# cnn2_output = load_RGB('data/kosode/cnn2_after_train_norm', file_num * motif_num) # cnn1_W = loadW('data/kosode_motif2/train/cnn1_after_train') # cnn2_W = loadW('data/kosode_motif2/train/cnn2_after_train') makeFolder() # 時間計測 time1 = time.clock() print '~~~CNN1~~~' cnn1 = CNN(train_set, filter_shape, filter_shift_list[0], input_shape, node_shape[1], cnn_pre_train_lr, cnn_pre_train_epoch, isRGB) output_list = cnn1.output() cnn_saveColorImage(output_list, node_shape[1], 'cnn1_before_train') output_list_norm = local_contrast_normalization(output_list) cnn_saveColorImage(output_list_norm, node_shape[1], 'cnn1_before_training_norm') cnn1.pre_train() # cnn1.setW(cnn1_W) output_list = cnn1.output() cnn_saveColorImage(output_list, node_shape[1], 'cnn1_after_train') output_list_norm = local_contrast_normalization(output_list) cnn_saveColorImage(output_list_norm, node_shape[1], 'cnn1_after_train_norm') print '~~~CNN2~~~' cnn2 = CNN(cnn1.output(), filter_shape, filter_shift_list[1], node_shape[1], node_shape[2], cnn_pre_train_lr, cnn_pre_train_epoch, isRGB)
# node_shape = ((80,52), (74,46), (35,21)) node_shape = ((80, 52), (74, 46), (34, 20)) filter_shift_list = ((1, 1), (2, 2)) input_shape = [80, 52] filter_shape = [7, 7] data_list = load_image(data_path, file_num, isRGB) makeFolder() # 時間計測 time1 = time.clock() cnn1 = CNN(data_list, filter_shape, filter_shift_list[0], input_shape, node_shape[1], pre_train_lr, pre_train_epoch) output_list = cnn1.output() saveImage(output_list, node_shape[1], 'cnn1_before_training') cnn1.pre_train() output_list = cnn1.output() saveImage(output_list, node_shape[1], 'cnn1_after_training') # for i in xrange(pre_train_epoch): # cnn1.pre_train() # output_list = cnn1.output() # saveImage(output_list, (74,46)) cnn2 = CNN(cnn1.output(), filter_shape, filter_shift_list[1], node_shape[1], node_shape[2], pre_train_lr, pre_train_epoch) output_list = cnn2.output() saveImage(output_list, node_shape[2], 'cnn2_before_train')