EvenColoringFormula(G): """Even coloring formula The formula is defined on a graph :math:`G` and claims that it is possible to split the edges of the graph in two parts, so that each vertex has an equal number of incident edges in each part. The formula is defined on graphs where all vertices have even degree. The formula is satisfiable only on those graphs with an even number of vertices in each connected component [1]_. Arguments --------- G : networkx.Graph a simple undirected graph where all vertices have even degree Raises ------ ValueError if the graph in input has a vertex with odd degree Returns ------- CNF object References ---------- .. [1] Locality and Hard SAT-instances, Klas Markstrom Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 221-228 """ F = CNF() F.mode_strict() F.header = "Even coloring formula on graph " + G.name + "\n" + F.header def var_name(u, v): if u <= v: return 'x_{{{0},{1}}}'.format(u, v) else: return 'x_{{{0},{1}}}'.format(v, u) for (u, v) in enumerate_edges(G): F.add_variable(var_name(u, v)) # Defined on both side for v in enumerate_vertices(G): if G.degree(v) % 2 == 1: raise ValueError( "Markstrom formulas requires all vertices to have even degree." ) edge_vars = [var_name(u, v) for u in neighbors(G, v)] # F.add_exactly_half_floor would work the same F.add_exactly_half_ceil(edge_vars) return F
def test_parity(self): opb = """\ * #variable= 3 #constraint= 4 * +1 x1 +1 x2 +1 x3 >= 1; +1 x1 -1 x2 -1 x3 >= -1; -1 x1 +1 x2 -1 x3 >= -1; -1 x1 -1 x2 +1 x3 >= -1; """ F = CNF() F.add_parity(["a", "b", "c"], 1) self.assertCnfEqualsOPB(F, opb)
def build_cnf(args): """Build an disjunction Arguments: - `args`: command line options """ clause = [ (True,"x_{}".format(i)) for i in range(args.P) ] + \ [ (False,"y_{}".format(i)) for i in range(args.N) ] orcnf = CNF([clause]) orcnf.header = "Clause with {} positive and {} negative literals\n\n".format(args.P,args.N) + \ orcnf.header return orcnf
def build_cnf(args): """Build a conjunction Arguments: - `args`: command line options """ clauses = [ [(True,"x_{}".format(i))] for i in range(args.P) ] + \ [ [(False,"y_{}".format(i))] for i in range(args.N) ] andcnf = CNF(clauses) andcnf.header = "Singleton clauses: {} positive and {} negative\n\n""".format(args.P,args.N) +\ andcnf.header return andcnf
def getFormula(self): self.f = CNF() self.f._header += headerInfo self.addAllVariables() result = fe.And() for i in range(self.numRows): result.append(self.addRowConstraint(i)) for j in range(self.numCols): result.append(self.addColConstraint(j)) fe.toCNFgen(self.f, result) return self.f
def BinaryPigeonholePrinciple(pigeons, holes): """Binary Pigeonhole Principle CNF formula The pigeonhole principle claims that no M pigeons can sit in N pigeonholes without collision if M>N. This formula encodes the principle using binary strings to identify the holes. Parameters ---------- pigeon : int number of pigeons holes : int number of holes """ bphp = CNF() bphp.header="Binary Pigeonhole Principle for {0} pigeons and {1} holes\n".format(pigeons,holes)\ + bphp.header bphpgen = bphp.binary_mapping(xrange(1, pigeons + 1), xrange(1, holes + 1), injective=True) for v in bphpgen.variables(): bphp.add_variable(v) for c in bphpgen.clauses(): bphp.add_clause_unsafe(c) return bphp
def PythagoreanTriples(N): """There is a Pythagorean triples free coloring on N The formula claims that it is possible to bicolor the numbers from 1 to :math:`N` so that there is no monochromatic triplet :math:`(x,y,z)` so that :math:`x^2+y^2=z^2`. Parameters ---------- N : int size of the interval Return ------ A CNF object Raises ------ ValueError Parameters are not positive integers References ---------- .. [1] M. J. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. arXiv preprint arXiv:1605.00723, 2016. """ ptn = CNF() ptn.header = dedent(""" It is possible to bicolor the numbers from 1 to {} so that there is no monochromatic triplets (x,y,z) such that x^2+y^2=z^2 """.format(N)) + ptn.header def V(i): return "x_{{{}}}".format(i) # Variables represent the coloring of the number for i in range(1, N + 1): ptn.add_variable(V(i)) for x, y in combinations(list(range(1, N + 1)), 2): z = int(sqrt(x**2 + y**2)) if z <= N and z**2 == x**2 + y**2: ptn.add_clause([(True, V(x)), (True, V(y)), (True, V(z))], strict=True) ptn.add_clause([(False, V(x)), (False, V(y)), (False, V(z))], strict=True) return ptn
def test_empty(self): opb = """\ * #variable= 0 #constraint= 0 * """ F = CNF() self.assertCnfEqualsOPB(F, opb)
def GraphAutomorphism(G): """Graph Automorphism formula The formula is the CNF encoding of the statement that a graph G has a nontrivial automorphism, i.e. an automorphism different from the idential one. Parameter --------- G : a simple graph Returns ------- A CNF formula which is satiafiable if and only if graph G has a nontrivial automorphism. """ tmp = CNF() header = "Graph automorphism formula for graph " + G.name + "\n" + tmp.header F = GraphIsomorphism(G, G) F.header = header var = _graph_isomorphism_var F.add_clause([(False, var(u, u)) for u in enumerate_vertices(G)], strict=True) return F
def EvenColoringFormula(G): """Even coloring formula The formula is defined on a graph :math:`G` and claims that it is possible to split the edges of the graph in two parts, so that each vertex has an equal number of incident edges in each part. The formula is defined on graphs where all vertices have even degree. The formula is satisfiable only on those graphs with an even number of vertices in each connected component [1]_. Arguments --------- G : networkx.Graph a simple undirected graph where all vertices have even degree Raises ------ ValueError if the graph in input has a vertex with odd degree Returns ------- CNF object References ---------- .. [1] Locality and Hard SAT-instances, Klas Markstrom Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 221-228 """ F = CNF() F.mode_strict() F.header = "Even coloring formula on graph " + G.name + "\n" + F.header def var_name(u,v): if u<=v: return 'x_{{{0},{1}}}'.format(u,v) else: return 'x_{{{0},{1}}}'.format(v,u) for (u, v) in enumerate_edges(G): F.add_variable(var_name(u, v)) # Defined on both side for v in enumerate_vertices(G): if G.degree(v) % 2 == 1: raise ValueError("Markstrom formulas requires all vertices to have even degree.") edge_vars = [ var_name(u, v) for u in neighbors(G, v) ] F.add_exactly_half_ceil(edge_vars) # F.add_exactly_half_floor would work the same return F
def BinaryPigeonholePrinciple(pigeons,holes): """Binary Pigeonhole Principle CNF formula The pigeonhole principle claims that no M pigeons can sit in N pigeonholes without collision if M>N. This formula encodes the principle using binary strings to identify the holes. Parameters ---------- pigeon : int number of pigeons holes : int number of holes """ bphp=CNF() bphp.header="Binary Pigeonhole Principle for {0} pigeons and {1} holes\n".format(pigeons,holes)\ + bphp.header bphpgen=bphp.binary_mapping(xrange(1,pigeons+1), xrange(1,holes+1), injective = True) for v in bphpgen.variables(): bphp.add_variable(v) for c in bphpgen.clauses(): bphp.add_clause(c,strict=True) return bphp
def HiddenPigeonholePrinciple(pigeons, items, holes): """Hidden Pigeonhole Principle CNF formula Each pigeon has multiple items that should be fit into a hole, however each hole can only contain items of at most one pigeon. It is called hidden pigeon hole principle as it is only adding more constraints to the origianal pigeon hole principle, which makes it difficult to detect "the right" at-most-one constraints. Arguments: - `pigeons`: number of pigeons - `items`: number of items per pigeon - `holes`: number of holes """ def var(p, i, h): return 'p_{{{0},{1},{2}}}'.format(p, h, i) php = CNF() php.header = "hidden pigeon hole principle formula for {0} pigeons, each having {2} items ,and {1} holes\n".format(pigeons, holes, items)\ + php.header for p in range(pigeons): for i in range(items): php.add_clause([(True, var(p, i, h)) for h in range(holes)]) for h in range(holes): for p1 in range(pigeons): for p2 in range(p1): for i1 in range(items): for i2 in range(items): php.add_clause([(False, var(p1, i1, h)), (False, var(p2, i2, h))]) return php
def BinaryPigeonholePrinciple(pigeons, holes): """Binary Pigeonhole Principle CNF formula The pigeonhole principle claims that no M pigeons can sit in N pigeonholes without collision if M>N. This formula encodes the principle using binary strings to identify the holes. Parameters ---------- pigeon : int number of pigeons holes : int number of holes """ bphp = CNF() bphp.header = "Binary Pigeonhole Principle for {0} pigeons and {1} holes\n".format(pigeons, holes)\ + bphp.header mapping = binary_mapping(range(1, pigeons + 1), range(1, holes + 1), injective=True) bphp.mode_unchecked() mapping.load_variables_to_formula(bphp) mapping.load_clauses_to_formula(bphp) bphp.mode_default() return bphp
def build_cnf(args): """Build an empty CNF formula Parameters ---------- args : ignored command line options """ return CNF()
def build_cnf(args): """Build a CNF formula with an empty clause Parameters ---------- args : ignored command line options """ return CNF([[]])
def test_one(self): ass = [{'x_1': True, 'x_2': False}] F = RandomKCNF(2, 2, 3, planted_assignments=ass) G = CNF([ [(True, 'x_1'), (False, 'x_2')], [(False, 'x_1'), (False, 'x_2')], [(True, 'x_1'), (True, 'x_2')], ]) self.assertCnfEqual(F, G)
def test_most(self): ass = [ {'x_1': True, 'x_2': False}, {'x_1': False, 'x_2': False}, {'x_1': True, 'x_2': True}, ] F = RandomKCNF(2, 2, 1, planted_assignments=ass) G = CNF([[(True, 'x_1'), (False, 'x_2')]]) self.assertCnfEqual(F, G)
def test_opposite_literals(self): F = CNF() F.auto_add_variables = True F.allow_opposite_literals = True F.add_clause([(True, "S"), (False, "T"), (False, "S")]) F.allow_opposite_literals = False self.assertRaises(ValueError, F.add_clause, [(True, "T"), (True, "V"), (False, "T")])
def BinaryCliqueFormula(G, k): """Test whether a graph has a k-clique. Given a graph :math:`G` and a non negative value :math:`k`, the CNF formula claims that :math:`G` contains a :math:`k`-clique. This formula uses the binary encoding, in the sense that the clique elements are indexed by strings of bits. Parameters ---------- G : networkx.Graph a simple graph k : a non negative integer clique size Returns ------- a CNF object """ F = CNF() F.header = "Binary {0}-clique formula\n".format(k) + F.header clauses_gen = F.binary_mapping(xrange(1, k + 1), G.nodes(), injective=True, nondecreasing=True) for v in clauses_gen.variables(): F.add_variable(v) for c in clauses_gen.clauses(): F.add_clause(c, strict=True) for (i1, i2), (v1, v2) in product(combinations(xrange(1, k + 1), 2), combinations(G.nodes(), 2)): if not G.has_edge(v1, v2): F.add_clause(clauses_gen.forbid_image(i1, v1) + clauses_gen.forbid_image(i2, v2), strict=True) return F
def RamseyLowerBoundFormula(s,k,N): """Formula claiming that Ramsey number r(s,k) > N Arguments: - `s`: independent set size - `k`: clique size - `N`: vertices """ ram=CNF() ram.mode_strict() ram.header=dedent("""\ CNF encoding of the claim that there is a graph of %d vertices with no independent set of size %d and no clique of size %d """ % (N,s,k)) + ram.header # # One variable per edge (indices are ordered) # for edge in combinations(xrange(1,N+1),2): ram.add_variable('e_{{{0},{1}}}'.format(*edge)) # # No independent set of size s # for vertex_set in combinations(xrange(1,N+1),s): clause=[] for edge in combinations(vertex_set,2): clause += [(True,'e_{{{0},{1}}}'.format(*edge))] ram.add_clause(clause) # # No clique of size k # for vertex_set in combinations(xrange(1,N+1),k): clause=[] for edge in combinations(vertex_set,2): clause+=[(False,'e_{{{0},{1}}}'.format(*edge))] ram.add_clause(clause) return ram
def RandomKCNF(k, n, m, seed=None, planted_assignments=[]): """Build a random k-CNF Sample :math:`m` clauses over :math:`n` variables, each of width :math:`k`, uniformly at random. The sampling is done without repetition, meaning that whenever a randomly picked clause is already in the CNF, it is sampled again. Parameters ---------- k : int width of each clause n : int number of variables to choose from. The resulting CNF object will contain n variables even if some are not mentioned in the clauses. m : int number of clauses to generate seed : hashable object seed of the random generator planted_assignments : iterable(dict), optional a set of total/partial assigments such that all clauses in the formula will be satisfied by all of them. Returns ------- a CNF object Raises ------ ValueError when some paramenter is negative, or when k>n. """ if seed: random.seed(seed) if n<0 or m<0 or k<0: raise ValueError("Parameters must be non-negatives.") if k>n: raise ValueError("Clauses cannot have more {} literals.".format(n)) F = CNF() F.header = "Random {}-CNF over {} variables and {} clauses\n".format(k,n,m) + F.header indices = xrange(1,n+1) for i in indices: F.add_variable('x_{0}'.format(i)) try: for clause in sample_clauses(k, indices, m, planted_assignments): F.add_clause(list(clause), strict=True) except ValueError: raise ValueError("There are fewer clauses available than the number requested") return F
def PebblingFormula(digraph): """Pebbling formula Build a pebbling formula from the directed graph. If the graph has an `ordered_vertices` attribute, then it is used to enumerate the vertices (and the corresponding variables). Arguments: - `digraph`: directed acyclic graph. """ if not is_dag(digraph): raise ValueError( "Pebbling formula is defined only for directed acyclic graphs") peb = CNF() if hasattr(digraph, 'name'): peb.header = "Pebbling formula of: " + digraph.name + "\n\n" + peb.header else: peb.header = "Pebbling formula\n\n" + peb.header # add variables in the appropriate order vertices = enumerate_vertices(digraph) position = dict((v, i) for (i, v) in enumerate(vertices)) for v in vertices: peb.add_variable( v, description="There is a pebble on vertex ${}$".format(v)) # add the clauses for v in vertices: # If predecessors are pebbled the vertex must be pebbled pred = sorted(digraph.predecessors(v), key=lambda x: position[x]) peb.add_clause_unsafe([(False, p) for p in pred] + [(True, v)]) if digraph.out_degree(v) == 0: #the sink peb.add_clause_unsafe([(False, v)]) return peb
def PerfectMatchingPrinciple(G): """Generates the clauses for the graph perfect matching principle. The principle claims that there is a way to select edges to such that all vertices have exactly one incident edge set to 1. Parameters ---------- G : undirected graph """ cnf = CNF() # Describe the formula name = "Perfect Matching Principle" if hasattr(G, 'name'): cnf.header = name + " of graph:\n" + G.name + "\n" + cnf.header else: cnf.header = name + ".\n" + cnf.header def var_name(u, v): if u <= v: return 'x_{{{0},{1}}}'.format(u, v) else: return 'x_{{{0},{1}}}'.format(v, u) # Each vertex has exactly one edge set to one. for v in enumerate_vertices(G): edge_vars = [var_name(u, v) for u in neighbors(G, v)] cnf.add_equal_to(edge_vars, 1) return cnf
def BinaryPigeonholePrinciple(pigeons,holes): """Binary Pigeonhole Principle CNF formula The pigeonhole principle claims that no M pigeons can sit in N pigeonholes without collision if M>N. This formula encodes the principle using binary strings to identify the holes. Parameters ---------- pigeon : int number of pigeons holes : int number of holes """ bphp=CNF() bphp.header="Binary Pigeonhole Principle for {0} pigeons and {1} holes\n".format(pigeons,holes)\ + bphp.header mapping=binary_mapping(xrange(1,pigeons+1), xrange(1,holes+1), injective = True) bphp.mode_unchecked() mapping.load_variables_to_formula(bphp) mapping.load_clauses_to_formula(bphp) bphp.mode_default() return bphp
def __call__(self): mn = self.m * self.n A = [0, 1] * (mn // 2) + [0] * (mn % 2) random.shuffle(A) A = [[A[i * self.n + j] for j in range(self.n)] for i in range(self.m)] b = [0, 1] * (self.m // 2) + [0] * (self.m % 2) self.f = CNF() terms = [(-1, self.x(i)) for i in range(self.n)] if self.eq: self.f.add_linear(*toArgs(terms, "==", -self.k)) else: self.f.add_linear(*toArgs(terms, ">=", -self.k)) for i in range(self.m): terms = [(1, self.x(j)) for j in range(self.n) if A[i][j] == 1] if len(terms) > 0: self.addXor(terms, b[i]) return self.f
def test_opposite_literals(self): F=CNF() F.auto_add_variables = True F.allow_opposite_literals = True F.add_clause([(True,"S"),(False,"T"),(False,"S")]) F.allow_opposite_literals = False self.assertRaises(ValueError, F.add_clause, [(True,"T"),(True,"V"),(False,"T")])
def BinaryCliqueFormula(G,k): """Test whether a graph has a k-clique. Given a graph :math:`G` and a non negative value :math:`k`, the CNF formula claims that :math:`G` contains a :math:`k`-clique. This formula uses the binary encoding, in the sense that the clique elements are indexed by strings of bits. Parameters ---------- G : networkx.Graph a simple graph k : a non negative integer clique size Returns ------- a CNF object """ F=CNF() F.header="Binary {0}-clique formula\n".format(k) + F.header mapping=CNF.binary_mapping(xrange(1,k+1), G.nodes(), injective = True, nondecreasing = True) mapping.load_variables_to_formula(F) mapping.load_clauses_to_formula(F) for (i1,i2),(v1,v2) in product(combinations(xrange(1,k+1),2), combinations(G.nodes(),2)): if not G.has_edge(v1,v2): F.add_clause( clauses_gen.forbid_image(i1,v1) + clauses_gen.forbid_image(i2,v2)) return F
def RamseyLowerBoundFormula(s, k, N): """Formula claiming that Ramsey number r(s,k) > N Arguments: - `s`: independent set size - `k`: clique size - `N`: vertices """ ram = CNF() ram.header = dedent("""\ CNF encoding of the claim that there is a graph of %d vertices with no independent set of size %d and no clique of size %d """ % (N, s, k)) + ram.header # # One variable per edge (indices are ordered) # for edge in combinations(range(1, N + 1), 2): ram.add_variable('e_{{{0},{1}}}'.format(*edge)) # # No independent set of size s # for vertex_set in combinations(range(1, N + 1), s): clause = [] for edge in combinations(vertex_set, 2): clause += [(True, 'e_{{{0},{1}}}'.format(*edge))] ram.add_clause(clause, strict=True) # # No clique of size k # for vertex_set in combinations(range(1, N + 1), k): clause = [] for edge in combinations(vertex_set, 2): clause += [(False, 'e_{{{0},{1}}}'.format(*edge))] ram.add_clause(clause, strict=True) return ram
def PebblingFormula(digraph): """Pebbling formula Build a pebbling formula from the directed graph. If the graph has an `ordered_vertices` attribute, then it is used to enumerate the vertices (and the corresponding variables). Arguments: - `digraph`: directed acyclic graph. """ if not is_dag(digraph): raise ValueError("Pebbling formula is defined only for directed acyclic graphs") peb=CNF() if hasattr(digraph,'name'): peb.header="Pebbling formula of: "+digraph.name+"\n\n"+peb.header else: peb.header="Pebbling formula\n\n"+peb.header # add variables in the appropriate order vertices=enumerate_vertices(digraph) position=dict((v,i) for (i,v) in enumerate(vertices)) for v in vertices: peb.add_variable(v,description="There is a pebble on vertex ${}$".format(v)) # add the clauses for v in vertices: # If predecessors are pebbled the vertex must be pebbled pred=sorted(digraph.predecessors(v),key=lambda x:position[x]) peb.add_clause_unsafe([(False,p) for p in pred]+[(True,v)]) if digraph.out_degree(v)==0: #the sink peb.add_clause_unsafe([(False,v)]) return peb
def PythagoreanTriples(N): """There is a Pythagorean triples free coloring on N The formula claims that it is possible to bicolor the numbers from 1 to :math:`N` so that there is no monochromatic triplet :math:`(x,y,z)` so that :math:`x^2+y^2=z^2`. Parameters ---------- N : int size of the interval Return ------ A CNF object Raises ------ ValueError Parameters are not positive integers References ---------- .. [1] M. J. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. arXiv preprint arXiv:1605.00723, 2016. """ ptn=CNF() ptn.header=dedent(""" It is possible to bicolor the numbers from 1 to {} so that there is no monochromatic triplets (x,y,z) such that x^2+y^2=z^2 """.format(N)) + ptn.header def V(i): return "x_{{{}}}".format(i) # Variables represent the coloring of the number for i in xrange(1,N+1): ptn.add_variable(V(i)) for x,y in combinations(range(1,N+1),2): z = int(sqrt(x**2 + y**2)) if z <=N and z**2 == x**2 + y**2: ptn.add_clause([ (True, V(x)), (True, V(y)), (True, V(z))]) ptn.add_clause([ (False,V(x)), (False,V(y)), (False,V(z))]) return ptn
def VertexCover(G, d): F = CNF() def D(v): return "x_{{{0}}}".format(v) def N(v): return tuple(sorted([e for e in G.edges(v)])) # Fix the vertex order V = enumerate_vertices(G) # Create variables for v in V: F.add_variable(D(v)) # Not too many true variables F.add_less_or_equal([D(v) for v in V], d) # Every edge must have a true D variable for e in G.edges(): F.add_clause([(True, D(v)) for v in e]) return F
def VertexCover(G,d): F=CNF() def D(v): return "x_{{{0}}}".format(v) def N(v): return tuple(sorted([ e for e in G.edges(v) ])) # Fix the vertex order V=enumerate_vertices(G) # Create variables for v in V: F.add_variable(D(v)) # Not too many true variables F.add_less_or_equal([D(v) for v in V],d) # Every edge must have a true D variable for e in G.edges(): F.add_clause([ (True,D(v)) for v in e]) return F
def DominatingSet(G,d, alternative = False): r"""Generates the clauses for a dominating set for G of size <= d The formula encodes the fact that the graph :math:`G` has a dominating set of size :math:`d`. This means that it is possible to pick at most :math:`d` vertices in :math:`V(G)` so that all remaining vertices have distance at most one from the selected ones. Parameters ---------- G : networkx.Graph a simple undirected graph d : a positive int the size limit for the dominating set alternative : bool use an alternative construction that is provably hard from resolution proofs. Returns ------- CNF the CNF encoding for dominating of size :math:`\leq d` for graph :math:`G` """ F=CNF() if not isinstance(d,int) or d<1: ValueError("Parameter \"d\" is expected to be a positive integer") # Describe the formula name="{}-dominating set".format(d) if hasattr(G,'name'): F.header=name+" of graph:\n"+G.name+".\n\n"+F.header else: F.header=name+".\n\n"+F.header # Fix the vertex order V=enumerate_vertices(G) def D(v): return "x_{{{0}}}".format(v) def M(v,i): return "g_{{{0},{1}}}".format(v,i) def N(v): return tuple(sorted([ v ] + [ u for u in G.neighbors(v) ])) # Create variables for v in V: F.add_variable(D(v)) for i,v in product(range(1,d+1),V): F.add_variable(M(v,i)) # No two (active) vertices map to the same index if alternative: for u,v in combinations(V,2): for i in range(1,d+1): F.add_clause( [ (False,D(u)),(False,D(v)), (False,M(u,i)), (False,M(v,i)) ]) else: for i in range(1,d+1): for c in CNF.less_or_equal_constraint([M(v,i) for v in V],1): F.add_clause(c) # (Active) Vertices in the sequence are not repeated if alternative: for v in V: for i,j in combinations(range(1,d+1),2): F.add_clause([(False,D(v)),(False,M(v,i)),(False,M(v,j))]) else: for i,j in combinations_with_replacement(range(1,d+1),2): i,j = min(i,j),max(i,j) for u,v in combinations(V,2): u,v = max(u,v),min(u,v) F.add_clause([(False,M(u,i)),(False,M(v,j))]) # D(v) = M(v,1) or M(v,2) or ... or M(v,d) if not alternative: for i,v in product(range(1,d+1),V): F.add_clause([(False,M(v,i)),(True,D(v))]) for v in V: F.add_clause([(False,D(v))] + [(True,M(v,i)) for i in range(1,d+1)]) # Every neighborhood must have a true D variable neighborhoods = sorted( set(N(v) for v in V) ) for N in neighborhoods: F.add_clause([ (True,D(v)) for v in N]) return F
def GraphColoringFormula(G,colors,functional=True): """Generates the clauses for colorability formula The formula encodes the fact that the graph :math:`G` has a coloring with color set ``colors``. This means that it is possible to assign one among the elements in ``colors``to that each vertex of the graph such that no two adjacent vertices get the same color. Parameters ---------- G : networkx.Graph a simple undirected graph colors : list or positive int a list of colors or a number of colors Returns ------- CNF the CNF encoding of the coloring problem on graph ``G`` """ col=CNF() col.mode_strict() if isinstance(colors,int) and colors>=0: colors = range(1,colors+1) if not isinstance(list, collections.Iterable): ValueError("Parameter \"colors\" is expected to be a iterable") # Describe the formula name="graph colorability" if hasattr(G,'name'): col.header=name+" of graph:\n"+G.name+".\n\n"+col.header else: col.header=name+".\n\n"+col.header # Fix the vertex order V=enumerate_vertices(G) # Create the variables for vertex in V: for color in colors: col.add_variable('x_{{{0},{1}}}'.format(vertex,color)) # Each vertex has a color for vertex in V: clause = [] for color in colors: clause += [(True,'x_{{{0},{1}}}'.format(vertex,color))] col.add_clause(clause) # unique color per vertex if functional: for (c1,c2) in combinations(colors,2): col.add_clause([ (False,'x_{{{0},{1}}}'.format(vertex,c1)), (False,'x_{{{0},{1}}}'.format(vertex,c2))]) # This is a legal coloring for (v1,v2) in enumerate_edges(G): for c in colors: col.add_clause([ (False,'x_{{{0},{1}}}'.format(v1,c)), (False,'x_{{{0},{1}}}'.format(v2,c))]) return col
def StoneFormula(D,nstones): """Stone formulas The stone formulas have been introduced in [2]_ and generalized in [1]_. They are one of the classic examples that separate regular resolutions from general resolution [1]_. A \"Stones formula\" from a directed acyclic graph :math:`D` claims that each vertex of the graph is associated with one on :math:`s` stones (not necessarily in an injective way). In particular for each vertex :math:`v` in :math:`V(D)` and each stone :math:`j` we have a variable :math:`P_{v,j}` that claims that stone :math:`j` is associated to vertex :math:`v`. Each stone can be either red or blue, and not both. The propositional variable :math:`R_j` if true when the stone :math:`j` is red and false otherwise. The clauses of the formula encode the following constraints. If a stone is on a source vertex (i.e. a vertex with no incoming edges), then it must be red. If all stones on the predecessors of a vertex are red, then the stone of the vertex itself must be red. The formula furthermore enforces that the stones on the sinks (i.e. vertices with no outgoing edges) are blue. .. note:: The exact formula structure depends by the graph and on its topological order, which is determined by the ``enumerate_vertices(D)``. Parameters ---------- D : a directed acyclic graph it should be a directed acyclic graph. nstones : int the number of stones. Raises ------ ValueError if :math:`D` is not a directed acyclic graph ValueError if the number of stones is negative References ---------- .. [1] M. Alekhnovich, J. Johannsen, T. Pitassi and A. Urquhart An Exponential Separation between Regular and General Resolution. Theory of Computing (2007) .. [2] R. Raz and P. McKenzie Separation of the monotone NC hierarchy. Combinatorica (1999) """ if not is_dag(D): raise ValueError("Stone formulas are defined only for directed acyclic graphs.") if nstones<0: raise ValueError("There must be at least one stone.") cnf = CNF() if hasattr(D, 'name'): cnf.header = "Stone formula of: " + D.name + "\nwith " + str(nstones) + " stones\n" + cnf.header else: cnf.header = "Stone formula with " + str(nstones) + " stones\n" + cnf.header # Add variables in the appropriate order vertices=enumerate_vertices(D) position=dict((v,i) for (i,v) in enumerate(vertices)) stones=range(1,nstones+1) # Caching variable names color_vn = {} stone_vn = {} # Stones->Vertices variables for v in vertices: for j in stones: stone_vn[(v,j)] = "P_{{{0},{1}}}".format(v,j) cnf.add_variable(stone_vn[(v,j)], description="Stone ${1}$ on vertex ${0}$".format(v,j)) # Color variables for j in stones: color_vn[j] = "R_{{{0}}}".format(j) cnf.add_variable(color_vn[j], description="Stone ${}$ is red".format(j)) # Each vertex has some stone for v in vertices: cnf.add_clause_unsafe([(True,stone_vn[(v,j)]) for j in stones]) # If predecessors have red stones, the sink must have a red stone for v in vertices: for j in stones: pred=sorted(D.predecessors(v),key=lambda x:position[x]) for stones_tuple in product([s for s in stones if s!=j],repeat=len(pred)): cnf.add_clause_unsafe([(False, stone_vn[(p,s)]) for (p,s) in zip(pred,stones_tuple)] + [(False, stone_vn[(v,j)])] + [(False, color_vn[s]) for s in _uniqify_list(stones_tuple)] + [(True, color_vn[j])]) if D.out_degree(v)==0: #the sink for j in stones: cnf.add_clause_unsafe([ (False,stone_vn[(v,j)]), (False,color_vn[j])]) return cnf
def GraphIsomorphism(G1, G2): """Graph Isomorphism formula The formula is the CNF encoding of the statement that two simple graphs G1 and G2 are isomorphic. Parameters ---------- G1 : networkx.Graph an undirected graph object G2 : networkx.Graph an undirected graph object Returns ------- A CNF formula which is satiafiable if and only if graphs G1 and G2 are isomorphic. """ F = CNF() F.header = "Graph Isomorphism problem between graphs " +\ G1.name + " and " + G2.name + "\n" + F.header U=enumerate_vertices(G1) V=enumerate_vertices(G2) var = _graph_isomorphism_var for (u, v) in product(U,V): F.add_variable(var(u, v)) # Defined on both side for u in U: F.add_clause([(True, var(u, v)) for v in V], strict=True) for v in V: F.add_clause([(True, var(u, v)) for u in U], strict=True) # Injective on both sides for u in U: for v1, v2 in combinations(V, 2): F.add_clause([(False, var(u, v1)), (False, var(u, v2))], strict=True) for v in V: for u1, u2 in combinations(U, 2): F.add_clause([(False, var(u1, v)), (False, var(u2, v))], strict=True) # Edge consistency for u1, u2 in combinations(U, 2): for v1, v2 in combinations(V, 2): if G1.has_edge(u1, u2) != G2.has_edge(v1, v2): F.add_clause([(False, var(u1, v1)), (False, var(u2, v2))], strict=True) F.add_clause([(False, var(u1, v2)), (False, var(u2, v1))], strict=True) return F
def SparseStoneFormula(D,B): """Sparse Stone formulas This is a variant of the :py:func:`StoneFormula`. See that for a description of the formula. This variant is such that each vertex has only a small selection of which stone can go to that vertex. In particular which stones are allowed on each vertex is specified by a bipartite graph :math:`B` on which the left vertices represent the vertices of DAG :math:`D` and the right vertices are the stones. If a vertex of :math:`D` correspond to the left vertex :math:`v` in :math:`B`, then its neighbors describe which stones are allowed for it. The vertices in :math:`D` do not need to have the same name as the one on the left side of :math:`B`. It is only important that the number of vertices in :math:`D` is the same as the vertices in the left side of :math:`B`. In that case the element at position :math:`i` in the ordered sequence ``enumerate_vertices(D)`` corresponds to the element of rank :math:`i` in the sequence of left side vertices of :math:`B` according to the output of ``Left, Right = bipartite_sets(B)``. Standard :py:func:`StoneFormula` is essentially equivalent to a sparse stone formula where :math:`B` is the complete graph. Parameters ---------- D : a directed acyclic graph it should be a directed acyclic graph. B : bipartite graph Raises ------ ValueError if :math:`D` is not a directed acyclic graph ValueError if :math:`B` is not a bipartite graph ValueError when size differs between :math:`D` and the left side of :math:`B` See Also -------- StoneFormula """ if not is_dag(D): raise ValueError("Stone formulas are defined only for directed acyclic graphs.") if not has_bipartition(B): raise ValueError("Vertices to stones mapping must be specified with a bipartite graph") Left, Right = bipartite_sets(B) nstones = len(Right) if len(Left) != D.order(): raise ValueError("Formula requires the bipartite left side to match #vertices of the DAG.") cnf = CNF() if hasattr(D, 'name'): cnf.header = "Sparse Stone formula of: " + D.name + "\nwith " + str(nstones) + " stones\n" + cnf.header else: cnf.header = "Sparse Stone formula with " + str(nstones) + " stones\n" + cnf.header # add variables in the appropriate order vertices=enumerate_vertices(D) stones=range(1,nstones+1) mapping = cnf.unary_mapping(vertices,stones,sparsity_pattern=B) stone_formula_helper(cnf,D,mapping) return cnf