def test_rollout_preprocess(self, mock_parameters):
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.preprocessing = \
            'cntk.contrib.deeprl.agent.shared.preprocessing.SlidingWindow'
        mock_parameters.return_value.preprocessing_args = '(2, "float32")'

        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        sut = ActorCritic('', observation_space, action_space)

        sut._choose_action = Mock(side_effect=[(0, ''), (1, ''), (1, '')])

        sut.start(np.array([0.1], np.float32))
        sut.step(0.1, np.array([0.2], np.float32))
        sut.step(0.2, np.array([0.3], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        np.testing.assert_array_equal(sut._trajectory_states, [
            np.array([[0], [0.1]], np.float32),
            np.array([[0.1], [0.2]], np.float32),
            np.array([[0.2], [0.3]], np.float32)
        ])

        sut.end(0.3, np.array([0.4], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2, 0.3])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        np.testing.assert_array_equal(sut._trajectory_states, [
            np.array([[0], [0.1]], np.float32),
            np.array([[0.1], [0.2]], np.float32),
            np.array([[0.2], [0.3]], np.float32)
        ])
    def test_update_policy_and_value_function(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        sut = ActorCritic('', observation_space, action_space)

        # Set up.
        self._setup_trajectory(sut)
        sut._process_accumulated_trajectory(True)
        sut._trainer = MagicMock()
        sut._adjust_learning_rate = MagicMock()

        # Call test method.
        sut._update_networks()

        # Verify value network behavior.
        self.assertEqual(sut._trainer.train_minibatch.call_count, 1)
        call_args = sut._trainer.train_minibatch.call_args
        np.testing.assert_array_equal(
            call_args[0][0][sut._input_variables],
            [np.array([0.1], np.float32),
             np.array([0.2], np.float32)])
        np.testing.assert_array_almost_equal(
            call_args[0][0][sut._value_network_output_variables],
            [[2.9975], [3.05]])
        np.testing.assert_array_equal(
            call_args[0][0][sut._policy_network_output_variables],
            [np.array([1, 0], np.float32),
             np.array([0, 1], np.float32)])
        np.testing.assert_array_almost_equal(
            call_args[0][0][sut._policy_network_weight_variables],
            [[0.9975], [2.05]])

        # Verify data buffer size.
        self.assertEqual(len(sut._input_buffer), 0)
Пример #3
0
    def test_process_accumulated_trajectory_keep_last(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        # Set up.
        self._setup_trajectory(sut)

        # Call test method.
        sut._process_accumulated_trajectory(True)

        # Verify results.
        self.assertEqual(len(sut._trajectory_rewards), 0)
        self.assertEqual(len(sut._trajectory_actions), 0)
        self.assertEqual(sut._trajectory_states, [np.array([0.3], np.float32)])
    def test_process_accumulated_trajectory_keep_last(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        sut = ActorCritic('', observation_space, action_space)

        # Set up.
        self._setup_trajectory(sut)

        # Call test method.
        sut._process_accumulated_trajectory(True)

        # Verify results.
        self.assertEqual(len(sut._trajectory_rewards), 0)
        self.assertEqual(len(sut._trajectory_actions), 0)
        self.assertEqual(sut._trajectory_states, [np.array([0.3], np.float32)])
    def test_init_shared_representation(self, mock_parameters):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.shared_representation = True

        sut = ActorCritic('', observation_space, action_space)

        self.assertEqual(sut._num_actions, 2)
        self.assertIsNone(sut._num_states)
        self.assertEqual(sut._shape_of_inputs, (1, ))
        self.assertFalse(sut._discrete_observation_space)
        self.assertIsNone(sut._space_discretizer)
        self.assertIsNone(sut._preprocessor)

        self.assertTrue(
            set(sut._policy_network.parameters).issubset(
                set(sut._value_network.parameters)))
        diff = set(sut._value_network.parameters).difference(
            set(sut._policy_network.parameters))
        # one for W and one for b
        self.assertEqual(len(diff), 2)

        shapes = []
        for item in diff:
            shapes.append(item.shape)
        self.assertEqual(set(shapes), {(2, 1), (1, )})
Пример #6
0
    def test_update_policy_and_value_function(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        # Set up.
        self._setup_trajectory(sut)
        sut._process_accumulated_trajectory(True)
        sut._trainer = MagicMock()
        sut._adjust_learning_rate = MagicMock()

        # Call test method.
        sut._update_networks()

        # Verify value network behavior.
        self.assertEqual(
            sut._trainer.train_minibatch.call_count, 1)
        call_args = sut._trainer.train_minibatch.call_args
        np.testing.assert_array_equal(
            call_args[0][0][sut._input_variables],
            [np.array([0.1], np.float32), np.array([0.2], np.float32)])
        np.testing.assert_array_almost_equal(
            call_args[0][0][sut._value_network_output_variables],
            [[2.9975], [3.05]])
        np.testing.assert_array_equal(
            call_args[0][0][sut._policy_network_output_variables],
            [np.array([1, 0], np.float32), np.array([0, 1], np.float32)])
        np.testing.assert_array_almost_equal(
            call_args[0][0][sut._policy_network_weight_variables],
            [[0.9975], [2.05]])

        # Verify data buffer size.
        self.assertEqual(len(sut._input_buffer), 0)
Пример #7
0
    def test_process_accumulated_trajectory(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        # Set up.
        self._setup_trajectory(sut)

        # Call test method.
        sut._process_accumulated_trajectory(False)

        # Verify results.
        self.assertEqual(len(sut._trajectory_rewards), 0)
        self.assertEqual(len(sut._trajectory_actions), 0)
        self.assertEqual(len(sut._trajectory_states), 0)

        np.testing.assert_array_equal(
            sut._input_buffer,
            [np.array([0.1], np.float32), np.array([0.2], np.float32)])
        # For unknown reason, got [2.9974999999999996] instead of [2.9975] for
        # the following testcase, therefore use assert_array_almost_equal.
        np.testing.assert_array_almost_equal(
            sut._value_network_output_buffer,
            [
                [2.9975],    # 3.05 * 0.95 + 0.1
                [3.05]       # 3 (initial_r) * 0.95 + 0.2
            ])
        np.testing.assert_array_equal(
            sut._policy_network_output_buffer,
            [
                np.array([1, 0], np.float32),
                np.array([0, 1], np.float32)
            ]
        )
        np.testing.assert_array_almost_equal(
            sut._policy_network_weight_buffer,
            [
                [0.9975],    # 2.9975 - 2
                [2.05]       # 3.05 - 1
            ])
Пример #8
0
    def test_process_accumulated_trajectory(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        # Set up.
        self._setup_trajectory(sut)

        # Call test method.
        sut._process_accumulated_trajectory(False)

        # Verify results.
        self.assertEqual(len(sut._trajectory_rewards), 0)
        self.assertEqual(len(sut._trajectory_actions), 0)
        self.assertEqual(len(sut._trajectory_states), 0)

        np.testing.assert_array_equal(
            sut._input_buffer,
            [np.array([0.1], np.float32), np.array([0.2], np.float32)])
        # For unknown reason, got [2.9974999999999996] instead of [2.9975] for
        # the following testcase, therefore use assert_array_almost_equal.
        np.testing.assert_array_almost_equal(
            sut._value_network_output_buffer,
            [
                [2.9975],    # 3.05 * 0.95 + 0.1
                [3.05]       # 3 (initial_r) * 0.95 + 0.2
            ])
        np.testing.assert_array_equal(
            sut._policy_network_output_buffer,
            [
                np.array([1, 0], np.float32),
                np.array([0, 1], np.float32)
            ]
        )
        np.testing.assert_array_almost_equal(
            sut._policy_network_weight_buffer,
            [
                [0.9975],    # 2.9975 - 2
                [2.05]       # 3.05 - 1
            ])
    def test_rollout(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        sut = ActorCritic('', observation_space, action_space)

        sut._choose_action = Mock(side_effect=[(0, ''), (1, ''), (1, '')])

        sut.start(np.array([0.1], np.float32))
        sut.step(0.1, np.array([0.2], np.float32))
        sut.step(0.2, np.array([0.3], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        self.assertEqual(sut._trajectory_states, [0.1, 0.2, 0.3])

        sut.end(0.3, np.array([0.4], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2, 0.3])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        self.assertEqual(sut._trajectory_states, [0.1, 0.2, 0.3])
    def test_init_unsupported_model(self, mock_parameters):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        self._setup_parameters(mock_parameters.return_value)

        # Verify sut can be constructed.
        sut = ActorCritic('', observation_space, action_space)

        mock_parameters.return_value.policy_representation = 'undefined'
        self.assertRaises(ValueError, ActorCritic, '', observation_space,
                          action_space)

        mock_parameters.return_value.policy_representation = 'nn'
        mock_parameters.return_value.value_function_representation = 'undefined'
        self.assertRaises(ValueError, ActorCritic, '', observation_space,
                          action_space)
Пример #11
0
    def test_rollout(self):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        sut._choose_action = Mock(side_effect=[(0, ''), (1, ''), (1, '')])

        sut.start(np.array([0.1], np.float32))
        sut.step(0.1, np.array([0.2], np.float32))
        sut.step(0.2, np.array([0.3], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        self.assertEqual(sut._trajectory_states, [0.1, 0.2, 0.3])

        sut.end(0.3, np.array([0.4], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2, 0.3])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        self.assertEqual(sut._trajectory_states, [0.1, 0.2, 0.3])
Пример #12
0
    def test_init_customized_model(self, mock_parameters, mock_model):
        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.policy_representation = \
            'cntk.contrib.deeprl.agent.shared.customized_models.conv_dqn'
        mock_parameters.return_value.value_function_representation = \
            'cntk.contrib.deeprl.agent.shared.customized_models.conv_dqn'
        mock_model.side_effect = self._setup_test_model

        sut = ActorCritic('', observation_space, action_space)

        self.assertEqual(mock_model.call_count, 2)
        mock_model.assert_has_calls(
            [
                mock.call((1,), 2, cross_entropy_with_softmax,
                    use_placeholder_for_input=True),
                mock.call((1,), 1, use_placeholder_for_input=True)
            ],
            any_order=True)
Пример #13
0
    def test_init_preprocess(self, mock_parameters, mock_model):
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.preprocessing = \
            'cntk.contrib.deeprl.agent.shared.preprocessing.SlidingWindow'
        mock_parameters.return_value.preprocessing_args = '(2, )'
        mock_model.side_effect = self._setup_test_model

        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        self.assertIsNotNone(sut._preprocessor)
        self.assertEqual(sut._preprocessor.output_shape(), (2, 1))
        self.assertEqual(mock_model.call_count, 2)
        mock_model.assert_has_calls(
            [
                mock.call((2, 1), 2, '[2]', cross_entropy_with_softmax,
                    use_placeholder_for_input=True),
                mock.call((2, 1), 1, '[2]', use_placeholder_for_input=True)
            ],
            any_order=True)
Пример #14
0
    def test_init(self, mock_model):
        mock_model.side_effect = self._setup_test_model

        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        self.assertEqual(sut._num_actions, 2)
        self.assertIsNone(sut._num_states)
        self.assertEqual(sut._shape_of_inputs, (1,))
        self.assertFalse(sut._discrete_observation_space)
        self.assertIsNone(sut._space_discretizer)
        self.assertIsNone(sut._preprocessor)
        self.assertEqual(mock_model.call_count, 2)
        mock_model.assert_has_calls(
            [
                mock.call((1,), 2, '[10]', cross_entropy_with_softmax,
                    use_placeholder_for_input=True),
                mock.call((1,), 1, '[10]', use_placeholder_for_input=True)
            ],
            any_order=True)
Пример #15
0
    def test_rollout_preprocess(self, mock_parameters):
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.preprocessing = \
            'cntk.contrib.deeprl.agent.shared.preprocessing.SlidingWindow'
        mock_parameters.return_value.preprocessing_args = '(2, "float32")'

        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)

        sut._choose_action = Mock(side_effect=[(0, ''), (1, ''), (1, '')])

        sut.start(np.array([0.1], np.float32))
        sut.step(0.1, np.array([0.2], np.float32))
        sut.step(0.2, np.array([0.3], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        np.testing.assert_array_equal(
            sut._trajectory_states,
            [
                np.array([[0], [0.1]], np.float32),
                np.array([[0.1], [0.2]], np.float32),
                np.array([[0.2], [0.3]], np.float32)
            ])

        sut.end(0.3, np.array([0.4], np.float32))

        self.assertEqual(sut._trajectory_rewards, [0.1, 0.2, 0.3])
        self.assertEqual(sut._trajectory_actions, [0, 1, 1])
        np.testing.assert_array_equal(
            sut._trajectory_states,
            [
                np.array([[0], [0.1]], np.float32),
                np.array([[0.1], [0.2]], np.float32),
                np.array([[0.2], [0.3]], np.float32)
            ])
    def test_init_from_existing_model(self, mock_parameters):
        action_space = spaces.Discrete(3)
        observation_space = spaces.Box(np.array([-1.2, -0.07]),
                                       np.array([0.6, 0.07]))
        mock_parameters.return_value.policy_representation = 'nn'
        mock_parameters.return_value.policy_network_hidden_layers = '[2]'
        mock_parameters.return_value.initial_policy_network = \
            'tests/data/initial_policy_network.dnn'
        mock_parameters.return_value.preprocessing = ''

        sut = ActorCritic('', observation_space, action_space)

        self.assertEqual(sut._num_actions, 3)
        self.assertIsNone(sut._num_states)
        self.assertEqual(sut._shape_of_inputs, (2, ))
        self.assertFalse(sut._discrete_observation_space)
        self.assertIsNone(sut._space_discretizer)
        self.assertIsNone(sut._preprocessor)

        # Incompatible network structure.
        mock_parameters.return_value.policy_network_hidden_layers = '[]'
        self.assertRaises(Exception, ActorCritic, '', observation_space,
                          action_space)

        # Incompatible action space.
        mock_parameters.return_value.policy_network_hidden_layers = '[2]'
        action_space = spaces.Discrete(2)
        self.assertRaises(ValueError, ActorCritic, '', observation_space,
                          action_space)

        # Incompatible observation space.
        action_space = spaces.Discrete(3)
        observation_space = spaces.Box(np.array([-1.2, -0.07, -1.0]),
                                       np.array([0.6, 0.07, 1.0]))
        self.assertRaises(ValueError, ActorCritic, '', observation_space,
                          action_space)
    def test_rollout_with_update(self, mock_parameters):
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.update_frequency = 2

        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1, ))
        sut = ActorCritic('', observation_space, action_space)
        sut._update_networks = MagicMock()

        sut._choose_action = Mock(
            side_effect=[(0, ''), (1, ''), (1, ''), (0, ''), (1, ''), (0, '')])

        sut.start(np.array([0.1], np.float32))
        sut.step(0.1, np.array([0.2], np.float32))
        self.assertEqual(sut._trajectory_rewards, [0.1])
        self.assertEqual(sut._trajectory_actions, [0, 1])
        self.assertEqual(sut._trajectory_states, [0.1, 0.2])
        self.assertEqual(sut._update_networks.call_count, 0)

        sut.step(0.2, np.array([0.3], np.float32))
        self.assertEqual(sut._trajectory_rewards, [])
        self.assertEqual(sut._trajectory_actions, [1])
        self.assertEqual(sut._trajectory_states, [0.3])
        self.assertEqual(sut._update_networks.call_count, 1)

        sut.step(0.3, np.array([0.4], np.float32))
        self.assertEqual(sut._trajectory_rewards, [0.3])
        self.assertEqual(sut._trajectory_actions, [1, 0])
        self.assertEqual(sut._trajectory_states, [0.3, 0.4])
        self.assertEqual(sut._update_networks.call_count, 1)

        sut.start(np.array([0.5], np.float32))
        self.assertEqual(sut._trajectory_rewards, [])
        self.assertEqual(sut._trajectory_actions, [1])
        self.assertEqual(sut._trajectory_states, [0.5])
        self.assertEqual(sut._update_networks.call_count, 1)

        sut.step(0.4, np.array([0.6], np.float32))
        self.assertEqual(sut._trajectory_rewards, [])
        self.assertEqual(sut._trajectory_actions, [0])
        self.assertEqual(sut._trajectory_states, [0.6])
        self.assertEqual(sut._update_networks.call_count, 2)

        sut.end(0.5, np.array([0.7], np.float32))
        self.assertEqual(sut._trajectory_rewards, [0.5])
        self.assertEqual(sut._trajectory_actions, [0])
        self.assertEqual(sut._trajectory_states, [0.6])
        self.assertEqual(sut._update_networks.call_count, 2)
Пример #18
0
    def test_rollout_with_update(self, mock_parameters):
        self._setup_parameters(mock_parameters.return_value)
        mock_parameters.return_value.update_frequency = 2

        action_space = spaces.Discrete(2)
        observation_space = spaces.Box(0, 1, (1,))
        sut = ActorCritic('', observation_space, action_space)
        sut._update_networks = MagicMock()

        sut._choose_action = Mock(side_effect=[
            (0, ''), (1, ''), (1, ''), (0, ''), (1, ''), (0, '')])

        sut.start(np.array([0.1], np.float32))
        sut.step(0.1, np.array([0.2], np.float32))
        self.assertEqual(sut._trajectory_rewards, [0.1])
        self.assertEqual(sut._trajectory_actions, [0, 1])
        self.assertEqual(sut._trajectory_states, [0.1, 0.2])
        self.assertEqual(sut._update_networks.call_count, 0)

        sut.step(0.2, np.array([0.3], np.float32))
        self.assertEqual(sut._trajectory_rewards, [])
        self.assertEqual(sut._trajectory_actions, [1])
        self.assertEqual(sut._trajectory_states, [0.3])
        self.assertEqual(sut._update_networks.call_count, 1)

        sut.step(0.3, np.array([0.4], np.float32))
        self.assertEqual(sut._trajectory_rewards, [0.3])
        self.assertEqual(sut._trajectory_actions, [1, 0])
        self.assertEqual(sut._trajectory_states, [0.3, 0.4])
        self.assertEqual(sut._update_networks.call_count, 1)

        sut.start(np.array([0.5], np.float32))
        self.assertEqual(sut._trajectory_rewards, [])
        self.assertEqual(sut._trajectory_actions, [1])
        self.assertEqual(sut._trajectory_states, [0.5])
        self.assertEqual(sut._update_networks.call_count, 1)

        sut.step(0.4, np.array([0.6], np.float32))
        self.assertEqual(sut._trajectory_rewards, [])
        self.assertEqual(sut._trajectory_actions, [0])
        self.assertEqual(sut._trajectory_states, [0.6])
        self.assertEqual(sut._update_networks.call_count, 2)

        sut.end(0.5, np.array([0.7], np.float32))
        self.assertEqual(sut._trajectory_rewards, [0.5])
        self.assertEqual(sut._trajectory_actions, [0])
        self.assertEqual(sut._trajectory_states, [0.6])
        self.assertEqual(sut._update_networks.call_count, 2)