Пример #1
0
def binary_cross_entropy(output, target, name=''):
    r'''
    Computes the binary cross entropy (aka logistic loss) between the ``output`` and ``target``.

    Example:
        TBA

    Args:
        output: the computed posterior probability for a variable to be 1 from the network (typ. a ``sigmoid``)
        target: ground-truth label, 0 or 1
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import binary_cross_entropy
    dtype = get_data_type(output, target)
    output = sanitize_input(output, dtype)
    target = sanitize_input(target, dtype)
    return binary_cross_entropy(output, target, name)
Пример #2
0
def binary_cross_entropy(output, target, name=''):
    r'''
    Computes the binary cross entropy (aka logistic loss) between the ``output`` and ``target``.

    Example:
        TBA

    Args:
        output: the computed posterior probability for a variable to be 1 from the network (typ. a ``sigmoid``)
        target: ground-truth label, 0 or 1
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import binary_cross_entropy
    dtype = get_data_type(output, target)
    output = sanitize_input(output, dtype)
    target = sanitize_input(target, dtype)
    return binary_cross_entropy(output, target, name)
Пример #3
0
def train(TrnPath,
          SavePath,
          savename,
          imgX,
          imgY,
          ans_target,
          trn_target,
          bs,
          epc,
          imglist,
          use_existing=False):
    # Get minibatches of training data and perform model training
    minibatch_size = bs
    num_epochs = epc
    # test = np.zeros((1, 512, 256))
    test = np.zeros((1, imgY, imgX))
    shape = test.shape
    print("test image shape:" + str(test.shape))

    x = C.input_variable(shape)
    y = C.input_variable(shape)

    z = cntk_unet.create_model(x)
    #dice_coef = cntk_unet.dice_coefficient(z, y)
    # ll = C.Logistic(z, y)
    # ce = C.CrossEntropy(z, y)
    '''
    checkpoint_file = "/home/ys/PycharmProjects/cntk-unet/cntk-unet.dnn"
    if use_existing:
        z.load_model(checkpoint_file)
    '''

    # Prepare model and trainer
    lr = learning_rate_schedule(0.00005, UnitType.sample)
    momentum = C.learners.momentum_as_time_constant_schedule(0)

    # loss and metric
    ce = binary_cross_entropy(z, y)
    pe = binary_cross_entropy(z, y)
    trainer = C.Trainer(
        z, (ce, pe), C.learners.adam(z.parameters, lr=lr, momentum=momentum))

    file_num = len(imglist)

    training_errors = []
    test_errors = []

    sw = time.time()
    for e in range(0, num_epochs):
        pattern = "[A-Z]"
        num = 0
        random.shuffle(imglist)
        for i in range(0, file_num):

            # http://qiita.com/wanwanland/items/ce272419dde2f95cdabc
            match = re.search(pattern, imglist[i])
            # print("matchgroup:"+match.group())
            if match.group() == "A":
                ansfile = TrnPath + r"/ans/Amode/" + ans_target + r"/" + imglist[
                    i]
                trnfile = TrnPath + r"/raw/Amode/" + trn_target + r"/" + imglist[
                    i]
            if match.group() == "B":
                ansfile = TrnPath + r"/ans/Bmode/" + ans_target + r"/" + imglist[
                    i]
                trnfile = TrnPath + r"/raw/Bmode/" + trn_target + r"/" + imglist[
                    i]
            if match.group() == "Z":
                ansfile = TrnPath + r"/ans/Zmode/" + ans_target + r"/" + imglist[
                    i]
                trnfile = TrnPath + r"/raw/Zmode/" + trn_target + r"/" + imglist[
                    i]
            # print(ansfile)
            # print(trnfile)

            if i % minibatch_size == 0:
                training_y = np.array([Img2CntkImg(ansfile, imgX, imgY)])
                training_x = np.array([Img2CntkImg(trnfile, imgX, imgY)])

            elif i % minibatch_size > 0 and i % minibatch_size < minibatch_size - 1:
                training_y = np.append(
                    training_y,
                    np.array([Img2CntkImg(ansfile, imgX, imgY, True)]),
                    axis=0)
                training_x = np.append(
                    training_x,
                    np.array([Img2CntkImg(trnfile, imgX, imgY, False)]),
                    axis=0)

            elif i % minibatch_size == minibatch_size - 1:
                training_y = np.append(
                    training_y,
                    np.array([Img2CntkImg(ansfile, imgX, imgY, True)]),
                    axis=0)
                training_x = np.append(
                    training_x,
                    np.array([Img2CntkImg(trnfile, imgX, imgY, False)]),
                    axis=0)
                trainer.train_minibatch({x: training_x, y: training_y})
                # print("###################")
                if i == num_epochs - 1:
                    # Measure training error
                    training_errors.append(
                        trainer.test_minibatch({
                            x: training_x,
                            y: training_y
                        }))
                    print("Epoch:" + str(e) + "  Error:" +
                          str(np.mean(training_errors)) + "  time:" +
                          str(time.time() - sw))

        # print("epoch:" + str(e) + "  error:"+str(np.mean(training_errors))+"  time:" + str(time.time()-sw))

        if e % 50 == 0:
            trainer.save_checkpoint(SavePath + r"/" + savename + r"_" +
                                    str(e) + ".dnn")
            # print("epoch:" + str(e))
            # print("time passed:" + str(time.time() - sw))
            training_errors.append(
                trainer.test_minibatch({
                    x: training_x,
                    y: training_y
                }))
            print("Epoch:" + str(e) + "  Error:" +
                  str(np.mean(training_errors)) + "  time:" +
                  str(time.time() - sw))
            training_errors = []

    return trainer