Пример #1
0
def cosine_distance(x, y, name=''):
    '''
    Computes the cosine distance between ``x`` and ``y``:

    Example:
        >>> a = np.asarray([-1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1]).reshape(3,2,2)
        >>> b = np.asarray([1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1]).reshape(3,2,2)
        >>> x = C.input_variable(shape=(2,))
        >>> y = C.input_variable(shape=(2,))
        >>> np.round(C.cosine_distance(x,y).eval({x:a,y:b}),5)
        array([[-1.,  1.],
               [ 1.,  0.],
               [ 0., -1.]], dtype=float32)

    Args:
        x: numpy array or any :class:`~cntk.ops.functions.Function` that outputs a tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import cosine_distance
    dtype = get_data_type(x, y)
    x = sanitize_input(x, dtype)
    y = sanitize_input(y, dtype)
    return cosine_distance(x, y, name)
Пример #2
0
def cosine_distance(x, y, name=''):
    '''
    Computes the cosine distance between ``x`` and ``y``:

    Example:
        >>> a = np.asarray([-1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1]).reshape(3,2,2)
        >>> b = np.asarray([1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1]).reshape(3,2,2)
        >>> x = C.sequence.input_variable(shape=(2,))
        >>> y = C.sequence.input_variable(shape=(2,))
        >>> np.round(C.cosine_distance(x,y).eval({x:a,y:b}),5)
        array([[-1.,  1.],
               [ 1.,  0.],
               [ 0., -1.]], dtype=float32)

    Args:
        x: numpy array or any :class:`~cntk.ops.functions.Function` that outputs a tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import cosine_distance
    dtype = get_data_type(x, y)
    x = sanitize_input(x, dtype)
    y = sanitize_input(y, dtype)
    return cosine_distance(x, y, name)