Пример #1
0
def test_large_minibatch(tmpdir):
    tmpfile = _write_data(tmpdir, MBDATA_DENSE_2)

    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
        features  = StreamDef(field='S0', shape=1),
        labels    = StreamDef(field='S1', shape=1))),
        randomization_window_in_chunks=0)

    features_si = mb_source.stream_info('features')
    labels_si = mb_source.stream_info('labels')

    mb = mb_source.next_minibatch(1000)
    features = mb[features_si]
    labels = mb[labels_si]

    # Actually, the minibatch spans over multiple sweeps,
    # not sure if this is an artificial situation, but
    # maybe instead of a boolean flag we should indicate
    # the largest sweep index the data was taken from.
    assert features.end_of_sweep
    assert labels.end_of_sweep

    assert features.num_samples == 1000 - 1000 % 7
    assert labels.num_samples == 5 * (1000 // 7)

    assert mb[features_si].num_sequences == (1000 // 7)
    assert mb[labels_si].num_sequences == (1000 // 7)
Пример #2
0
def test_MinibatchData_and_Value_as_input(tmpdir):

    mbdata = r'''0  |S0 100'''

    tmpfile = str(tmpdir/'mbtest.txt')
    with open(tmpfile, 'w') as f:
        f.write(mbdata)

    defs = StreamDefs(f1 = StreamDef(field='S0', shape=1))
    mb_source = MinibatchSource(CTFDeserializer(tmpfile, defs),
                                randomize=False)

    f1_si = mb_source.stream_info('f1')

    mb = mb_source.next_minibatch(1)

    f1 = input_variable(shape=(1,),
                       needs_gradient=True,
                       name='f')
    res = f1 * 2

    assert res.eval({f1: mb[f1_si]}) == [[200]]
    # Test MinibatchData
    assert res.eval(mb[f1_si]) == [[200]]
    # Test Value
    assert res.eval(mb[f1_si].data) == [[200]]
    # Test NumPy (converted back from MinibatchData)
    assert res.eval(mb[f1_si].value) == [[200]]
    # Test Value
    assert res.eval(mb[f1_si].data) == [[200]]
Пример #3
0
def test_base64_image_deserializer(tmpdir):
    import io, base64, uuid; from PIL import Image
    images, b64_images = [], []

    np.random.seed(1)
    for i in range(10):
        data = np.random.randint(0, 2**8, (5,7,3))
        image = Image.fromarray(data.astype('uint8'), "RGB")
        buf = io.BytesIO()
        image.save(buf, format='PNG')
        assert image.width == 7 and image.height == 5
        b64_images.append(base64.b64encode(buf.getvalue()))
        images.append(np.array(image))

    image_data = str(tmpdir / 'mbdata1.txt')
    seq_ids = []
    uid = uuid.uuid1().int >> 64
    with open(image_data, 'wb') as f:
        for i,data in enumerate(b64_images):
            seq_id = uid ^ i
            seq_id = str(seq_id).encode('ascii')
            seq_ids.append(seq_id)
            line = seq_id + b'\t'
            label = str(i).encode('ascii')
            line += label + b'\t' + data + b'\n'
            f.write(line)

    ctf_data = str(tmpdir / 'mbdata2.txt')
    with open(ctf_data, 'wb') as f:
        for i, sid in enumerate(seq_ids):
            line = sid + b'\t' + b'|index '+str(i).encode('ascii') + b'\n'
            f.write(line)

    transforms = [xforms.scale(width=7, height=5, channels=3)]
    b64_deserializer = Base64ImageDeserializer(image_data, 
        StreamDefs(
            images=StreamDef(field='image', transforms=transforms),
            labels=StreamDef(field='label', shape=10)))
    
    ctf_deserializer = CTFDeserializer(ctf_data, 
        StreamDefs(index=StreamDef(field='index', shape=1)))

    mb_source = MinibatchSource([ctf_deserializer, b64_deserializer])
    assert isinstance(mb_source, MinibatchSource)

    for j in range(100):
        mb = mb_source.next_minibatch(10)
    
        index_stream = mb_source.streams['index']
        index = mb[index_stream].asarray().flatten()
        image_stream = mb_source.streams['images']

        results = mb[image_stream].asarray()

        for i in range(10):
            # original images are RBG, openCV produces BGR images,
            # reverse the last dimension of the original images
            bgrImage = images[int(index[i])][:,:,::-1]
            assert (bgrImage == results[i][0]).all()
Пример #4
0
def test_minibatch_defined_by_labels(tmpdir):

    input_dim = 1000
    num_output_classes = 5

    def assert_data(mb_source):
        features_si = mb_source.stream_info('features')
        labels_si = mb_source.stream_info('labels')
     
        mb = mb_source.next_minibatch(2)
     
        features = mb[features_si]
     
        # 2 samples, max seq len 4, 1000 dim
        assert features.shape == (2, 4, input_dim)
        assert features.end_of_sweep
        assert features.num_sequences == 2
        assert features.num_samples == 7
        assert features.is_sparse
     
        labels = mb[labels_si]
        # 2 samples, max seq len 1, 5 dim
        assert labels.shape == (2, 1, num_output_classes)
        assert labels.end_of_sweep
        assert labels.num_sequences == 2
        assert labels.num_samples == 2
        assert not labels.is_sparse
     
        label_data = labels.asarray()
        assert np.allclose(label_data,
                           np.asarray([
                               [[1.,  0.,  0.,  0.,  0.]],
                               [[0.,  1.,  0.,  0.,  0.]]
                           ]))
     
        mb = mb_source.next_minibatch(3)
        features = mb[features_si]
        labels = mb[labels_si]
     
        assert features.num_samples == 10
        assert labels.num_samples == 3

    tmpfile = _write_data(tmpdir, MBDATA_SPARSE)
    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
        features=StreamDef(field='x', shape=input_dim, is_sparse=True),
        labels=StreamDef(field='y', shape=num_output_classes, is_sparse=False, defines_mb_size=True)
    )), randomize=False)

    assert_data(mb_source)

    tmpfile1 = _write_data(tmpdir, MBDATA_SPARSE1, '1')
    tmpfile2 = _write_data(tmpdir, MBDATA_SPARSE2, '2')
    combined_mb_source = MinibatchSource([ CTFDeserializer(tmpfile1, StreamDefs(
            features=StreamDef(field='x', shape=input_dim, is_sparse=True))),
        CTFDeserializer(tmpfile2, StreamDefs(
            labels=StreamDef(field='y', shape=num_output_classes, is_sparse=False, defines_mb_size=True)
        ))], randomize=False)

    assert_data(combined_mb_source)
Пример #5
0
def test_eval_sparse_dense(tmpdir, device_id):
    from cntk import Axis
    from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs
    from cntk.ops import input, times

    input_vocab_dim = label_vocab_dim = 69

    ctf_data = '''\
0	|S0 3:1 |# <s>	|S1 3:1 |# <s>
0	|S0 4:1 |# A	|S1 32:1 |# ~AH
0	|S0 5:1 |# B	|S1 36:1 |# ~B
0	|S0 4:1 |# A	|S1 31:1 |# ~AE
0	|S0 7:1 |# D	|S1 38:1 |# ~D
0	|S0 12:1 |# I	|S1 47:1 |# ~IY
0	|S0 1:1 |# </s>	|S1 1:1 |# </s>
2	|S0 60:1 |# <s>	|S1 3:1 |# <s>
2	|S0 61:1 |# A	|S1 32:1 |# ~AH
'''
    ctf_file = str(tmpdir / '2seqtest.txt')
    with open(ctf_file, 'w') as f:
        f.write(ctf_data)

    mbs = MinibatchSource(CTFDeserializer(
        ctf_file,
        StreamDefs(features=StreamDef(field='S0',
                                      shape=input_vocab_dim,
                                      is_sparse=True),
                   labels=StreamDef(field='S1',
                                    shape=label_vocab_dim,
                                    is_sparse=True))),
                          randomize=False,
                          max_samples=2)

    raw_input = sequence.input(shape=input_vocab_dim,
                               sequence_axis=Axis('inputAxis'),
                               name='raw_input',
                               is_sparse=True)

    mb_valid = mbs.next_minibatch(minibatch_size_in_samples=100,
                                  input_map={raw_input: mbs.streams.features},
                                  device=cntk_device(device_id))

    z = times(raw_input, np.eye(input_vocab_dim))
    e_reader = z.eval(mb_valid, device=cntk_device(device_id))

    # CSR with the raw_input encoding in ctf_data
    one_hot_data = [[3, 4, 5, 4, 7, 12, 1], [60, 61]]
    data = [
        csr(np.eye(input_vocab_dim, dtype=np.float32)[d]) for d in one_hot_data
    ]
    e_csr = z.eval({raw_input: data}, device=cntk_device(device_id))
    assert np.all([np.allclose(a, b) for a, b in zip(e_reader, e_csr)])

    # One-hot with the raw_input encoding in ctf_data
    data = Value.one_hot(one_hot_data,
                         num_classes=input_vocab_dim,
                         device=cntk_device(device_id))
    e_hot = z.eval({raw_input: data}, device=cntk_device(device_id))
    assert np.all([np.allclose(a, b) for a, b in zip(e_reader, e_hot)])
Пример #6
0
def test_htk_deserializers():
    mbsize = 640
    epoch_size = 1000 * mbsize
    lr = [0.001]

    feature_dim = 33
    num_classes = 132
    context = 2

    os.chdir(data_path)

    features_file = "glob_0000.scp"
    labels_file = "glob_0000.mlf"
    label_mapping_file = "state.list"

    fd = HTKFeatureDeserializer(
        StreamDefs(amazing_features=StreamDef(
            shape=feature_dim, context=(context, context), scp=features_file)))

    ld = HTKMLFDeserializer(
        label_mapping_file,
        StreamDefs(
            awesome_labels=StreamDef(shape=num_classes, mlf=labels_file)))

    reader = MinibatchSource([fd, ld])

    features = C.input_variable(((2 * context + 1) * feature_dim))
    labels = C.input_variable((num_classes))

    model = Sequential(
        [For(range(3), lambda: Recurrence(LSTM(256))),
         Dense(num_classes)])
    z = model(features)
    ce = C.cross_entropy_with_softmax(z, labels)
    errs = C.classification_error(z, labels)

    learner = C.adam_sgd(z.parameters,
                         lr=C.learning_rate_schedule(lr, C.UnitType.sample,
                                                     epoch_size),
                         momentum=C.momentum_as_time_constant_schedule(1000),
                         low_memory=True,
                         gradient_clipping_threshold_per_sample=15,
                         gradient_clipping_with_truncation=True)
    trainer = C.Trainer(z, (ce, errs), learner)

    input_map = {
        features: reader.streams.amazing_features,
        labels: reader.streams.awesome_labels
    }

    pp = C.ProgressPrinter(freq=0)
    # just run and verify it doesn't crash
    for i in range(3):
        mb_data = reader.next_minibatch(mbsize, input_map=input_map)
        trainer.train_minibatch(mb_data)
        pp.update_with_trainer(trainer, with_metric=True)
    assert True
    os.chdir(abs_path)
Пример #7
0
def test_eval_sparse_dense(tmpdir, device_id):
    from cntk import Axis
    from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs
    from cntk.device import cpu, gpu, set_default_device
    from cntk.ops import input_variable, times
    from scipy.sparse import csr_matrix

    input_vocab_dim = label_vocab_dim = 69

    ctf_data = '''\
0	|S0 3:1 |# <s>	|S1 3:1 |# <s>
0	|S0 4:1 |# A	|S1 32:1 |# ~AH
0	|S0 5:1 |# B	|S1 36:1 |# ~B
0	|S0 4:1 |# A	|S1 31:1 |# ~AE
0	|S0 7:1 |# D	|S1 38:1 |# ~D
0	|S0 12:1 |# I	|S1 47:1 |# ~IY
0	|S0 1:1 |# </s>	|S1 1:1 |# </s>
2	|S0 60:1 |# <s>	|S1 3:1 |# <s>
2	|S0 61:1 |# A	|S1 32:1 |# ~AH
'''
    ctf_file = str(tmpdir/'2seqtest.txt')
    with open(ctf_file, 'w') as f:
        f.write(ctf_data)

    mbs = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
        features  = StreamDef(field='S0', shape=input_vocab_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=label_vocab_dim,  is_sparse=True)
    )), randomize=False, epoch_size = 2)

    batch_axis = Axis.default_batch_axis()
    input_seq_axis = Axis('inputAxis')
    label_seq_axis = Axis('labelAxis')

    input_dynamic_axes = [batch_axis, input_seq_axis]
    raw_input = input_variable(
        shape=input_vocab_dim, dynamic_axes=input_dynamic_axes,
        name='raw_input', is_sparse=True)

    mb_valid = mbs.next_minibatch(minibatch_size_in_samples=100, 
            input_map={raw_input : mbs.streams.features})

    z = times(raw_input, np.eye(input_vocab_dim))
    e_reader = z.eval(mb_valid)

    # CSR with the raw_input encoding in ctf_data
    one_hot_data = [
            [3, 4, 5, 4, 7, 12, 1], 
            [60, 61]
            ]
    data = [csr_matrix(np.eye(input_vocab_dim, dtype=np.float32)[d]) for d in
            one_hot_data]
    e_csr = z.eval({raw_input: data}, device=cntk_device(device_id))
    assert np.all([np.allclose(a, b) for a,b in zip(e_reader, e_csr)])

    # One-hot with the raw_input encoding in ctf_data
    data = one_hot(one_hot_data, num_classes=input_vocab_dim)
    e_hot = z.eval({raw_input: data}, device=cntk_device(device_id))
    assert np.all([np.allclose(a, b) for a,b in zip(e_reader, e_hot)])
Пример #8
0
def test_minibatch(tmpdir):

    mbdata = r'''0	|S0 0   |S1 0
0	|S0 1 	|S1 1 
0	|S0 2 	
0	|S0 3 	|S1 3 
1	|S0 4 	
1	|S0 5 	|S1 1
1	|S0 6	|S1 2 
'''

    tmpfile = str(tmpdir/'mbtest.txt')
    with open(tmpfile, 'w') as f:
        f.write(mbdata)

    from cntk.io import CTFDeserializer, MinibatchSource, StreamDef, StreamDefs
    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
        features  = StreamDef(field='S0', shape=1),
        labels    = StreamDef(field='S1', shape=1))))
     
    features_si = mb_source.stream_info('features')
    labels_si = mb_source.stream_info('labels')
    
    mb = mb_source.next_minibatch(1000)
    assert mb[features_si].num_sequences == 2
    assert mb[labels_si].num_sequences == 2

    features = mb[features_si]
    assert len(features.value) == 2
    expected_features = \
            [
                [[0],[1],[2],[3]],
                [[4],[5],[6]]
            ]

    for res, exp in zip (features.value, expected_features):
        assert np.allclose(res, exp)

    assert np.allclose(features.mask, 
            [[2, 1, 1, 1],
             [2, 1, 1, 0]])

    labels = mb[labels_si]
    assert len(labels.value) == 2
    expected_labels = \
            [
                [[0],[1],[3]], 
                [[1],[2]]
            ]
    for res, exp in zip (labels.value, expected_labels):
        assert np.allclose(res, exp)

    assert np.allclose(labels.mask, 
            [[2, 1, 1],
             [2, 1, 0]])
Пример #9
0
def test_user_deserializer_sequence_mode():
    import scipy.sparse as sp
    streams = [StreamInformation('x', 0, 'dense', np.float32, (2, 3)), 
               StreamInformation('y', 1, 'sparse', np.float32, (3,))]

    def run_minibatch_source(minibatch_source, num_chunks, num_sequences_per_value):
        sequence_x_values = np.zeros(num_chunks, dtype=np.int32)
        sequence_y_values = np.zeros(num_chunks, dtype=np.int32)
        mb_count = 0
        while True:
            if mb_count % 10 == 1: # perform checkpointing
                checkpoint_state = minibatch_source.get_checkpoint_state()
                for i in range(3): 
                    minibatch_source.next_minibatch(20)
                minibatch_source.restore_from_checkpoint(checkpoint_state)
                mb_count +=1
                continue            

            mb = minibatch_source.next_minibatch(20)
            mb_count += 1
            if not mb:
                break

            for sequence in mb[minibatch_source.streams.x].asarray():
                sequence_x_values[int(sequence[0][0][0])] +=1

            for sequence in mb[minibatch_source.streams.y].as_sequences(C.sequence.input_variable((3,), True)):             
                sequence_y_values[int(sequence.toarray()[0][0])] += 1
            mb = None

        expected_values = np.full(num_chunks, fill_value=num_sequences_per_value, dtype=np.int32)
        assert (sequence_x_values == expected_values).all()
        assert (sequence_y_values == expected_values).all()

    # Big chunks
    d = GenDeserializer(stream_infos=streams, num_chunks=15, 
                        num_sequences=100, max_sequence_len=10)
    mbs = MinibatchSource([d], randomize=False, max_sweeps=2)
    state = mbs.get_checkpoint_state()
    mbs.restore_from_checkpoint(state)
    run_minibatch_source(mbs, num_chunks=15, num_sequences_per_value=200)
    # Randomized
    mbs = MinibatchSource([d], randomize=True, max_sweeps=2, randomization_window_in_chunks=5)
    state = mbs.get_checkpoint_state()
    mbs.restore_from_checkpoint(state)
    run_minibatch_source(mbs, num_chunks=15, num_sequences_per_value=200)

    # Small chunks of 1
    d = GenDeserializer(stream_infos=streams, num_chunks=15,
                        num_sequences=1, max_sequence_len=10)
    mbs = MinibatchSource([d], randomize=False, max_sweeps=3)
    run_minibatch_source(mbs, num_chunks=15, num_sequences_per_value=3)
    # Randomized
    mbs = MinibatchSource([d], randomize=True, max_sweeps=3, randomization_window_in_chunks=5)
    run_minibatch_source(mbs, num_chunks=15, num_sequences_per_value=3)
Пример #10
0
def train():
	global sentences, vocabulary, reverse_vocabulary
	# function will create the trainer and train it for specified number of epochs
	# Print loss 50 times while training
	print_freqency = 50
	pp = ProgressPrinter(print_freqency)

	# get the trainer
	word_one_hot, context_one_hots, negative_one_hots, targets, trainer, word_negative_context_product, embedding_layer = create_trainer()
	
	# Create a CTF reader which reads the sparse inputs
	print("reader started")
	reader = CTFDeserializer(G.CTF_input_file)
	reader.map_input(G.word_input_field, dim=G.embedding_vocab_size, format="sparse")
	# context inputs
	for i in range(context_size):
		reader.map_input(G.context_input_field.format(i), dim=G.embedding_vocab_size, format="sparse")
	# negative inputs
	for i in range(G.negative):
		reader.map_input(G.negative_input_field.format(i), dim=G.embedding_vocab_size, format="sparse")
	# targets
	reader.map_input(G.target_input_field, dim=(G.negative + 1), format="dense")
	print("reader done")

	# Get minibatch source from reader
	is_training = True
	minibatch_source = MinibatchSource(reader, randomize=is_training, epoch_size=INFINITELY_REPEAT if is_training else FULL_DATA_SWEEP)
	minibatch_source.streams[targets] = minibatch_source.streams[G.target_input_field]
	del minibatch_source.streams[G.target_input_field]
	print("minibatch source done")
	
	total_minibatches = total_training_instances // G.minibatch_size
	print("traning started")
	print("Total minibatches to train =", total_minibatches)
	for i in range(total_minibatches):
		# Collect minibatch
		# start_batch_collection = time.time()
		mb = minibatch_source.next_minibatch(G.minibatch_size, input_map=minibatch_source.streams)
		# end_batch_collection = time.time()
		# print("Batch collection time = %.6fsecs" % (end_batch_collection - start_batch_collection))
		# print("Time taken to collect one training_instance = %.6fsecs" % ((end_batch_collection - start_batch_collection)/G.minibatch_size))
		# Train minibatch
		# start_train = time.time()
		trainer.train_minibatch(mb)
		# end_train = time.time()
		# print("minibatch train time = %.6fsecs" % (end_train - start_train))
		# print("Time per training instance = %.6fsecs" % ((end_train - start_train)/G.minibatch_size))
		# Update progress printer
		pp.update_with_trainer(trainer)

		# start_batch_collection = time.time()
	print("Total training instances =", total_training_instances)
	return word_negative_context_product
Пример #11
0
def test_user_deserializer_sample_mode():
    import scipy.sparse as sp
    streams = [StreamInformation('x', 0, 'dense', np.float32, (2, 3)), 
               StreamInformation('y', 1, 'sparse', np.float32, (1, 3))]

    def run_minibatch_source(minibatch_source, num_chunks, num_samples_per_value):
        sample_x_values = np.zeros(num_chunks, dtype=np.int32)
        sample_y_values = np.zeros(num_chunks, dtype=np.int32)
        mb_count = 0
        while True:
            if mb_count % 10 == 1: # perform checkpointing
                checkpoint_state = minibatch_source.get_checkpoint_state()
                for i in range(3): 
                    minibatch_source.next_minibatch(20)
                minibatch_source.restore_from_checkpoint(checkpoint_state)
                mb_count +=1
                continue            
            mb = minibatch_source.next_minibatch(20)
            mb_count += 1
            if not mb:
                break

            for sequence in mb[minibatch_source.streams.x].asarray():
                for sample in sequence:
                    value = int(sample[0][0])
                    sample_x_values[value] += 1

            for sequence in mb[minibatch_source.streams.y].asarray():
                for sample in sequence:
                    value = int(sample[0][0])
                    sample_y_values[value] += 1
            mb = None

        expected_values = np.full(num_chunks, fill_value=num_samples_per_value, dtype=np.int32)
        assert (sample_x_values == expected_values).all()
        assert (sample_y_values == expected_values).all()

    # Big chunks
    d = GenDeserializer(stream_infos=streams, num_chunks=20, num_sequences=100)
    mbs = MinibatchSource([d], randomize=False, max_sweeps=2)
    run_minibatch_source(mbs, num_chunks=20, num_samples_per_value=200)
    # Randomized
    mbs = MinibatchSource([d], randomize=True, max_sweeps=2, randomization_window_in_chunks=5)
    run_minibatch_source(mbs, num_chunks=20, num_samples_per_value=200)

    # Small chunks of 1
    d = GenDeserializer(stream_infos=streams, num_chunks=20, num_sequences=1)
    mbs = MinibatchSource([d], randomize=False, max_sweeps=3)
    run_minibatch_source(mbs, num_chunks=20, num_samples_per_value=3)
    # Randomized
    mbs = MinibatchSource([d], randomize=True, max_sweeps=3, randomization_window_in_chunks=5)
    run_minibatch_source(mbs, num_chunks=20, num_samples_per_value=3)
Пример #12
0
def test_max_samples(tmpdir):
    mb_source = MinibatchSource(create_ctf_deserializer(tmpdir), max_samples=1)

    input_map = {'features': mb_source['features']}
    mb = mb_source.next_minibatch(10, input_map)

    assert 'features' in mb
    assert mb['features'].num_samples == 1
    assert not mb['features'].end_of_sweep

    mb = mb_source.next_minibatch(10, input_map)

    assert not mb
Пример #13
0
def test_text_format(tmpdir):
    from cntk.io import CTFDeserializer, MinibatchSource, StreamDef, StreamDefs

    mbdata = r'''0	|x 560:1	|y 1 0 0 0 0
0	|x 0:1
0	|x 0:1
1	|x 560:1	|y 0 1 0 0 0
1	|x 0:1
1	|x 0:1
1	|x 424:1
'''
    tmpfile = str(tmpdir/'mbdata.txt')
    with open(tmpfile, 'w') as f:
        f.write(mbdata)

    input_dim = 1000
    num_output_classes = 5

    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
         features  = StreamDef(field='x', shape=input_dim, is_sparse=True),
         labels    = StreamDef(field='y', shape=num_output_classes, is_sparse=False)
       )))

    assert isinstance(mb_source, MinibatchSource)

    features_si = mb_source.stream_info('features')
    labels_si = mb_source.stream_info('labels')

    mb = mb_source.next_minibatch(7)

    features = mb[features_si]
    # 2 samples, max seq len 4, 1000 dim
    assert features.shape == (2, 4, input_dim)
    assert features.is_sparse
    # TODO features is sparse and cannot be accessed right now:
    # *** RuntimeError: DataBuffer/WritableDataBuffer methods can only be called for NDArrayiew objects with dense storage format
    # 2 samples, max seq len 4, 1000 dim
    #assert features.data().shape().dimensions() == (2, 4, input_dim)
    #assert features.data().is_sparse()

    labels = mb[labels_si]
    # 2 samples, max seq len 1, 5 dim
    assert labels.shape == (2, 1, num_output_classes)
    assert not labels.is_sparse

    label_data = np.asarray(labels)
    assert np.allclose(label_data,
            np.asarray([
                [[ 1.,  0.,  0.,  0.,  0.]],
                [[ 0.,  1.,  0.,  0.,  0.]]
                ]))
Пример #14
0
def test_max_samples(tmpdir):
    mb_source = MinibatchSource(
        create_ctf_deserializer(tmpdir), max_samples=1)

    input_map = {'features': mb_source['features']}
    mb = mb_source.next_minibatch(10, input_map)

    assert 'features' in mb
    assert mb['features'].num_samples == 1
    assert not mb['features'].end_of_sweep

    mb = mb_source.next_minibatch(10, input_map)

    assert not mb
Пример #15
0
def test_htk_deserializers():
    mbsize = 640
    epoch_size = 1000 * mbsize
    lr = [0.001]

    feature_dim = 33
    num_classes = 132
    context = 2

    os.chdir(data_path)

    features_file = "glob_0000.scp"
    labels_file = "glob_0000.mlf"
    label_mapping_file = "state.list"

    fd = HTKFeatureDeserializer(StreamDefs(
        amazing_features = StreamDef(shape=feature_dim, context=(context,context), scp=features_file)))

    ld = HTKMLFDeserializer(label_mapping_file, StreamDefs(
        awesome_labels = StreamDef(shape=num_classes, mlf=labels_file)))

    reader = MinibatchSource([fd,ld])

    features = C.input_variable(((2*context+1)*feature_dim))
    labels = C.input_variable((num_classes))

    model = Sequential([For(range(3), lambda : Recurrence(LSTM(256))),
                        Dense(num_classes)])
    z = model(features)
    ce = C.cross_entropy_with_softmax(z, labels)
    errs = C.classification_error    (z, labels)

    learner = C.adam_sgd(z.parameters,
                    lr=C.learning_rate_schedule(lr, C.UnitType.sample, epoch_size),
                    momentum=C.momentum_as_time_constant_schedule(1000),
                    low_memory=True,
                    gradient_clipping_threshold_per_sample=15, gradient_clipping_with_truncation=True)
    trainer = C.Trainer(z, (ce, errs), learner)

    input_map={ features: reader.streams.amazing_features, labels: reader.streams.awesome_labels }

    pp = C.ProgressPrinter(freq=0)
    # just run and verify it doesn't crash
    for i in range(3):
        mb_data = reader.next_minibatch(mbsize, input_map=input_map)
        trainer.train_minibatch(mb_data)
        pp.update_with_trainer(trainer, with_metric=True)
    assert True
    os.chdir(abs_path)
Пример #16
0
def test_prefetch_with_unpacking(tmpdir):
    data = r'''0  |S0 1 1 1 1   |S1 1000
1   |S0 2 2 2 2  |S1 100
2   |S0 3 3 3 3  |S1 100
3   |S0 1 1 1 1  |S1 10
4   |S0 2 2 2 2  |S1 1
5   |S0 3 3 3 3  |S1 2000
6   |S0 1 1 1 1  |S1 200
7   |S0 2 2 2 2  |S1 200
8   |S0 3 3 3 3  |S1 20
9   |S0 1 1 1 1  |S1 2
'''
    import time
    tmpfile = _write_data(tmpdir, data)

    input_dim = 4
    num_output_classes = 1

    mb_source = MinibatchSource(CTFDeserializer(
        tmpfile,
        StreamDefs(features=StreamDef(field='S0',
                                      shape=input_dim,
                                      is_sparse=False),
                   labels=StreamDef(field='S1',
                                    shape=num_output_classes,
                                    is_sparse=False))),
                                randomize=False,
                                max_samples=FULL_DATA_SWEEP)

    input_map = {
        'S0': mb_source.streams.features,
        'S1': mb_source.streams.labels
    }
    empty = False
    mb_size = 3
    # On the last minibatch there will be resize called,
    # due to 10%3 = 1 sample  in the minibatch
    while not empty:
        mb = mb_source.next_minibatch(mb_size, input_map=input_map)
        time.sleep(1)  # make sure the prefetch kicks in
        if mb:
            # Force unpacking to check that we do
            # not break prefetch
            actual_size = mb['S0'].shape[0]
            assert (mb['S0'].asarray() == np.array(
                [[[1, 1, 1, 1]], [[2, 2, 2, 2]], [[3, 3, 3, 3]]],
                dtype=np.float32)[0:actual_size]).all()
        else:
            empty = True
Пример #17
0
def test_text_format(tmpdir):
    tmpfile = _write_data(tmpdir, MBDATA_SPARSE)

    input_dim = 1000
    num_output_classes = 5

    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
        features=StreamDef(field='x', shape=input_dim, is_sparse=True),
        labels=StreamDef(field='y', shape=num_output_classes, is_sparse=False)
    )), randomize=False)

    assert isinstance(mb_source, MinibatchSource)

    features_si = mb_source.stream_info('features')
    labels_si = mb_source.stream_info('labels')

    mb = mb_source.next_minibatch(7)

    features = mb[features_si]
    # 2 samples, max seq len 4, 1000 dim
    assert features.shape == (2, 4, input_dim)
    assert features.end_of_sweep
    assert features.num_sequences == 2
    assert features.num_samples == 7
    assert features.is_sparse

    labels = mb[labels_si]
    # 2 samples, max seq len 1, 5 dim
    assert labels.shape == (2, 1, num_output_classes)
    assert labels.end_of_sweep
    assert labels.num_sequences == 2
    assert labels.num_samples == 2
    assert not labels.is_sparse

    label_data = labels.asarray()
    assert np.allclose(label_data,
                       np.asarray([
                           [[1.,  0.,  0.,  0.,  0.]],
                           [[0.,  1.,  0.,  0.,  0.]]
                       ]))

    mb = mb_source.next_minibatch(1)
    features = mb[features_si]
    labels = mb[labels_si]

    assert not features.end_of_sweep
    assert not labels.end_of_sweep
    assert features.num_samples < 7
    assert labels.num_samples == 1
Пример #18
0
def test_base64_is_equal_image(tmpdir):
    import io, base64
    from PIL import Image
    np.random.seed(1)

    file_mapping_path = str(tmpdir / 'file_mapping.txt')
    base64_mapping_path = str(tmpdir / 'base64_mapping.txt')

    with open(file_mapping_path, 'w') as file_mapping:
        with open(base64_mapping_path, 'w') as base64_mapping:
            for i in range(10):
                data = np.random.randint(0, 2**8, (5, 7, 3))
                image = Image.fromarray(data.astype('uint8'), "RGB")
                buf = io.BytesIO()
                image.save(buf, format='PNG')
                assert image.width == 7 and image.height == 5

                label = str(i)
                # save to base 64 mapping file
                encoded = base64.b64encode(buf.getvalue()).decode('ascii')
                base64_mapping.write('%s\t%s\n' % (label, encoded))

                # save to mapping + png file
                file_name = label + '.png'
                with open(str(tmpdir / file_name), 'wb') as f:
                    f.write(buf.getvalue())
                file_mapping.write('.../%s\t%s\n' % (file_name, label))

    transforms = [xforms.scale(width=7, height=5, channels=3)]
    b64_deserializer = Base64ImageDeserializer(
        base64_mapping_path,
        StreamDefs(images1=StreamDef(field='image', transforms=transforms),
                   labels1=StreamDef(field='label', shape=10)))

    file_image_deserializer = ImageDeserializer(
        file_mapping_path,
        StreamDefs(images2=StreamDef(field='image', transforms=transforms),
                   labels2=StreamDef(field='label', shape=10)))

    mb_source = MinibatchSource([b64_deserializer, file_image_deserializer])
    for j in range(20):
        mb = mb_source.next_minibatch(1)

        images1_stream = mb_source.streams['images1']
        images1 = mb[images1_stream].asarray()
        images2_stream = mb_source.streams['images2']
        images2 = mb[images2_stream].asarray()
        assert (images1 == images2).all()
Пример #19
0
def test_crop_dimensionality(tmpdir):
    import io; from PIL import Image
    np.random.seed(1)

    file_mapping_path = str(tmpdir / 'file_mapping.txt')
    with open(file_mapping_path, 'w') as file_mapping:
        for i in range(5):
            data = np.random.randint(0, 2**8, (20, 40, 3))
            image = Image.fromarray(data.astype('uint8'), "RGB")
            buf = io.BytesIO()
            image.save(buf, format='PNG')
            assert image.width == 40 and image.height == 20
            
            label = str(i) 
            # save to mapping + png file
            file_name = label + '.png'
            with open(str(tmpdir/file_name), 'wb') as f:
                f.write(buf.getvalue())
            file_mapping.write('.../%s\t%s\n' % (file_name, label))

    transforms1 = [
        xforms.scale(width=40, height=20, channels=3),
        xforms.crop(crop_type='randomside', 
                    crop_size=(20, 10), side_ratio=(0.2, 0.5),
                    jitter_type='uniratio')]

    transforms2 = [
        xforms.crop(crop_type='randomside', 
                    crop_size=(20, 10), side_ratio=(0.2, 0.5),
                    jitter_type='uniratio')]

    d1 = ImageDeserializer(file_mapping_path,
        StreamDefs(
            images1=StreamDef(field='image', transforms=transforms1),
            labels1=StreamDef(field='label', shape=10)))

    d2 = ImageDeserializer(file_mapping_path,
        StreamDefs(
            images2=StreamDef(field='image', transforms=transforms2),
            labels2=StreamDef(field='label', shape=10)))

    mbs = MinibatchSource([d1, d2])
    for j in range(5):
        mb = mbs.next_minibatch(1)
        images1 = mb[mbs.streams.images1].asarray()
        images2 = mb[mbs.streams.images2].asarray()
        assert images1.shape == (1, 1, 3, 10, 20)
        assert (images1 == images2).all()
Пример #20
0
def test_crop_dimensionality(tmpdir):
    import io; from PIL import Image
    np.random.seed(1)

    file_mapping_path = str(tmpdir / 'file_mapping.txt')
    with open(file_mapping_path, 'w') as file_mapping:
        for i in range(5):
            data = np.random.randint(0, 2**8, (20, 40, 3))
            image = Image.fromarray(data.astype('uint8'), "RGB")
            buf = io.BytesIO()
            image.save(buf, format='PNG')
            assert image.width == 40 and image.height == 20
            
            label = str(i) 
            # save to mapping + png file
            file_name = label + '.png'
            with open(str(tmpdir/file_name), 'wb') as f:
                f.write(buf.getvalue())
            file_mapping.write('.../%s\t%s\n' % (file_name, label))

    transforms1 = [
        xforms.scale(width=40, height=20, channels=3),
        xforms.crop(crop_type='randomside', 
                    crop_size=(20, 10), side_ratio=(0.2, 0.5),
                    jitter_type='uniratio')]

    transforms2 = [
        xforms.crop(crop_type='randomside', 
                    crop_size=(20, 10), side_ratio=(0.2, 0.5),
                    jitter_type='uniratio')]

    d1 = ImageDeserializer(file_mapping_path,
        StreamDefs(
            images1=StreamDef(field='image', transforms=transforms1),
            labels1=StreamDef(field='label', shape=10)))

    d2 = ImageDeserializer(file_mapping_path,
        StreamDefs(
            images2=StreamDef(field='image', transforms=transforms2),
            labels2=StreamDef(field='label', shape=10)))

    mbs = MinibatchSource([d1, d2])
    for j in range(5):
        mb = mbs.next_minibatch(1)
        images1 = mb[mbs.streams.images1].asarray()
        images2 = mb[mbs.streams.images2].asarray()
        assert images1.shape == (1, 1, 3, 10, 20)
        assert (images1 == images2).all()
Пример #21
0
def create_reader(path,
                  vocab_dim,
                  entity_dim,
                  randomize,
                  rand_size=DEFAULT_RANDOMIZATION_WINDOW,
                  size=INFINITELY_REPEAT):
    """
  Create data reader for the model
  Args:
    path: The data path
    vocab_dim: The dimention of the vocabulary
    entity_dim: The dimention of entities
    randomize: Where to shuffle the data before feed into the trainer
  """
    return MinibatchSource(CTFDeserializer(
        path,
        StreamDefs(context=StreamDef(field='C',
                                     shape=vocab_dim,
                                     is_sparse=True),
                   query=StreamDef(field='Q', shape=vocab_dim, is_sparse=True),
                   entities=StreamDef(field='E', shape=1, is_sparse=False),
                   label=StreamDef(field='L', shape=1, is_sparse=False),
                   entity_ids=StreamDef(field='EID',
                                        shape=entity_dim,
                                        is_sparse=True))),
                           randomize=randomize)
Пример #22
0
def create_reader(map_file, mean_file, train, distributed_communicator=None):
    if not os.path.exists(map_file) or not os.path.exists(mean_file):
        cifar_py3 = "" if sys.version_info.major < 3 else "_py3"
        raise RuntimeError(
            "File '%s' or '%s' does not exist. Please run CifarDownload%s.py and CifarConverter%s.py from CIFAR-10 to fetch them"
            % (map_file, mean_file, cifar_py3, cifar_py3))

    # transformation pipeline for the features has jitter/crop only when training
    transforms = []
    if train:
        transforms += [
            ImageDeserializer.crop(crop_type='Random',
                                   ratio=0.8,
                                   jitter_type='uniRatio')  # train uses jitter
        ]
    transforms += [
        ImageDeserializer.scale(width=image_width,
                                height=image_height,
                                channels=num_channels,
                                interpolations='linear'),
        ImageDeserializer.mean(mean_file)
    ]
    # deserializer
    return MinibatchSource(
        ImageDeserializer(
            map_file,
            StreamDefs(
                features=StreamDef(
                    field='image', transforms=transforms
                ),  # first column in map file is referred to as 'image'
                labels=StreamDef(field='label',
                                 shape=num_classes))),  # and second as 'label'
        distributed_communicator=distributed_communicator)
Пример #23
0
def create_mb_source(image_height, image_width, num_channels, map_file):
    transforms = [ImageDeserializer.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear')]
    image_source = ImageDeserializer(map_file)
    image_source.ignore_labels()
    image_source.map_features('features', transforms)

    return MinibatchSource(image_source, randomize=False)
Пример #24
0
def create_reader(map_file,
                  mean_file,
                  train,
                  image_height=64,
                  image_width=64,
                  num_channels=3,
                  num_classes=32):

    # transformation pipeline for the features has jitter/crop only when training
    # https://docs.microsoft.com/en-us/python/api/cntk.io.transforms?view=cntk-py-2.2
    trs = []
    if train:
        trs += [
            transforms.crop(crop_type='randomside',
                            side_ratio=0,
                            jitter_type='none')  # Horizontal flip enabled
        ]
    trs += [
        transforms.scale(width=image_width,
                         height=image_height,
                         channels=num_channels,
                         interpolations='linear'),
        transforms.mean(mean_file)
    ]
    # deserializer
    image_source = ImageDeserializer(
        map_file,
        StreamDefs(
            features=StreamDef(
                field='image', transforms=trs
            ),  # first column in map file is referred to as 'image'
            labels=StreamDef(field='label',
                             shape=num_classes)  # and second as 'label'
        ))
    return MinibatchSource(image_source)
def create_mb_source(data_set, img_height, img_width, n_classes, n_rois, data_path, randomize):
    # set paths
    map_file   = join(data_path, data_set + '.txt')
    roi_file   = join(data_path, data_set + '.rois.txt')
    label_file = join(data_path, data_set + '.roilabels.txt')
    if not os.path.exists(map_file) or not os.path.exists(roi_file) or not os.path.exists(label_file):
        raise RuntimeError("File '%s', '%s' or '%s' does not exist. " % (map_file, roi_file, label_file))

    # read images
    nrImages = len(readTable(map_file))
    transforms = [scale(width=img_width, height=img_height, channels=3,
                        scale_mode="pad", pad_value=114, interpolations='linear')]
    image_source = ImageDeserializer(map_file, StreamDefs(features = StreamDef(field='image', transforms=transforms)))

    # read rois and labels
    rois_dim  = 4 * n_rois
    label_dim = n_classes * n_rois
    roi_source = CTFDeserializer(roi_file, StreamDefs(
        rois = StreamDef(field='rois', shape=rois_dim, is_sparse=False)))
    label_source = CTFDeserializer(label_file, StreamDefs(
        roiLabels = StreamDef(field='roiLabels', shape=label_dim, is_sparse=False)))

    # define a composite reader
    mb = MinibatchSource([image_source, roi_source, label_source], epoch_size=sys.maxsize, randomize=randomize)
    return (mb, nrImages)
Пример #26
0
def create_video_mb_source(map_files, num_channels, image_height, image_width,
                           num_classes):
    transforms = [
        xforms.crop(crop_type='center', crop_size=224),
        xforms.scale(width=image_width,
                     height=image_height,
                     channels=num_channels,
                     interpolations='linear')
    ]

    map_files = sorted(map_files,
                       key=lambda x: int(x.split('Map_')[1].split('.')[0]))
    print(map_files)

    # Create multiple image sources
    sources = []
    for i, map_file in enumerate(map_files):
        streams = {
            "feature" + str(i): StreamDef(field='image',
                                          transforms=transforms),
            "label" + str(i): StreamDef(field='label', shape=num_classes)
        }
        sources.append(ImageDeserializer(map_file, StreamDefs(**streams)))

    return MinibatchSource(sources, max_sweeps=1, randomize=False)
Пример #27
0
def test_multiple_streams_in_htk():
    feature_dim = 33
    context = 2

    os.chdir(data_path)

    features_file = "glob_0000.scp"

    fd = HTKFeatureDeserializer(StreamDefs(
        amazing_features = StreamDef(shape=feature_dim, context=(context,context), scp=features_file),
        amazing_features2 = StreamDef(shape=feature_dim, context=(context,context), scp=features_file)))

    mbs = MinibatchSource([fd])
    mb = mbs.next_minibatch(1)
    assert (mb[mbs.streams.amazing_features].asarray() == mb[mbs.streams.amazing_features2].asarray()).all()
    os.chdir(abs_path)
def create_reader(map_file, train, dimensions, classes,
                  total_number_of_samples):
    print(
        f"Reading map file: {map_file} with number of samples {total_number_of_samples}"
    )

    # transformation pipeline for the features has jitter/crop only when training
    transforms = []
    # finalize_network uses data augmentation (translation only)
    if train:
        transforms += [
            xforms.crop(crop_type='randomside',
                        area_ratio=(0.08, 1.0),
                        aspect_ratio=(0.75, 1.3333),
                        jitter_type='uniratio'),
            xforms.color(brightness_radius=0.4,
                         contrast_radius=0.4,
                         saturation_radius=0.4)
        ]
    transforms += [
        xforms.scale(width=dimensions['width'],
                     height=dimensions['height'],
                     channels=dimensions['depth'],
                     interpolations='linear')
    ]
    source = MinibatchSource(ImageDeserializer(
        map_file,
        StreamDefs(features=StreamDef(field='image', transforms=transforms),
                   labels=StreamDef(field='label', shape=len(classes)))),
                             randomize=train,
                             max_samples=total_number_of_samples,
                             multithreaded_deserializer=True)
    return source
Пример #29
0
def create_mb_source(img_height, img_width, img_channels, n_classes, n_rois, data_path, data_set):
    rois_dim = 4 * n_rois
    label_dim = n_classes * n_rois

    path = os.path.normpath(os.path.join(abs_path, data_path))
    if data_set == 'test':
        map_file = os.path.join(path, test_map_filename)
    else:
        map_file = os.path.join(path, train_map_filename)
    roi_file = os.path.join(path, data_set + rois_filename_postfix)
    label_file = os.path.join(path, data_set + roilabels_filename_postfix)

    if not os.path.exists(map_file) or not os.path.exists(roi_file) or not os.path.exists(label_file):
        raise RuntimeError("File '%s', '%s' or '%s' does not exist. "
                           "Please run install_fastrcnn.py from Examples/Image/Detection/FastRCNN to fetch them" %
                           (map_file, roi_file, label_file))

    # read images
    image_source = ImageDeserializer(map_file)
    image_source.ignore_labels()
    image_source.map_features(features_stream_name,
                              [ImageDeserializer.scale(width=img_width, height=img_height, channels=img_channels,
                                                       scale_mode="pad", pad_value=114, interpolations='linear')])

    # read rois and labels
    roi_source = CTFDeserializer(roi_file)
    roi_source.map_input(roi_stream_name, dim=rois_dim, format="dense")
    label_source = CTFDeserializer(label_file)
    label_source.map_input(label_stream_name, dim=label_dim, format="dense")

    # define a composite reader
    return MinibatchSource([image_source, roi_source, label_source], epoch_size=sys.maxsize, randomize=data_set == "train")
Пример #30
0
def create_image_mb_source(map_file, is_training, total_number_of_samples):
    if not os.path.exists(map_file):
        raise RuntimeError("File '%s' does not exist." %map_file)

    # transformation pipeline for the features has jitter/crop only when training
    transforms = []
    if is_training:
        transforms += [
            xforms.crop(crop_type='randomside', side_ratio=0.88671875, jitter_type='uniratio') # train uses jitter
        ]
    else:
        transforms += [
            xforms.crop(crop_type='center', side_ratio=0.88671875) # test has no jitter
        ]

    transforms += [
        xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'),
    ]

    # deserializer
    return MinibatchSource(
        ImageDeserializer(map_file, StreamDefs(
            features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image'
            labels   = StreamDef(field='label', shape=num_classes))),   # and second as 'label'
        randomize = is_training,
        epoch_size=total_number_of_samples,
        multithreaded_deserializer = True)
Пример #31
0
def create_reader(map_file, mean_file, train):

    # transformation pipeline for the features has jitter/crop only when training
    trs = []
    #    if train:
    #        transforms += [
    #            ImageDeserializer.crop(crop_type='Random', ratio=0.8, jitter_type='uniRatio') # train uses jitter
    #        ]
    trs += [
        transforms.scale(width=image_width,
                         height=image_height,
                         channels=num_channels,
                         interpolations='linear'),
        transforms.mean(mean_file)
    ]
    # deserializer
    return MinibatchSource(
        ImageDeserializer(
            map_file,
            StreamDefs(
                features=StreamDef(
                    field='image', transforms=trs
                ),  # first column in map file is referred to as 'image'
                labels=StreamDef(field='label',
                                 shape=num_classes)  # and second as 'label'
            )))
Пример #32
0
def create_reader(map_file, mean_file, train):
    if not os.path.exists(map_file) or not os.path.exists(mean_file):
        raise RuntimeError(
            "File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them"
            % (map_file, mean_file))

    # transformation pipeline for the features has jitter/crop only when training
    transforms = []
    if train:
        transforms += [
            xforms.crop(crop_type='randomside',
                        side_ratio=0.8,
                        jitter_type='uniratio')  # train uses jitter
        ]
    transforms += [
        xforms.scale(width=image_width,
                     height=image_height,
                     channels=num_channels,
                     interpolations='linear'),
        xforms.mean(mean_file)
    ]
    # deserializer
    return MinibatchSource(
        ImageDeserializer(
            map_file,
            StreamDefs(
                features=StreamDef(
                    field='image', transforms=transforms
                ),  # first column in map file is referred to as 'image'
                labels=StreamDef(field='label',
                                 shape=num_classes))))  # and second as 'label'
Пример #33
0
def test_create_two_image_deserializers(tmpdir):
    mbdata = r'''filename	0
filename2	0
'''

    map_file = str(tmpdir / 'mbdata.txt')
    with open(map_file, 'w') as f:
        f.write(mbdata)

    image_width = 100
    image_height = 200
    num_channels = 3

    transforms = [
        xforms.crop(crop_type='randomside',
                    side_ratio=0.5,
                    jitter_type='uniratio'),
        xforms.scale(width=image_width,
                     height=image_height,
                     channels=num_channels,
                     interpolations='linear')
    ]

    image1 = ImageDeserializer(
        map_file,
        StreamDefs(f1=StreamDef(field='image', transforms=transforms)))
    image2 = ImageDeserializer(
        map_file,
        StreamDefs(f2=StreamDef(field='image', transforms=transforms)))

    mb_source = MinibatchSource([image1, image2])
    assert isinstance(mb_source, MinibatchSource)
Пример #34
0
def create_image_mb_source(map_file, mean_file, is_training, total_number_of_samples):
    if not os.path.exists(map_file) or not os.path.exists(mean_file):
        raise RuntimeError("File '%s' or '%s' does not exist." %
                          (map_file, mean_file))

    # transformation pipeline for the features has jitter/crop only when training
    transforms = []
    if is_training:
        transforms += [
            xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter
            ]
    else:
        transforms += [
            xforms.crop(crop_type='center', crop_size=IMAGE_WIDTH)
        ]

    transforms += [
        xforms.scale(width=IMAGE_WIDTH, height=IMAGE_HEIGHT, channels=NUM_CHANNELS, interpolations='linear'),
        xforms.mean(mean_file)
    ]

    # deserializer
    return MinibatchSource(
        ImageDeserializer(map_file, StreamDefs(
            features=StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image'
            labels=StreamDef(field='label', shape=NUM_CLASSES))),   # and second as 'label'
        randomize=is_training,
        max_samples=total_number_of_samples,
        multithreaded_deserializer = True)
Пример #35
0
def create_mb_source(image_height, image_width, num_channels, map_file, mean_file, is_training):
    if not os.path.exists(map_file):
        raise RuntimeError("File '%s' does not exist." % (map_file))

    # transformation pipeline for the features has jitter/crop only when training
    transforms = []
    if is_training:
        transforms += [
            xforms.crop(crop_type='randomside', side_ratio=0.875, jitter_type='uniratio') # train uses jitter
        ]
    else: 
        transforms += [
            xforms.crop(crop_type='center', side_ratio=0.875) # test has no jitter
        ]

    transforms += [
        xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'),        
    ]

    if mean_file != '':
        transforms += [
            xforms.mean(mean_file),
        ]        

    # deserializer
    return MinibatchSource(
        ImageDeserializer(map_file, StreamDefs(
            features = StreamDef(field='image', transforms=transforms) # first column in map file is referred to as 'image'
            )),  
        randomize = is_training, 
        multithreaded_deserializer = True,
        max_sweeps = 1)
Пример #36
0
def test_base64_is_equal_image(tmpdir):
    import io, base64; from PIL import Image
    np.random.seed(1)

    file_mapping_path = str(tmpdir / 'file_mapping.txt')
    base64_mapping_path = str(tmpdir / 'base64_mapping.txt')

    with open(file_mapping_path, 'w') as file_mapping:
        with open(base64_mapping_path, 'w') as base64_mapping:
            for i in range(10):
                data = np.random.randint(0, 2**8, (5,7,3))
                image = Image.fromarray(data.astype('uint8'), "RGB")
                buf = io.BytesIO()
                image.save(buf, format='PNG')
                assert image.width == 7 and image.height == 5
                
                label = str(i) 
                # save to base 64 mapping file
                encoded = base64.b64encode(buf.getvalue()).decode('ascii')
                base64_mapping.write('%s\t%s\n' % (label, encoded))
         
                # save to mapping + png file
                file_name = label + '.png'
                with open(str(tmpdir/file_name), 'wb') as f:
                    f.write(buf.getvalue())
                file_mapping.write('.../%s\t%s\n' % (file_name, label))

    transforms = [xforms.scale(width=7, height=5, channels=3)]
    b64_deserializer = Base64ImageDeserializer(base64_mapping_path,
        StreamDefs(
            images1=StreamDef(field='image', transforms=transforms),
            labels1=StreamDef(field='label', shape=10)))

    file_image_deserializer = ImageDeserializer(file_mapping_path,
        StreamDefs(
            images2=StreamDef(field='image', transforms=transforms),
            labels2=StreamDef(field='label', shape=10)))

    mb_source = MinibatchSource([b64_deserializer, file_image_deserializer])
    for j in range(20):
        mb = mb_source.next_minibatch(1)

        images1_stream = mb_source.streams['images1']
        images1 = mb[images1_stream].asarray()
        images2_stream = mb_source.streams['images2']
        images2 = mb[images2_stream].asarray()
        assert(images1 == images2).all()
def create_reader(path, randomize, input_vocab_dim, label_vocab_dim, size=INFINITELY_REPEAT):
    if not os.path.exists(path):
        raise RuntimeError("File '%s' does not exist." % (path))

    return MinibatchSource(CTFDeserializer(path, StreamDefs(
        features  = StreamDef(field='S0', shape=input_vocab_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=label_vocab_dim,  is_sparse=True)
    )), randomize=randomize, max_samples = size)
Пример #38
0
def create_reader(path, is_training, input_dim, num_label_classes):
    """
    reads CNTK formatted file with 'labels' and 'features'
    """    
    return MinibatchSource(CTFDeserializer(path, StreamDefs(
        labels = StreamDef(field='labels', shape=num_label_classes),
        features   = StreamDef(field='features', shape=input_dim)
    )), randomize = is_training, max_sweeps = INFINITELY_REPEAT if is_training else 1)   
Пример #39
0
def create_reader_raw(path, is_training, input_dim, num_label_classes):
    """
    Reads in the unstardized values.
    """
    return MinibatchSource(CTFDeserializer(path, StreamDefs(
        labels = StreamDef(field='rawlabels', shape=num_label_classes),
        features   = StreamDef(field='rawfeatures', shape=input_dim)
    )), randomize = is_training, max_sweeps = INFINITELY_REPEAT if is_training else 1)        
Пример #40
0
def create_reader(path, is_training, input_dim, label_dim):
    return MinibatchSource(
        CTFDeserializer(
            path,
            StreamDefs(features=StreamDef(field='features', shape=input_dim),
                       labels=StreamDef(field='labels', shape=label_dim))),
        randomize=is_training,
        epoch_size=INFINITELY_REPEAT if is_training else FULL_DATA_SWEEP)
Пример #41
0
def test_full_sweep_minibatch(tmpdir):
    tmpfile = _write_data(tmpdir, MBDATA_DENSE_1)

    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
        features  = StreamDef(field='S0', shape=1),
        labels    = StreamDef(field='S1', shape=1))),
        randomization_window_in_chunks=0, max_sweeps=1)

    features_si = mb_source.stream_info('features')
    labels_si = mb_source.stream_info('labels')

    mb = mb_source.next_minibatch(1000)

    assert mb[features_si].num_sequences == 2
    assert mb[labels_si].num_sequences == 2

    features = mb[features_si]
    assert features.end_of_sweep
    assert len(features.as_sequences()) == 2
    expected_features = \
        [
            [[0], [1], [2], [3]],
            [[4], [5], [6]]
        ]

    for res, exp in zip(features.as_sequences(), expected_features):
        assert np.allclose(res, exp)

    assert np.allclose(features.data.mask,
            [[2, 1, 1, 1],
             [2, 1, 1, 0]])

    labels = mb[labels_si]
    assert labels.end_of_sweep
    assert len(labels.as_sequences()) == 2
    expected_labels = \
            [
                [[0],[1],[3]],
                [[1],[2]]
            ]
    for res, exp in zip(labels.as_sequences(), expected_labels):
        assert np.allclose(res, exp)

    assert np.allclose(labels.data.mask,
            [[2, 1, 1],
             [2, 1, 0]])
Пример #42
0
def test_mlf_binary_files():
    os.chdir(data_path)

    feature_dim = 33
    num_classes = 132
    context = 2

    features_file = "glob_0000.scp"

    fd = HTKFeatureDeserializer(StreamDefs(
        amazing_features = StreamDef(shape=feature_dim, context=(context,context), scp=features_file)))

    ld = HTKMLFBinaryDeserializer(StreamDefs(awesome_labels = StreamDef(shape=num_classes, mlf=e2e_data_path + "mlf2.bin")))

    # Make sure we can read at least one minibatch.
    mbsource = MinibatchSource([fd,ld])
    mbsource.next_minibatch(1)

    os.chdir(abs_path)
Пример #43
0
def test_prefetch_with_unpacking(tmpdir):
    data = r'''0  |S0 1 1 1 1   |S1 1000
1   |S0 2 2 2 2  |S1 100
2   |S0 3 3 3 3  |S1 100
3   |S0 1 1 1 1  |S1 10
4   |S0 2 2 2 2  |S1 1
5   |S0 3 3 3 3  |S1 2000
6   |S0 1 1 1 1  |S1 200
7   |S0 2 2 2 2  |S1 200
8   |S0 3 3 3 3  |S1 20
9   |S0 1 1 1 1  |S1 2
'''
    import time
    tmpfile = _write_data(tmpdir, data)

    input_dim = 4
    num_output_classes = 1

    mb_source = MinibatchSource(CTFDeserializer(tmpfile, StreamDefs(
        features=StreamDef(field='S0', shape=input_dim, is_sparse=False),
        labels=StreamDef(field='S1', shape=num_output_classes, is_sparse=False)
    )), randomize=False, max_samples=FULL_DATA_SWEEP)

    input_map = { 'S0' : mb_source.streams.features, 'S1' : mb_source.streams.labels }
    empty = False
    mb_size = 3
    # On the last minibatch there will be resize called, 
    # due to 10%3 = 1 sample  in the minibatch
    while not empty:
        mb = mb_source.next_minibatch(mb_size, input_map=input_map)
        time.sleep(1) # make sure the prefetch kicks in
        if mb:
            # Force unpacking to check that we do 
            # not break prefetch 
            actual_size = mb['S0'].shape[0]
            assert (mb['S0'].asarray() == np.array([[[1, 1, 1, 1]],
                                                    [[2, 2, 2, 2]],
                                                    [[3, 3, 3, 3]]], dtype=np.float32)[0:actual_size]).all()
        else:
            empty = True
Пример #44
0
def test_max_samples_over_several_sweeps(tmpdir):
    mb_source = MinibatchSource(
        create_ctf_deserializer(tmpdir), max_samples=11)

    input_map = {'features': mb_source['features']}

    for i in range(2):
        mb = mb_source.next_minibatch(5, input_map)

        assert 'features' in mb
        assert mb['features'].num_samples == 5
        assert mb['features'].end_of_sweep

    mb = mb_source.next_minibatch(5, input_map)

    assert 'features' in mb
    assert mb['features'].num_samples == 1
    assert not mb['features'].end_of_sweep

    mb = mb_source.next_minibatch(1, input_map)

    assert not mb
Пример #45
0
def test_max_sweeps(tmpdir):
    # set max sweeps to 3 (12 samples altogether).
    mb_source = MinibatchSource(
        create_ctf_deserializer(tmpdir), max_sweeps=3)

    input_map = {'features': mb_source['features']}

    for i in range(2):
        mb = mb_source.next_minibatch(5, input_map)

        assert 'features' in mb
        assert mb['features'].num_samples == 5
        assert mb['features'].end_of_sweep

    mb = mb_source.next_minibatch(5, input_map)

    assert 'features' in mb
    assert mb['features'].num_samples == 2
    assert mb['features'].end_of_sweep

    mb = mb_source.next_minibatch(1, input_map)

    assert not mb
Пример #46
0
def test_multiple_mlf_files():
    os.chdir(data_path)

    feature_dim = 33
    num_classes = 132
    context = 2

    test_mlf_path = e2e_data_path+"glob_00001.mlf"

    features_file = "glob_0000.scp"
    label_files = [ "glob_0000.mlf", test_mlf_path]
    label_mapping_file = "state.list"

    fd = HTKFeatureDeserializer(StreamDefs(
        amazing_features = StreamDef(shape=feature_dim, context=(context,context), scp=features_file)))

    ld = HTKMLFDeserializer(label_mapping_file, StreamDefs(
        awesome_labels = StreamDef(shape=num_classes, mlf=label_files)))

    # Make sure we can read at least one minibatch.
    mbsource = MinibatchSource([fd,ld])
    mbsource.next_minibatch(1)

    os.chdir(abs_path)
Пример #47
0
    def compare_cbf_and_ctf(num_mbs, mb_size, randomize):
        ctf = MinibatchSource(CTFDeserializer(tmpfile, streams), randomize=randomize)
        cbf = MinibatchSource(CBFDeserializer(tmpfile+'.bin', streams), randomize=randomize)

        ctf_stream_names = sorted([x.m_name for x in ctf.stream_infos()])
        cbf_stream_names = sorted([x.m_name for x in cbf.stream_infos()])

        assert(ctf_stream_names == cbf_stream_names)
        for _ in range(num_mbs):
            ctf_mb = ctf.next_minibatch(mb_size, device=device)
            cbf_mb = cbf.next_minibatch(mb_size, device=device)

            for name in cbf_stream_names:
                ctf_data = ctf_mb[ctf[name]]
                cbf_data = cbf_mb[cbf[name]]

                
                assert ctf_data.num_samples == cbf_data.num_samples
                assert ctf_data.num_sequences == cbf_data.num_sequences
                assert ctf_data.shape == cbf_data.shape
                assert ctf_data.end_of_sweep == cbf_data.end_of_sweep
                assert ctf_data.is_sparse == cbf_data.is_sparse
                assert ctf_data.data.masked_count() == cbf_data.data.masked_count()

                # XXX:
                # assert(ctf_data.asarray() == cbf_data.asarray()).all()
                # not using asarray because for sparse values it fails with
                # some strange exception "sum of the rank of the mask and Variable 
                #rank does not equal the Value's rank".

                assert C.cntk_py.are_equal(ctf_data.data.data, cbf_data.data.data)

                if (ctf_data.data.masked_count() > 0):
                    assert (ctf_data.data.mask == cbf_data.data.mask).all()
                # XXX: if mask_count is zero, mb_data.data.mask fails with 
                # "AttributeError: 'Value' object has no attribute 'mask'"!

                # XXX: without invoking erase, next_minibatch will fail with:
                # "Resize: Cannot resize the matrix because it is a view."
                ctf_data.data.erase()
                cbf_data.data.erase()
def generate_visualization(use_brain_script_model, testing=False):
    num_objects_to_eval = 5

    if (use_brain_script_model):
        model_file_name = "07_Deconvolution_BS.model"
        encoder_output_file_name = "encoder_output_BS.txt"
        decoder_output_file_name = "decoder_output_BS.txt"
        enc_node_name = "z.pool1"
        input_node_name = "f2"
        output_node_name = "z"
    else:
        model_file_name = "07_Deconvolution_PY.model"
        encoder_output_file_name = "encoder_output_PY.txt"
        decoder_output_file_name = "decoder_output_PY.txt"
        enc_node_name = "pooling_node"
        input_node_name = "input_node"
        output_node_name = "output_node"

    # define location of output, model and data and check existence
    output_path = os.path.join(abs_path, "Output")
    model_file = os.path.join(model_path, model_file_name)
    data_file = os.path.join(data_path, "Test-28x28_cntk_text.txt")
    if not (os.path.exists(model_file) and os.path.exists(data_file)):
        print("Cannot find required data or model. "
              "Please get the MNIST data set and run 'cntk configFile=07_Deconvolution_BS.cntk' or 'python 07_Deconvolution_PY.py' to create the model.")
        exit(0)

    # create minibatch source
    minibatch_source = MinibatchSource(CTFDeserializer(data_file, StreamDefs(
        features  = StreamDef(field='features', shape=(28*28)),
        labels    = StreamDef(field='labels',   shape=10)
    )), randomize=False, max_sweeps = 1)

    # use this to print all node names in the model
    # print_all_node_names(model_file, use_brain_script_model)

    # load model and pick desired nodes as output
    loaded_model = load_model(model_file)
    output_nodes = combine(
        [loaded_model.find_by_name(input_node_name).owner,
         loaded_model.find_by_name(enc_node_name).owner,
         loaded_model.find_by_name(output_node_name).owner])

    # evaluate model save output
    features_si = minibatch_source['features']
    with open(os.path.join(output_path, decoder_output_file_name), 'wb') as decoder_text_file:
        with open(os.path.join(output_path, encoder_output_file_name), 'wb') as encoder_text_file:
            for i in range(0, num_objects_to_eval):
                mb = minibatch_source.next_minibatch(1)
                raw_dict = output_nodes.eval(mb[features_si])
                output_dict = {}
                for key in raw_dict.keys(): output_dict[key.name] = raw_dict[key]

                encoder_input = output_dict[input_node_name]
                encoder_output = output_dict[enc_node_name]
                decoder_output = output_dict[output_node_name]
                in_values = (encoder_input[0,0].flatten())[np.newaxis]
                enc_values = (encoder_output[0,0].flatten())[np.newaxis]
                out_values = (decoder_output[0,0].flatten())[np.newaxis]

                if not testing:
                    # write results as text and png
                    np.savetxt(decoder_text_file, out_values, fmt="%.6f")
                    np.savetxt(encoder_text_file, enc_values, fmt="%.6f")
                    save_as_png(in_values,  os.path.join(output_path, "imageAutoEncoder_%s__input.png" % i))
                    save_as_png(out_values, os.path.join(output_path, "imageAutoEncoder_%s_output.png" % i))

                    # visualizing the encoding is only possible and meaningful with a single conv filter
                    enc_dim = 7
                    if(enc_values.size == enc_dim*enc_dim):
                        save_as_png(enc_values, os.path.join(output_path, "imageAutoEncoder_%s_encoding.png" % i), dim=enc_dim)

    print("Done. Wrote output to %s" % output_path)
Пример #49
0
def test_distributed_mb_source(tmpdir):
    input_dim = 69

    ctf_data = '''\
0	|S0 3:1 |# <s>	|S1 3:1 |# <s>
0	|S0 4:1 |# A	|S1 32:1 |# ~AH
0	|S0 5:1 |# B	|S1 36:1 |# ~B
0	|S0 4:1 |# A	|S1 31:1 |# ~AE
0	|S0 7:1 |# D	|S1 38:1 |# ~D
0	|S0 12:1 |# I	|S1 47:1 |# ~IY
0	|S0 1:1 |# </s>	|S1 1:1 |# </s>
2	|S0 60:1 |# <s>	|S1 3:1 |# <s>
2	|S0 61:1 |# A	|S1 32:1 |# ~AH
2	|S0 61:1 |# A	|S1 32:1 |# ~AH
3	|S0 60:1 |# <s>	|S1 3:1 |# <s>
3	|S0 61:1 |# A	|S1 32:1 |# ~AH
3	|S0 61:1 |# A	|S1 32:1 |# ~AH
3	|S0 61:1 |# A	|S1 32:1 |# ~AH
4	|S0 60:1 |# <s>	|S1 3:1 |# <s>
5	|S0 60:1 |# <s>	|S1 3:1 |# <s>
5	|S0 61:1 |# A	|S1 32:1 |# ~AH
6	|S0 60:1 |# <s>	|S1 3:1 |# <s>
6	|S0 61:1 |# A	|S1 32:1 |# ~AH
7	|S0 60:1 |# <s>	|S1 3:1 |# <s>
8	|S0 60:1 |# <s>	|S1 3:1 |# <s>
8	|S0 61:1 |# A	|S1 32:1 |# ~AH
9	|S0 60:1 |# <s>	|S1 3:1 |# <s>
9	|S0 61:1 |# A	|S1 32:1 |# ~AH
10	|S0 61:1 |# A	|S1 32:1 |# ~AH
'''
    from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs, FULL_DATA_SWEEP

    ctf_file = str(tmpdir/'2seqtest.txt')
    with open(ctf_file, 'w') as f:
        f.write(ctf_data)

    # No randomization

    mb0 = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
        features  = StreamDef(field='S0', shape=input_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=input_dim,  is_sparse=True)
        )), 
        randomize=False, epoch_size=36) # A bit more than a sweep
    mb1 = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
        features  = StreamDef(field='S0', shape=input_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=input_dim,  is_sparse=True)
        )), 
        randomize=False, epoch_size=36) # A bit more than a sweep
    input = input_variable(shape=(input_dim,))
    label = input_variable(shape=(input_dim,))
    input_map = {
        input : mb0.streams.features,
        label : mb0.streams.labels
    }

    # Because we emulating two workers here, the minibatch_size_in_samples will be splitted in 2,
    # so below we expect 5 samples per worker.
    data = mb0.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 7) # Sequence 0

    data = mb0.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 4) # Sequence 3

    data = mb0.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 5) # Sequences 5, 7, 9

    data = mb0.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 7) # Sequence 0

    data = mb0.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 4) # Sequence 3

    data = mb0.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(len(data) == 0) # No data

    data = mb1.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=1)
    assert(data[input].num_samples == 4) # Sequences 2, 4

    data = mb1.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=1)
    assert(data[input].num_samples == 5) # Sequences 6, 8, 10

    data = mb1.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=1)
    assert(data[input].num_samples == 3) # Sequences 2

    data = mb1.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=1)
    assert(len(data) == 0) # No data

    # Radomization

    mb3 = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
        features  = StreamDef(field='S0', shape=input_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=input_dim,  is_sparse=True)
        )), 
        randomize=True, epoch_size=FULL_DATA_SWEEP)

    mb4 = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
        features  = StreamDef(field='S0', shape=input_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=input_dim,  is_sparse=True)
        )), 
        randomize=True, epoch_size=FULL_DATA_SWEEP)

    data = mb3.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 5)

    data = mb3.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 4)

    data = mb3.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 4)

    data = mb3.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 5)

    data = mb3.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=0)
    assert(data[input].num_samples == 7)

    data = mb4.next_minibatch(minibatch_size_in_samples=10, input_map=input_map, num_data_partitions=2, partition_index=1)
    assert(len(data) == 0) # Due to chunking we do not expect any data for rank 1
Пример #50
0
def test_sweep_based_schedule(tmpdir, device_id):
    from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs
    from cntk import cross_entropy_with_softmax, classification_error, plus, reduce_sum, sequence
    from cntk import Trainer

    input_dim = 69

    ctf_data = '''\
0   |S0 3:1   |S1 3:1 |# <s>
0   |S0 4:1 |# A    |S1 32:1 |# ~AH
0   |S0 5:1 |# B    |S1 36:1 |# ~B
0   |S0 4:1 |# A    |S1 31:1 |# ~AE
0   |S0 7:1 |# D    |S1 38:1 |# ~D
0   |S0 12:1 |# I   |S1 47:1 |# ~IY
0   |S0 1:1 |# </s> |S1 1:1 |# </s>
2   |S0 60:1 |# <s> |S1 3:1 |# <s>
2   |S0 61:1 |# A   |S1 32:1 |# ~AH
'''
    ctf_file = str(tmpdir/'2seqtest.txt')
    with open(ctf_file, 'w') as f:
        f.write(ctf_data)

    mbs = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
        features  = StreamDef(field='S0', shape=input_dim,  is_sparse=True),
        labels    = StreamDef(field='S1', shape=input_dim,  is_sparse=True)
    )), randomize=False)

    in1 = sequence.input_variable(shape=(input_dim,))
    labels = sequence.input_variable(shape=(input_dim,))
    p = parameter(shape=(input_dim,), init=10)
    z = plus(in1, reduce_sum(p), name='z')
    ce = cross_entropy_with_softmax(z, labels)
    errs = classification_error(z, labels)

    lr_per_sample = learning_rate_schedule([0.3, 0.2, 0.1, 0.0], UnitType.sample)
    learner = sgd(z.parameters, lr_per_sample)
    trainer = Trainer(z, (ce, errs), [learner])

    input_map = {
        in1       : mbs.streams.features,
        labels : mbs.streams.labels
    }

    # fetch minibatch (first sequence)
    data = mbs.next_minibatch(1, input_map=input_map)
    trainer.train_minibatch(data)
    assert learner.learning_rate() == 0.3

    # fetch minibatch (second sequence, sweep ends at this point)
    data = mbs.next_minibatch(1, input_map=input_map)
    trainer.train_minibatch(data)
    assert learner.learning_rate() == 0.2

    # fetch minibatch (both sequences -- entire sweep in one go)
    data = mbs.next_minibatch(9, input_map=input_map)
    trainer.train_minibatch(data)
    assert learner.learning_rate() == 0.1

    # fetch minibatch (multiple sweeps)
    data = mbs.next_minibatch(30, input_map=input_map)
    trainer.train_minibatch(data, outputs=[z.output])
    assert learner.learning_rate() == 0.0
Пример #51
0
def test_base64_image_deserializer(tmpdir):
    import io, base64, uuid; from PIL import Image
    images, b64_images = [], []

    np.random.seed(1)
    for i in range(10):
        data = np.random.randint(0, 2**8, (5,7,3))
        image = Image.fromarray(data.astype('uint8'), "RGB")
        buf = io.BytesIO()
        image.save(buf, format='PNG')
        assert image.width == 7 and image.height == 5
        b64_images.append(base64.b64encode(buf.getvalue()))
        images.append(np.array(image))

    image_data = str(tmpdir / 'mbdata1.txt')
    seq_ids = []
    uid = uuid.uuid1().int >> 64
    with open(image_data, 'wb') as f:
        for i,data in enumerate(b64_images):
            seq_id = uid ^ i
            seq_id = str(seq_id).encode('ascii')
            seq_ids.append(seq_id)
            line = seq_id + b'\t'
            label = str(i).encode('ascii')
            line += label + b'\t' + data + b'\n'
            f.write(line)

    ctf_data = str(tmpdir / 'mbdata2.txt')
    with open(ctf_data, 'wb') as f:
        for i, sid in enumerate(seq_ids):
            line = sid + b'\t' + b'|index '+str(i).encode('ascii') + b'\n'
            f.write(line)

    transforms = [xforms.scale(width=7, height=5, channels=3)]
    b64_deserializer = Base64ImageDeserializer(image_data,
        StreamDefs(
            images=StreamDef(field='image', transforms=transforms),
            labels=StreamDef(field='label', shape=10)))

    ctf_deserializer = CTFDeserializer(ctf_data,
        StreamDefs(index=StreamDef(field='index', shape=1)))

    mb_source = MinibatchSource([ctf_deserializer, b64_deserializer])
    assert isinstance(mb_source, MinibatchSource)

    for j in range(100):
        mb = mb_source.next_minibatch(10)

        index_stream = mb_source.streams['index']
        index = mb[index_stream].asarray().flatten()
        image_stream = mb_source.streams['images']

        results = mb[image_stream].asarray()

        for i in range(10):
            # original images are RBG, openCV produces BGR images,
            # reverse the last dimension of the original images
            bgrImage = images[int(index[i])][:,:,::-1]
            # transposing to get CHW representation
            bgrImage = np.transpose(bgrImage, (2, 0, 1))
            assert (bgrImage == results[i][0]).all()
def get_minibatch(bmuf, working_dir, mb_source):
    from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs
    
    if mb_source == "numpy":
        for i in range(num_batches):
            features = []
            labels = []
            for j in range(batch_size):
                seq_len_j = [seq_len, seq_len + 5, seq_len - 5][j % 3]
                x = np.random.rand( seq_len_j, feat_dim).astype(np.float32)
                y = np.random.rand( seq_len_j, label_dim).astype(np.float32)
                features.append(x)    
                labels.append(y)
            yield {bmuf.feat: features, bmuf.label: labels}
    
    if mb_source in ("ctf_utterance", "ctf_frame", "ctf_bptt"):
        if mb_source == "ctf_frame":
            #frame mode data without sequence ids.
            ctf_data = ctf_data = '''\
|S0 0.49  0.18  0.84  0.7   0.59 |S1 0.12  0.24  0.14
|S0 0.69  0.63  0.47  0.93  0.69 |S1 0.34  0.85  0.17
|S0 0.04  0.5   0.39  0.86  0.28 |S1 0.62  0.36  0.53
|S0 0.71  0.9   0.15  0.83  0.18 |S1 0.2   0.74  0.04
|S0 0.38  0.67  0.46  0.53  0.75 |S1 0.6   0.14  0.35
|S0 0.94  0.54  0.09  0.55  0.08 |S1 0.07  0.53  0.47
|S0 0.11  0.24  0.17  0.72  0.72 |S1 0.9   0.98  0.18
|S0 0.3   1.    0.34  0.06  0.78 |S1 0.15  0.69  0.63
|S0 0.69  0.86  0.59  0.49  0.99 |S1 0.13  0.6   0.21
'''
        #sequence mode data with sequence id
        else:
            ctf_data = ctf_data = '''\
0	|S0 0.49  0.18  0.84  0.7   0.59 |S1 0.12  0.24  0.14
0	|S0 0.69  0.63  0.47  0.93  0.69 |S1 0.34  0.85  0.17
0	|S0 0.04  0.5   0.39  0.86  0.28 |S1 0.62  0.36  0.53
0	|S0 0.71  0.9   0.15  0.83  0.18 |S1 0.2   0.74  0.04
0	|S0 0.38  0.67  0.46  0.53  0.75 |S1 0.6   0.14  0.35
0	|S0 0.94  0.54  0.09  0.55  0.08 |S1 0.07  0.53  0.47
0	|S0 0.11  0.24  0.17  0.72  0.72 |S1 0.9   0.98  0.18
2	|S0 0.3   1.    0.34  0.06  0.78 |S1 0.15  0.69  0.63
2	|S0 0.69  0.86  0.59  0.49  0.99 |S1 0.13  0.6   0.21
'''

        ctf_file = os.path.join(working_dir, '2seqtest.txt')
        with open(ctf_file, 'w') as f:
            f.write(ctf_data)
    
        # ctf_utterance model
        frame_mode = False
        truncation_length = 0
        
        if mb_source == "ctf_frame":
            frame_mode = True
        elif mb_source == "ctf_bptt":
            truncation_length = 2
            
        mbs = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs(
            features  = StreamDef(field='S0', shape=feat_dim,  is_sparse=False),
            labels    = StreamDef(field='S1', shape=label_dim,  is_sparse=False)
        )), randomize=False, max_samples = batch_size*num_batches, 
            frame_mode=frame_mode, truncation_length=truncation_length)
        
        for i in range(num_batches):
            minibatch = mbs.next_minibatch(batch_size, {bmuf.feat: mbs.streams.features, bmuf.label: mbs.streams.labels})
            if not minibatch:
                break
            yield minibatch
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 2
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    feature = C.input_variable(input_dim)
    label = C.input_variable(num_output_classes)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant(0.00390625), feature)

    # z = Sequential([
    #     Dense(hidden_layers_dim, activation=relu),
    #     Dense(hidden_layers_dim, activation=relu),
    #     Dense(num_output_classes)])(scaled_input)

    with default_options(activation=relu, init=C.glorot_uniform()):
        z = Sequential([For(range(num_hidden_layers),
            lambda i: Dense(hidden_layers_dim)),
            Dense(num_output_classes, activation=None)])(scaled_input)

    ce = cross_entropy_with_softmax(z, label)
    pe = classification_error(z, label)

    # setup the data
    path = abs_path + "\Train-28x28_cntk_text.txt"

    reader_train = MinibatchSource(CTFDeserializer(path, StreamDefs(
        features=StreamDef(field='features', shape=input_dim),
        labels=StreamDef(field='labels', shape=num_output_classes))))

    input_map = {
        feature: reader_train.streams.features,
        label: reader_train.streams.labels
    }

    # Training config
    minibatch_size = 64
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 10

    # Instantiate progress writers.
    progress_writers = [ProgressPrinter(
        tag='Training',
        num_epochs=num_sweeps_to_train_with)]

    # Instantiate the trainer object to drive the model training
    lr = learning_rate_schedule(1, UnitType.sample)
    trainer = Trainer(z, (ce, pe), [adadelta(z.parameters, lr)], progress_writers)

    training_session(
        trainer=trainer,
        mb_source=reader_train,
        mb_size=minibatch_size,
        model_inputs_to_streams=input_map,
        max_samples=num_samples_per_sweep * num_sweeps_to_train_with,
        progress_frequency=num_samples_per_sweep
    ).train()

    # Load test data
    path = abs_path + "\Test-28x28_cntk_text.txt"

    reader_test = MinibatchSource(CTFDeserializer(path, StreamDefs(
        features=StreamDef(field='features', shape=input_dim),
        labels=StreamDef(field='labels', shape=num_output_classes))))

    input_map = {
        feature: reader_test.streams.features,
        label: reader_test.streams.labels
    }

    # Test data for trained model
    test_minibatch_size = 1024
    num_samples = 10000
    num_minibatches_to_test = num_samples / test_minibatch_size
    test_result = 0.0
    for i in range(0, int(num_minibatches_to_test)):
        mb = reader_test.next_minibatch(test_minibatch_size, input_map=input_map)
        eval_error = trainer.test_minibatch(mb)
        test_result = test_result + eval_error

    # Average of evaluation errors of all test minibatches
    return test_result / num_minibatches_to_test