def visualizeOutputOfSecondLayer(givenParams): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = True print("Loading MNIST Dataset...") xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) print("MNIST Dataset Loading Complete!\n") xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval]) m_train = xtrain.shape[1] # cnn parameters batch_size = 1 # initialize parameters print("Initializing Parameters from given params") # You can make the params your params, and not the initialized ones, in order to visualize the results params = givenParams param_winc = copy.deepcopy(params) print("Initilization Complete!\n") for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations random.seed(100000) indices = range(m_train) random.shuffle(indices) max_iter = 1 # get mini-batch and setup the cnn with the mini-batch for step in range(max_iter): # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step + 1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx:end_idx] [cp, param_grad, output] = cnn_lenet.conv_net(params, layers, xtrain[:, 0:1], ytrain[0:1], False) # conv_out = output[2]['data'].reshape(24,24,20) # plotNNFilter(conv_out) conv_out = output[1]['data'].reshape(28, 28, 1) plotNNFilter(conv_out)
def main(): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = True print("Loading MNIST Dataset...") xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) print("MNIST Dataset Loading Complete!\n") xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval]) m_train = xtrain.shape[1] # cnn parameters batch_size = 64 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 test_interval = 15 display_interval = 15 snapshot = 5000 max_iter = 30 # initialize parameters print("Initializing Parameters...") params = cnn_lenet.init_convnet(layers) param_winc = copy.deepcopy(params) print("Initilization Complete!\n") for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations random.seed(100000) indices = range(m_train) random.shuffle(indices) print("Training Started. Printing report on training data every " + str(display_interval) + " steps.") print("Printing report on test data every " + str(test_interval) + " steps.\n") train_acc_100 = [] test_acc_100 = [] train_cost_100 = [] test_cost_100 = [] program_starts = time.time() for step in range(max_iter): # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step + 1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx:end_idx] layers[2]['iteration'] = step [cp, param_grad] = cnn_lenet.conv_net(params, layers, xtrain[:, idx], ytrain[idx], True) # we have different epsilons for w and b w_rate = cnn_lenet.get_lr(step, epsilon * w_lr, gamma, power) b_rate = cnn_lenet.get_lr(step, epsilon * b_lr, gamma, power) params, param_winc = cnn_lenet.sgd_momentum(w_rate, b_rate, mu, weight_decay, params, param_winc, param_grad) # display training loss if (step + 1) % display_interval == 0: train_cost_100.append(cp['cost']) train_acc_100.append(cp['percent']) print 'training_cost = %f training_accuracy = %f' % ( cp['cost'], cp['percent']) + ' current_step = ' + str(step + 1) now = time.time() print "It has been {0} seconds since the training started".format( now - program_starts) # display test accuracy if (step + 1) % test_interval == 0: layers[1]['batch_size'] = xtest.shape[1] cptest, _ = cnn_lenet.conv_net(params, layers, xtest, ytest, False) layers[1]['batch_size'] = 64 test_cost_100.append(cptest['cost']) test_acc_100.append(cptest['percent']) print 'test_cost = %f test_accuracy = %f' % ( cptest['cost'], cptest['percent']) + ' current_step = ' + str(step + 1) + '\n' # save params peridocally to recover from any crashes if (step + 1) % snapshot == 0: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close()
def main(): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = False xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval]) m_train = xtrain.shape[1] # cnn parameters batch_size = 64 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 test_interval = 200 display_interval = 50 snapshot = 500 max_iter = 10000 # initialize parameters params = cnn_lenet.init_convnet(layers) param_winc = copy.deepcopy(params) for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations indices = range(m_train) random.shuffle(indices) for step in range(max_iter): # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step+1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx: end_idx] [cp, param_grad] = cnn_lenet.conv_net(params, layers, xtrain[:, idx], ytrain[idx]) # we have different epsilons for w and b w_rate = cnn_lenet.get_lr(step, epsilon*w_lr, gamma, power) b_rate = cnn_lenet.get_lr(step, epsilon*b_lr, gamma, power) params, param_winc = cnn_lenet.sgd_momentum(w_rate, b_rate, mu, weight_decay, params, param_winc, param_grad) # display training loss if (step+1) % display_interval == 0: print 'cost = %f training_percent = %f' % (cp['cost'], cp['percent']) # display test accuracy if (step+1) % test_interval == 0: layers[1]['batch_size'] = xtest.shape[1] cptest, _ = cnn_lenet.conv_net(params, layers, xtest, ytest) layers[1]['batch_size'] = 64 print '\ntest accuracy: %f\n' % (cptest['percent']) # save params peridocally to recover from any crashes if (step+1) % snapshot == 0: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close()
def trainNet(): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = True print("Loading MNIST Dataset...") xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) print("MNIST Dataset Loading Complete!\n") xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval]) m_train = xtrain.shape[1] # cnn parameters batch_size = 64 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 test_interval = 100 display_interval = 100 snapshot = 5000 max_iter = 10000 # Lets it run the entire way # initialize parameters print("Initializing Parameters...") # You can make the params your params, and not the initialized ones, in order to visualize the results params = cnn_lenet.init_convnet(layers) param_winc = copy.deepcopy(params) print("Initilization Complete!\n") for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations random.seed(100000) indices = range(m_train) random.shuffle(indices) train_cost = np.array([]) train_accuracy = np.array([]) test_cost = np.array([]) test_accuracy = np.array([]) print("Training Started. Printing report on training data every " + str(display_interval) + " steps.") print("Printing report on test data every " + str(test_interval) + " steps.\n") for step in range(max_iter): # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step + 1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx:end_idx] [cp, param_grad] = cnn_lenet.conv_net(params, layers, xtrain[:, idx], ytrain[idx], True) # True there is to get backtracking, but you can just use it for forward, to visualize # You have to make the function return output for you, so that you can reshape it into an image matrix, to show the image # we have different epsilons for w and b w_rate = cnn_lenet.get_lr(step, epsilon * w_lr, gamma, power) b_rate = cnn_lenet.get_lr(step, epsilon * b_lr, gamma, power) params, param_winc = cnn_lenet.sgd_momentum(w_rate, b_rate, mu, weight_decay, params, param_winc, param_grad) # display training loss if (step + 1) % display_interval == 0: print 'training_cost = %f training_accuracy = %f' % ( cp['cost'], cp['percent']) + ' current_step = ' + str(step + 1) train_cost = np.append(train_cost, cp['cost']) train_accuracy = np.append(train_accuracy, cp['percent']) # display test accuracy if (step + 1) % test_interval == 0: layers[1]['batch_size'] = xtest.shape[1] cptest, _ = cnn_lenet.conv_net(params, layers, xtest, ytest, False) layers[1]['batch_size'] = 64 print 'test_cost = %f test_accuracy = %f' % ( cptest['cost'], cptest['percent']) + ' current_step = ' + str(step + 1) + '\n' test_cost = np.append(test_cost, cptest['cost']) test_accuracy = np.append(test_accuracy, cptest['percent']) # save params peridocally to recover from any crashes if (step + 1) % snapshot == 0: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close() # Saves params at 30 for Question 4 if (step + 1) == 30: pickle_path = 'lenetAt30Iterations.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close() if (step + 1) == max_iter: np.savetxt('trainCost.txt', train_cost) np.savetxt('trainAccuracy.txt', train_accuracy) np.savetxt('testCost.txt', test_cost) np.savetxt('testAccuracy.txt', test_accuracy) # np.savetxt('costsStacked.txt', np.column_stack(train_cost, test_cost)) # np.savetxt('accuracyStacked.txt', np.column_stack(train_accuracy, test_accuracy)) pickle_path = 'lenetAt10000Iterations.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close() if (step) == max_iter: np.savetxt('trainCost1.txt', train_cost) np.savetxt('trainAccuracy1.txt', train_accuracy) np.savetxt('testCost1.txt', test_cost) np.savetxt('testAccuracy1.txt', test_accuracy) # np.savetxt('costsStacked1.txt', np.column_stack(train_cost, test_cost)) # np.savetxt('accuracyStacked1.txt', np.column_stack(train_accuracy, test_accuracy)) pickle_path = 'lenetAtMAXPLUSONEIterations.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close()
def main(): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = True print("Loading MNIST Dataset...") xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) print("MNIST Dataset Loading Complete!\n") xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval]) m_train = xtrain.shape[1] # cnn parameters batch_size = 64 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 test_interval = 100 display_interval = 100 snapshot = 5000 max_iter = 10000 # initialize parameters print("Initializing Parameters...") params = cnn_lenet.init_convnet(layers) param_winc = copy.deepcopy(params) print("Initilization Complete!\n") for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations random.seed(100000) indices = range(m_train) random.shuffle(indices) print("Training Started. Printing report on training data every " + str(display_interval) + " steps.") print("Printing report on test data every " + str(test_interval) + " steps.\n") startTime = time.time() numSamples = int(max_iter / display_interval) costResults = np.zeros((2, numSamples)) accuracyResults = np.zeros((2, numSamples)) displayIndex = 0 for step in range(max_iter): print("current step is: {}".format(step)) # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step + 1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx:end_idx] [output, cp, param_grad] = cnn_lenet.conv_net(params, layers, xtrain[:, idx], ytrain[idx], True) # we have different epsilons for w and b w_rate = cnn_lenet.get_lr(step, epsilon * w_lr, gamma, power) b_rate = cnn_lenet.get_lr(step, epsilon * b_lr, gamma, power) params, param_winc = cnn_lenet.sgd_momentum(w_rate, b_rate, mu, weight_decay, params, param_winc, param_grad) # display training loss if (step + 1) % display_interval == 0: print 'training_cost = %f training_accuracy = %f' % ( cp['cost'], cp['percent']) + ' current_step = ' + str(step + 1) costResults[0, displayIndex] = cp['cost'] accuracyResults[0, displayIndex] = cp['percent'] # display test accuracy if (step + 1) % test_interval == 0: layers[1]['batch_size'] = xtest.shape[1] _, cptest, _ = cnn_lenet.conv_net(params, layers, xtest, ytest, False) layers[1]['batch_size'] = 64 print 'test_cost = %f test_accuracy = %f' % ( cptest['cost'], cptest['percent']) + ' current_step = ' + str(step + 1) + '\n' costResults[1, displayIndex] = cptest['cost'] accuracyResults[1, displayIndex] = cptest['percent'] displayIndex += 1 # save params peridocally to recover from any crashes if (step + 1) % snapshot == 0: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close() # print(output[1]['data'].shape, output[2]['data'].shape, output[3]['data'].shape) if step == 29: layers[1]['batch_size'] = 1 output, _, _ = cnn_lenet.conv_net(params, layers, xtest, ytest, False) layers[1]['batch_size'] = 64 printableData = output[2]['data'][:, 0] printableData.shape = [24, 24, 20] plt.figure() for num in range(20): plt.subplot(4, 5, num + 1) plt.imshow(printableData[:, :, num]) plt.show() endTime = time.time() print(endTime - startTime) pickle.dump(accuracyResults, open('accuracyResults.p', 'wb')) pickle.dump(costResults, open('costResults.p', 'wb')) layers[1]['batch_size'] = 1 output, _, _ = cnn_lenet.conv_net(params, layers, xtest, ytest, False) layers[1]['batch_size'] = 64 pickle.dump(output, open('output.p', 'wb')) # print(output[1]['data'].shape, output[2]['data'].shape,) print("printing original image") printableData = output[1]['data'][:, 0] printableData.shape = [28, 28] plt.figure() plt.imshow(printableData) plt.show() print("printing output 2") printableData = output[2]['data'][:, 0] printableData.shape = [24, 24, 20] plt.figure() for num in range(20): plt.subplot(4, 5, num + 1) plt.imshow(printableData[:, :, num]) plt.show() print("printing output 3") printableData = output[3]['data'][:, 0] printableData.shape = [12, 12, 20] plt.figure() for num in range(20): plt.subplot(4, 5, num + 1) plt.imshow(printableData[:, :, num]) plt.show() plt.figure() plt.plot(np.linspace(1, numSamples, numSamples), costResults[0, :], color='k', linewidth=3, label='train cost') plt.plot(np.linspace(1, numSamples, numSamples), costResults[1, :], color='r', linewidth=3, linestyle=':', label='test cost') plt.title('cost comparison') plt.legend() plt.xlabel('iteration/100') plt.ylabel('cost') plt.grid() plt.show() plt.figure() plt.plot(np.linspace(1, numSamples, numSamples), accuracyResults[0, :], color='k', linewidth=3, label='train accuracy') plt.plot(np.linspace(1, numSamples, numSamples), accuracyResults[1, :], color='r', linewidth=3, linestyle=':', label='test accuracy') plt.title('accuracy comparison') plt.legend() plt.xlabel('iteration/100') plt.ylabel('accuracy') plt.grid() plt.show()
def main(): # define lenet layers = get_lenet() mat1 = np.zeros((1,1)) mat2 = np.zeros((1,1)) mat1traic = np.zeros((1,1)) mat1testc = np.zeros((1,1)) mat1traiac = np.zeros((1,1)) mat1testac = np.zeros((1,1)) # load data # change the following value to true to load the entire dataset fullset = True print("Loading MNIST Dataset...") xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) print("MNIST Dataset Loading Complete!\n") xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval]) m_train = xtrain.shape[1] # cnn parameters batch_size = 64 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 test_interval = 100 display_interval = 100 snapshot = 5000 max_iter = 10000 # initialize parameters print("Initializing Parameters...") params = cnn_lenet.init_convnet(layers) param_winc = copy.deepcopy(params) print("Initilization Complete!\n") for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations random.seed(100000) indices = range(m_train) random.shuffle(indices) print("Training Started. Printing report on training data every " + str(display_interval) + " steps.") print("Printing report on test data every " + str(test_interval) + " steps.\n") for step in range(max_iter): # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step+1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx: end_idx] [cp, param_grad] = cnn_lenet.conv_net(params, layers, xtrain[:, idx], ytrain[idx], True) # we have different epsilons for w and b w_rate = cnn_lenet.get_lr(step, epsilon*w_lr, gamma, power) b_rate = cnn_lenet.get_lr(step, epsilon*b_lr, gamma, power) params, param_winc = cnn_lenet.sgd_momentum(w_rate, b_rate, mu, weight_decay, params, param_winc, param_grad) # display training loss if (step+1) % display_interval == 0: print 'training_cost = %f training_accuracy = %f' % (cp['cost'], cp['percent']) + ' current_step = ' + str(step + 1) #show input to maxpooling # display test accuracy if (step+1) % test_interval == 0: layers[1]['batch_size'] = xtest.shape[1] cptest, _ = cnn_lenet.conv_net(params, layers, xtest, ytest, False) layers[1]['batch_size'] = 64 print 'test_cost = %f test_accuracy = %f' % (cptest['cost'], cptest['percent']) + ' current_step = ' + str(step + 1) + '\n' # save params peridocally to recover from any crashes if (step+1) % snapshot == 0: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close() if (step+1) % test_interval == 0: mat1traic = np.insert(mat1traic, 0, cp['cost']) mat1testc = np.insert(mat1testc, 0, cptest['cost']) mat1traiac = np.insert(mat1traiac, 0, cp['percent']) mat1testac = np.insert(mat1testac, 0, cptest['percent']) print mat1traic if (step+1) == 30: pickle_path = 'lay2it30w.mat' pickle_file = open(pickle_path, 'wb') mat1 = params[1]['w'] pickle.dump(mat1, pickle_file) pickle_file.close() pickle_path = 'lay2it30b.mat' pickle_file = open(pickle_path, 'wb') mat1 = params[1]['b'] pickle.dump(mat1, pickle_file) pickle_file.close() pickle_path = 'inputdata30it.mat' pickle_file = open(pickle_path, 'wb') mat1 = xtrain[:, idx] pickle.dump(mat1, pickle_file) pickle_file.close() if (step+1) == 1000: pickle_path = 'lay2it10000w.mat' pickle_file = open(pickle_path, 'wb') mat2 = params[1]['w'] pickle.dump(mat2, pickle_file) pickle_file.close() pickle_path = 'lay2it10000b.mat' pickle_file = open(pickle_path, 'wb') mat2 = params[1]['b'] pickle.dump(mat2, pickle_file) pickle_file.close() pickle_path = 'inputdata10000it.mat' pickle_file = open(pickle_path, 'wb') mat2 = xtrain[:, idx] pickle.dump(mat2, pickle_file) pickle_file.close() pickle_path = 'trainingcost.mat' pickle_file = open(pickle_path, 'wb') #mat1 = np.zeros((1,1)) pickle.dump(mat1traic, pickle_file) pickle_file.close() pickle_path = 'testcost.mat' pickle_file = open(pickle_path, 'wb') #mat1 = np.zeros((1,1)) pickle.dump(mat1testc, pickle_file) pickle_file.close() pickle_path = 'trainingaccu.mat' pickle_file = open(pickle_path, 'wb') #mat1 = np.zeros((1,1)) pickle.dump(mat1traiac, pickle_file) pickle_file.close() pickle_path = 'testaccu.mat' pickle_file = open(pickle_path, 'wb') #mat1 = np.zeros((1,1)) pickle.dump(mat1testac, pickle_file) pickle_file.close()
def main(): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = False """xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset)""" negPath = "/home/lui/CMU/Clinical-feature-learning/dataset/negative.txt" posPath = "/home/lui/CMU/Clinical-feature-learning/dataset/positive.txt" XTrain, yTrain = seq2mat.genTrain(posPath, negPath) print XTrain.shape, yTrain.shape threshold = XTrain.shape[1] / 10 * 9 print "threshold: ", threshold XTrainTrue = XTrain[:, :threshold] Xtest = XTrain[:, threshold:] yTrainTrue = yTrain[:threshold] ytest = yTrain[threshold:] print "finish loading data" print "shape: xTrain, yTrain, xTest, yTest" print XTrainTrue.shape, yTrainTrue.shape, Xtest.shape, ytest.shape """xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval])""" m_train = XTrainTrue.shape[1] # cnn parameters batch_size = 64 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 test_interval = 500 display_interval = 10 snapshot = 100 max_iter = 10000 loadPara = bool(raw_input("load parameters, True or False: ")) if loadPara: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'rb') params = pickle.load(pickle_file) param_winc = copy.deepcopy(params) else: # initialize parameters params = cnn_lenet.init_convnet(layers) param_winc = copy.deepcopy(params) for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) # learning iterations indices = range(m_train) random.shuffle(indices) for step in range(1500, max_iter): # get mini-batch and setup the cnn with the mini-batch start_idx = step * batch_size % m_train end_idx = (step + 1) * batch_size % m_train if start_idx > end_idx: random.shuffle(indices) continue idx = indices[start_idx:end_idx] [cp, param_grad] = cnn_lenet.conv_net(params, layers, XTrainTrue[:, idx], yTrainTrue[idx]) # we have different epsilons for w and b w_rate = cnn_lenet.get_lr(step, epsilon * w_lr, gamma, power) b_rate = cnn_lenet.get_lr(step, epsilon * b_lr, gamma, power) params, param_winc = cnn_lenet.sgd_momentum(w_rate, b_rate, mu, weight_decay, params, param_winc, param_grad) # display training loss if (step + 1) % display_interval == 0: print 'cost = %f training_percent = %f' % (cp['cost'], cp['percent']) # display test accuracy if (step + 1) % test_interval == 0: layers[1]['batch_size'] = Xtest.shape[1] cptest, _ = cnn_lenet.conv_net(params, layers, Xtest, ytest) layers[1]['batch_size'] = 64 print '\ntest accuracy: %f\n' % (cptest['percent']) # save params peridocally to recover from any crashes if (step + 1) % snapshot == 0: pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'wb') pickle.dump(params, pickle_file) pickle_file.close()
def main(): # define lenet layers = get_lenet() # load data # change the following value to true to load the entire dataset fullset = False """xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset)""" negPath = "/home/lui/CMU/Clinical-feature-learning/dataset/negative.txt" posPath = "/home/lui/CMU/Clinical-feature-learning/dataset/positive.txt" XTrain,yTrain = seq2mat.genTrain(posPath,negPath) print XTrain.shape, yTrain.shape threshold = XTrain.shape[1] / 10 * 9 print "threshold: ", threshold XTrainTrue = XTrain[:,:threshold] Xtest = XTrain[:,threshold:] yTrainTrue = yTrain[:threshold] ytest = yTrain[threshold:] print "finish loading data" print "shape: xTrain, yTrain, xTest, yTest" print XTrainTrue.shape, yTrainTrue.shape, Xtest.shape, ytest.shape """xtrain = np.hstack([xtrain, xval]) ytrain = np.hstack([ytrain, yval])""" m_train = XTrainTrue.shape[1] print "finish loading data" # cnn parameters batch_size = 32 mu = 0.9 epsilon = 0.01 gamma = 0.0001 power = 0.75 weight_decay = 0.0005 w_lr = 1 b_lr = 2 # initialize parameters pickle_path = 'lenet.mat' pickle_file = open(pickle_path, 'rb') params = pickle.load(pickle_file) param_winc = copy.deepcopy(params) for l_idx in range(1, len(layers)): param_winc[l_idx]['w'] = np.zeros(param_winc[l_idx]['w'].shape) param_winc[l_idx]['b'] = np.zeros(param_winc[l_idx]['b'].shape) layers[1]['batch_size'] = Xtest.shape[1] cp, param_grad, outcome = cnn_lenet.conv_net(params, layers, Xtest, ytest) vocab = {} vocab['tag'] = ["T", "F"] vocab['index'] = [0, 1] file_out = open("prediction.txt", 'w') file_out.write("True label" + '\t' + "Prediction\n") for i in range(len(outcome)): if outcome[i] in vocab['index']: file_out.write(vocab['tag'][outcome[i]]) file_out.write('\t') file_out.write(vocab['tag'][ytest[i]]) if i == len(outcome) - 1: break file_out.write('\n') pickle_file.close() file_out.close() fscore = f1_score(ytest, outcome) print '\ntest accuracy: %f\n' % (cp['percent']) print 'F1 score: %f\n' % (fscore)
import pickle import cnn_lenet import testLeNet fileObject = open('lenet.mat', 'r') params = pickle.load(fileObject) layers = testLeNet.get_lenet() fullset = False xtrain, ytrain, xval, yval, xtest, ytest = cnn_lenet.load_mnist(fullset) layers[1]['batch_size'] = xtest.shape[1] cptest, _ = cnn_lenet.conv_net(params, layers, xtest, ytest)