def train_sequence_classifier(): input_dim = 2000 cell_dim = 25 hidden_dim = 25 embedding_dim = 50 num_output_classes = 5 # Input variables denoting the features and label data features = input_variable(shape=input_dim, is_sparse=True) label = input_variable(num_output_classes, dynamic_axes=[Axis.default_batch_axis()]) # Instantiate the sequence classification model classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim) ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim, True, 'x'), StreamConfiguration(labels_stream_name, num_output_classes, False, 'y') ], 0) features_si = mb_source.stream_info(features) labels_si = mb_source.stream_info(label) # Instantiate the trainer object to drive the model training lr = lr = learning_rates_per_sample(0.0005) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 200 training_progress_output_freq = 10 i = 0 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { features: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def simple_mnist(): input_dim = 784 num_output_classes = 10 num_hidden_layers = 1 hidden_layers_dim = 200 # Input variables denoting the features and label data input = input_variable(input_dim, np.float32) label = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant((), 0.00390625), input) netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) rel_path = r"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim), StreamConfiguration(labels_stream_name, num_output_classes) ]) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.003125) trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training minibatch_size = 32 num_samples_per_sweep = 60000 num_sweeps_to_train_with = 1 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): mb = mb_source.get_next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { input: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def train_sequence_to_sequence_translator(): input_vocab_dim = 69 label_vocab_dim = 69 hidden_dim = 512 num_layers = 2 # Source and target inputs to the model input_dynamic_axes = [ Axis('inputAxis'), Axis.default_batch_axis() ] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes = input_dynamic_axes) label_dynamic_axes = [ Axis('labelAxis'), Axis.default_batch_axis() ] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes = label_dynamic_axes) # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_dynamic_axes[0], 1, 0) label_sentence_start = sequence.first(raw_labels) is_first_label = sequence.is_first(label_sequence) label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization(encoder_outputH, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_from_ground_truth = label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value(decoder_history_from_ground_truth)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i == 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select(isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select(isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization(decoder_outputH, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH decoder_dim = hidden_dim # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration( feature_stream_name, input_vocab_dim, True, 'S0' ), StreamConfiguration( labels_stream_name, label_vocab_dim, True, 'S1') ], 10000) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.007) momentum_time_constant = 1100 momentum_per_sample = momentums_per_sample(math.exp(-1.0 / momentum_time_constant)) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True trainer = Trainer(z, ce, errs, [momentum_sgd_learner(z.owner.parameters(), lr, momentum_per_sample, clipping_threshold_per_sample, gradient_clipping_with_truncation)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 72 training_progress_output_freq = 10 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {raw_input : mb[features_si].m_data, raw_labels : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def sequence_to_sequence_translator(debug_output=False, run_test=False): input_vocab_dim = 69 label_vocab_dim = 69 # network complexity; initially low for faster testing hidden_dim = 256 num_layers = 1 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis('inputAxis') label_seq_axis = Axis('labelAxis') input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes, name='raw_input') label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes, name='raw_labels') # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_seq_axis, 1, 0) # <s> A B C </s> --> A B C </s> label_sentence_start = sequence.first(raw_labels) # <s> is_first_label = sequence.is_first(label_sequence) # <s> 0 0 0 ... label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_hook = alias( label_sequence, name='decoder_history_hook') # copy label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value(decoder_history_hook)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i > 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select( isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select( isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) # Criterion nodes ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # network output for decoder history net_output = hardmax(z) # make a clone of the graph where the ground truth is replaced by the network output ng = z.clone(CloneMethod.share, {decoder_history_hook.output: net_output.output}) # Instantiate the trainer object to drive the model training lr = 0.007 minibatch_size = 72 momentum_time_constant = 1100 m_schedule = momentum_schedule(momentum_time_constant) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True learner = momentum_sgd(z.parameters, lr, m_schedule, clipping_threshold_per_sample, gradient_clipping_with_truncation) trainer = Trainer(z, ce, errs, learner) # setup data rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" train_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) valid_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tiny.ctf") feature_stream_name = 'features' labels_stream_name = 'labels' # readers randomize_data = True if run_test: randomize_data = False # because we want to get an exact error train_reader = text_format_minibatch_source(train_path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], randomize=randomize_data) features_si_tr = train_reader.stream_info(feature_stream_name) labels_si_tr = train_reader.stream_info(labels_stream_name) valid_reader = text_format_minibatch_source(valid_path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], randomize=False) features_si_va = valid_reader.stream_info(feature_stream_name) labels_si_va = valid_reader.stream_info(labels_stream_name) # get the vocab for printing output sequences in plaintext rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.mapping" vocab_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) vocab = [w.strip() for w in open(vocab_path).readlines()] i2w = {i: ch for i, ch in enumerate(vocab)} # Get minibatches of sequences to train with and perform model training i = 0 mbs = 0 epoch_size = 908241 max_epochs = 10 training_progress_output_freq = 500 # make things more basic for running a quicker test if run_test: epoch_size = 5000 max_epochs = 1 training_progress_output_freq = 30 for epoch in range(max_epochs): loss_numer = 0 metric_numer = 0 denom = 0 while i < (epoch + 1) * epoch_size: # get next minibatch of training data mb_train = train_reader.next_minibatch(minibatch_size) train_args = { 'raw_input': mb_train[features_si_tr], 'raw_labels': mb_train[labels_si_tr] } trainer.train_minibatch(train_args) # collect epoch-wide stats samples = trainer.previous_minibatch_sample_count loss_numer += trainer.previous_minibatch_loss_average * samples metric_numer += trainer.previous_minibatch_evaluation_average * samples denom += samples # every N MBs evaluate on a test sequence to visually show how we're doing if mbs % training_progress_output_freq == 0: mb_valid = valid_reader.next_minibatch(minibatch_size) valid_args = { 'raw_input': mb_valid[features_si_va], 'raw_labels': mb_valid[labels_si_va] } e = ng.eval(valid_args) print_sequences(e, i2w) print_training_progress(trainer, mbs, training_progress_output_freq) i += mb_train[labels_si_tr].num_samples mbs += 1 print("--- EPOCH %d DONE: loss = %f, errs = %f ---" % (epoch, loss_numer / denom, 100.0 * (metric_numer / denom))) # now setup a test run rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.test.ctf" test_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) test_reader = text_format_minibatch_source(test_path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], 10000, randomize=False) features_si_te = test_reader.stream_info(feature_stream_name) labels_si_te = test_reader.stream_info(labels_stream_name) test_minibatch_size = 1024 # Get minibatches of sequences to test and perform testing i = 0 total_error = 0.0 while True: mb = test_reader.next_minibatch(test_minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be tested with arguments = { raw_input: mb[features_si_te], raw_labels: mb[labels_si_te] } mb_error = trainer.test_minibatch(arguments) total_error += mb_error if debug_output: print("Minibatch {}, Error {} ".format(i, mb_error)) i += 1 # Average of evaluation errors of all test minibatches return total_error / i
def simple_mnist(debug_output=False): input_dim = 784 num_output_classes = 10 num_hidden_layers = 1 hidden_layers_dim = 200 # Input variables denoting the features and label data input = input_variable(input_dim, np.float32) label = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant((), 0.00390625), input) netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) try: rel_path = os.path.join( os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'], *"Image/MNIST/v0/Train-28x28_cntk_text.txt".split("/")) except KeyError: rel_path = os.path.join( *"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt". split("/")) path = os.path.normpath(os.path.join(abs_path, rel_path)) check_path(path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim), StreamConfiguration(labels_stream_name, num_output_classes) ]) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training trainer = Trainer(netout, ce, pe, [sgd(netout.parameters(), lr=0.003125)]) # Get minibatches of images to train with and perform model training minibatch_size = 32 num_samples_per_sweep = 60000 num_sweeps_to_train_with = 1 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): mb = mb_source.get_next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = { input: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) if debug_output: print_training_progress(trainer, i, training_progress_output_freq) # Load test data try: rel_path = os.path.join( os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'], *"Image/MNIST/v0/Test-28x28_cntk_text.txt".split("/")) except KeyError: rel_path = os.path.join( *"../../../../Examples/Image/MNIST/Data/Test-28x28_cntk_text.txt". split("/")) path = os.path.normpath(os.path.join(abs_path, rel_path)) check_path(path) test_mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim), StreamConfiguration(labels_stream_name, num_output_classes) ]) features_si = test_mb_source.stream_info(feature_stream_name) labels_si = test_mb_source.stream_info(labels_stream_name) # Test data for trained model test_minibatch_size = 512 num_samples = 10000 num_minibatches_to_test = num_samples / test_minibatch_size test_result = 0.0 for i in range(0, int(num_minibatches_to_test)): mb = test_mb_source.get_next_minibatch(test_minibatch_size) # Specify the mapping of input variables in the model to actual # minibatch data to be tested with arguments = { input: mb[features_si].m_data, label: mb[labels_si].m_data } eval_error = trainer.test_minibatch(arguments) test_result = test_result + eval_error # Average of evaluation errors of all test minibatches return test_result / num_minibatches_to_test
hidden_layers_dim = 400 dataloader.load() train_file = "data/MNIST/Train-28x28_cntk_text.txt" if os.path.isfile(train_file): path = train_file else: print("Cannot find data file") feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim), StreamConfiguration(labels_stream_name, num_output_classes) ]) features_si = mb_source[feature_stream_name] labels_si = mb_source[labels_stream_name] input = input_variable((input_dim), np.float32) label = input_variable((num_output_classes), np.float32) # Define a fully connected feedforward network def linear_layer(input_var, output_dim): input_dim = input_var.shape[0] times_param = parameter(shape=(input_dim, output_dim),
def train_sequence_classifier(debug_output=False): input_dim = 2000 cell_dim = 25 hidden_dim = 25 embedding_dim = 50 num_output_classes = 5 # Input variables denoting the features and label data features = input_variable(shape=input_dim, is_sparse=True) label = input_variable(num_output_classes, dynamic_axes=[Axis.default_batch_axis()]) # Instantiate the sequence classification model classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim) ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim, True, 'x'), StreamConfiguration(labels_stream_name, num_output_classes, False, 'y') ], FULL_DATA_SWEEP) features_si = mb_source[features] labels_si = mb_source[label] # Instantiate the trainer object to drive the model training trainer = Trainer(classifier_output, ce, pe, [sgd(classifier_output.parameters, lr=0.0005)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 200 training_progress_output_freq = 10 i = 0 if debug_output: training_progress_output_freq = training_progress_output_freq / 3 while True: mb = mb_source.next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = {features: mb[features_si], label: mb[labels_si]} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1 import copy evaluation_average = copy.copy( trainer.previous_minibatch_evaluation_average) loss_average = copy.copy(trainer.previous_minibatch_loss_average) return evaluation_average, loss_average
def sequence_to_sequence_translator(debug_output=False): input_vocab_dim = 69 label_vocab_dim = 69 hidden_dim = 512 num_layers = 2 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis('inputAxis') label_seq_axis = Axis('labelAxis') input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable( shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes) label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable( shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes) # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_seq_axis, 1, 0) label_sentence_start = sequence.first(raw_labels) is_first_label = sequence.is_first(label_sequence) label_sentence_start_scattered = sequence.scatter( label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as( thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as( thought_vectorC, label_sequence) # Decoder decoder_history_from_ground_truth = label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value( decoder_history_from_ground_truth)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i > 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select( isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select( isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH decoder_dim = hidden_dim # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # Instantiate the trainer object to drive the model training lr = 0.007 momentum_time_constant = 1100 m_schedule = momentum_schedule(momentum_time_constant) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True trainer = Trainer(z, ce, errs, [momentum_sgd(z.parameters, lr, m_schedule, clipping_threshold_per_sample, gradient_clipping_with_truncation)]) rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1')], 10000) features_si = mb_source[feature_stream_name] labels_si = mb_source[labels_stream_name] # Get minibatches of sequences to train with and perform model training minibatch_size = 72 training_progress_output_freq = 30 if debug_output: training_progress_output_freq = training_progress_output_freq/3 while True: mb = mb_source.next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = {raw_input: mb[features_si], raw_labels: mb[labels_si]} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1 rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.test.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) test_mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1')], 10000, False) features_si = test_mb_source[feature_stream_name] labels_si = test_mb_source[labels_stream_name] # choose this to be big enough for the longest sentence train_minibatch_size = 1024 # Get minibatches of sequences to test and perform testing i = 0 total_error = 0.0 while True: mb = test_mb_source.next_minibatch(train_minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be tested with arguments = {raw_input: mb[features_si], raw_labels: mb[labels_si]} mb_error = trainer.test_minibatch(arguments) total_error += mb_error if debug_output: print("Minibatch {}, Error {} ".format(i, mb_error)) i += 1 # Average of evaluation errors of all test minibatches return total_error / i